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ABSTRACT
We study the geometric properties of point sets that arise in the generation of _
bounded aspect-ratio meshes and present a constructive formulation to define distribu-
tions that allow arbitrary refinements. This formulation can be used to define distri-
butions with one or more singularities, which do not occur in the uniform case but do
occur in mesh generation for real-world applications. We give an efficient algorithm for
the generation of a point set from these distributions.
This work is in part motivated by the following observation: The Poisson distribution,
points placed uniformly and randomly in a fixed dimension, is one of the most commonly
used classes of data sets in the experimental evaluation of geometric algorithms and
their implementation. However, despite its importance and interest to computational
geometry, the Poisson distribution fails to be good test data for triangulation algorithms
and software for mesh generation. Consequently, many implemented sequential and
parallel algorithms are tuned to work efficiently for the uniform distribution, but fail to
be efficient for nonuniform distributions. Even though the focus of our work is on the
generation of data for Delaunay-based mesh algorithms, we hope that it will motivate
further theoretical investigations on the generation of data for other geometric algorithms
and software.

Keywords: Delaunay triangulations, computational geometry, mesh generation, random-
ized algorithms, well-spaced points.

1. Introduction

The uniform distribution is one of the most interesting and important classes of
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Fig. 1. A point set for a numerical discretization around an airfoil, based on a
mesh generated by Barth and Jespersen

point distributions in computational geometry. Various geometric algorithms are
designed to exploit the expected properties of this distribution. Examples include
the divide-and-conquer convex-hull algorithm of Bentley and Shamos,? the nearest
neighbors algorithm of Bentley, Weide, and Yao,* and the Voronoi and Delaunay
diagrams algorithm of Dwyer? and its parallel extensions.?®?7

Several important considerations lead researchers to choose the uniform distribu-
tion as experimental data to test and to evaluate geometric algorithms. The uniform
distribution models some physical processes (such as arrival time) and therefore is
natural for certain problems. Further, many geometric graphs, such as Delaunay
diagrams and relative neighborhood graphs, when constructed over a point set from
the uniform distribution, have expected linear size even in higher dimensions. The
sparseness implies experiments can be performed efficiently. The uniform distribu-
tion can be used to test how well algorithms and software handle problematic issues
such as data degeneracy. Last, but not least, the uniform point set can be easily
generated.

However, the experimental data must be relevant to the objectives of the exper-
iment. In general the goal of an experiment is to test certain theoretical conjectures
and theorems, to check the correctness and complexity of an algorithm and its im-
plementation, and/or to recognize patterns of computations in order to improve the
efficiency of the algorithm. Given that software is usually targeted at certain classes
of applications, it is crucial to generate data sets that best represent the range of
problems in these applications. :

Non-uniform distributions arise naturally in many real-world applications. Fig-
ure 1 gives an example of a non-uniform point distribution around an airfoil. A
typical example is mesh generation in scientific computing. Tf we only use the uni-
form distribution to experimentally evaluate and improve Delaunay based mesh
generation algorithms, we may mistakenly fine-tune our algorithms and software to
work most efficiently for the uniform distribution; these fine-turned algorithms may
fail on naturally occurring non-uniform distributions. Even when the underlying
point density is regular, the uniform distribution might not reflect other properties
_ of the data sets targeted by an algorithm. For example, Bern, Eppstein, and Yao’
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have shown that the expected smallest angle of the Delaunay triangulation of a set
of points placed uniformly and randomly in two dimensions is 8(1/y/n). This im-
plies, with high probability, that a uniform random point set (e.g., from the Poisson
distribution) does not have a bounded aspect-ratio. Therefore, random point sets
do not adequately represent bounded aspect-ratio meshes even for domains with a
uniform density requirement.

The goal of this work is to give a theoretical foundation of distributions encoun-
tered in certain practical domains, to provide an understanding of point sets that
approximate these distributions, and to develop an efficient algorithm for generating
these data. In this paper, we focus on the problem of the design of relevant data for
testing Delaunay based algorithms/software in mesh generation. We characterize
the geometric properties of point sets that arise in bounded aspect-ratio meshes
and present a constructive formulation to define distributions that allow arbitrary
refinements, and include distributions with one or more singularities which do not
occur in the uniform case but do occur in real-world applications. We show that a
point set from such a distribution can be generated efficiently. We also give a for-
mulation that allows users to design their own classes of distributions. Even though
our work focuses on the generation of experimental data for Delaunay-based mesh
algorithms and software, we hope that it will motivate further theoretical investi-
gations on the generation of experimental data for other geometric algorithms and
software.

Another goal for our work is to provide computational geometers an algorithm
that efficiently generates test data for output sensitive Delaunay triangulation algo-
rithms and provide numerical analysts an automatic procedure for the generation
of a large class of unstructured sparse matrices and finite-element meshes.

The rest of the paper is as follows: in Section 2, we review Lipschitz conditions
and introduce well-spaced points for Delaunay-based mesh generation. In Section 3,
we show how to superimpose simple local spacing functions to model multiple singu-
larities and maintain the Lipschitz conditions. In Section 4, we present an efficient
algorithm for the generation of well-spaced point sets. We will also present the main
components of our well-spaced point set generator. In Section 5, we analyze the

spacing function of the Plummer distribution, an important point distribution in

Astrophysics. In Section 6 we conclude this paper and discuss the future directions
motivated by this work. ,

2. A Geometric Characterization of Well-Spaced Point Sets

In this section, we examine the properties of point sets associated with bounded
aspect-ratio meshes. The use of well-spaced point sets is implicitly at the heart of
many numerical methods such as the finite-element and finite-volume methods.18:2
Well-spaced point sets also have potential applications in smooth particle hydro-
dynamics (SPH). We can describe the discretization process associated with mesh
generation as a two-phase process. In the first phase, we generate a set of points
that satisfies both geometric and numerical conditions imposed on the physical do-
main. In the second phase we construct a robust and bounded aspect-ratio mesh
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over this point set, e.g., the Delaunay triangulation of the point set. Mesh gener-
ation algorithms often merge the two phases, and generate the point set implicitly
as part of the mesh generation phase. Keeping the two phases distinct enables us
to concentrate on the properties of the point sets.

The input description of a physical domain has two components: a geometric
model of the domain and a numerical condition within the domain. The geometric
model provides the boundary of the domain either in the form of a continuous model
or of a discretized boundary model. The continuous model, such as constructive
solid geometry (CSG),**! defines a domain in terms of union, intersection, and
complement of basic geometric objects such as boxes, spheres, or other simple ob-
jects. The discretized boundary model defines the boundary of the domain in a
piecewise fashion using low degree polygonal elements. The discretized boundary
model is often used in mesh generation. A description of the domain in the continu-
ous model can be transformed into a discretized boundary description by replacing
basic geometric objects with their local discretizations. The geometric model of
the domain defines a local spacing function restricting the final discretization of the
domain. The numerical condition within the domain is typically obtained from an
initial numerical simulation on a preliminary set of points. It defines an additional
local spacing function restricting the final point set. '

9.1. The Numerical Spacing Function

The numerical spacing function, typically denoted by h(x), defines a scalar at each
point . It is usually defined at a point z by the larg eigenvalues of the Hessian
matrix of the solution u to the governing partial differential equations (PDEs). 22512
Locally, u behaves like a quadratic function

u(z +dz) = %(szT) + zVu(z) + u(@),

where H is the Hessian matriz of u, the matrix of second partial derivatives. The
spacing of mesh points, h(z), required by the accuracy of the discretization at a
point z, should depend on the reciprocal of the square root of the largest eigenvalues
of H at .28 .

When solving a PDE numerically, we estimate the eigenvalues of the Hessian:
matrix at a certain set of points in the domain based on the numerical approximation’
of the previous iteration.??® We then expand the spacing requirement induced by
the Hessian at these points over the entire domain.

2.9. The Geometric Spacing Function

For the finite element formulation, Strang and Fix?® have given an error bound
that depends on the aspect-ratio of the mesh elements. Babuska and Aziz* have
shown that the largest angle of the mesh elements should be bounded away from
. Recently, it has been shown in Ref. [18] that a weaker aspect-ratio condition in
conjunction with the finite volume method on Delaunay triangulations also achieves
an optimal error bound. ‘
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All three results above require that the local spacing of the mesh points changes
slowly spatially. The magnitude of change in the point spacing reflects the aspect-
ratio, or its variants, achieved by the mesh. The geometry of the boundary of a
domain implicitly defines a local feature function extending from the boundary to
the entire domain, and possessing a bounded detivative almost everywhere . This
“geometric local feature function” is much better understood thanks to the work
of Bern-Eppstein-Gilbert,® Mitchell-Vavasis,'? Ruppert,2* Mitchell,?® and Miller et
all® ,

Given a set of input features F, e.g., a collection of points or simple geometric
objects, one definition of the geometric local feature function at point & in the
domain, ifsp(z), introduced by Ruppert,?* is the maximum distance from z to the
closest two non-adjacent features (either corner-vertices or boundary faces) of the
domain. The geometric local feature size of a domain then is given by lfsq(z).

The Ifs function, as shown by Ruppert, is Lipschitz with a constant 1.
Definition 1 (Lipschitz) A function f is Lipschitz with constant a if for any two
points z,y in the domain, |f(z) — f(y)] < allz - yll-

The spacing requirement of the final mesh then must satisfy both geometric and
numerical features.

2.9. A Geometric Characterization

The combination of the numerical and geometric requirements of a continuous prob-
lem defines a local spacing function over a domain. We denote this function by
1s(). This spacing function must satisfy both geometric and numerical features, i.e.,
1s(z) < min(h(z), fsq(z)) for every point z in the domain. In Section 3, we will
give a constructive formulation for users to define these two spacing functions, and
to combine them.

As shown in Refs. [5,24,17,18], if M is a bounded aspect-ratio mesh whose size
is optimal up to a constant factor, then its point set P respects the local spacing
function 1s() in the following sense: There is a constant B > 1 such that for every
point z in the domain,

Is(x)/8 < Usp(z) < Pls()- 1)

Figure 2 shows a bounded aspect-ratio mesh around a singularity.

Condition (1) implies that the point set P of the mesh M defines a local feature
function that is linearly related to the spacing function 1s(). In other words, the
upper bound on ifsp() given in (1) implies that the point set P must be dense
enough point-wise with respect to the local spacing function 1s(), whereas the lower
bound on Ifsp() given in (1) implies that points in P are not too close to each other
in terms of the local spacing. The notion of an ideal well-spaced point set is given
more formally in the following definition.

Definition 2 (Maximally Spaced Points) Suppose 18() is a Lipschitz local spac-
ing function and P is a point set over a domain Q. Then (1) P is ls-spaced if
for any two points p andq € P, |lp—4i| 2 min(ls(p),18(g))- (2) S is maximally




582 G. L. Miller, D. Talmor & S.-H. Teng

o
=)
(;hr,ae

%
s

KX

o
o,

..”.‘...
R
\-'.‘ e

=
)
)
raa

=,

T
=

Fig. 2. mangulationofwell-epacedpoimsetmmdaaingularity. The mesh
was generated by Omar Ghattas and Xiaogang Li.2

1s-spaced if no point from ! can be added to S without violating the 1s-spacing con-
dition. '

For mesh generation, we can relax the maximality condition in Definition 2.
Definition 3 Let & be a positive constant. A point set P is a 5-sample with respect
to 1s() if for all x € Q, the ball of radius d1s(z) centered at = contains at least one
point of P.

Lemma 1 Ifls has Lipschitz constant a, P is an ls-spaced §-sample, and ad <1,
then for every point x in the domain,

1+36
1—-ad

Proof. We first prove the lower bound. Let B be the ball centered at of
radius Mfsp(z), i.e., B is the smallest ball that contains two points from P. Let p
and g be these two points. Clearly one of p and g must be on the surface of B.
Because P is ls-spaced, we have min(1s(p), 1s(q)) < lip — gll < 2lfsp(z). Because Is
is a-Lipschitz, we have Is(z) < min(ls(p), 1s(q)) + alfsp(z) < (2 + a)lisp(z)-

We now prove the upper bound. Let C be the ball centered at z of radius dls(z).

1s(z)/(2 + ) < fsp(2) < Is(z)-

Because P is a é-sample, C must contain a point, say u, from P. Let v € P be

the point that is closest to u. We now estimate the distance from u to v. Let
K =&/(1— ad). If we look at a point v’ at distance Kls(u) from u, its Is is at most
1s(u) + aKls(u) = Is(u)/(1 - ad), and therefore a dls(v’ ) ball centered at v’ does
not touch u and must contain another input point v. The distance fromu tovis
therefore smaller than 261s(us)/(1—ad). Thus, we have ifsp(z) < dls(x)+1s(u) 1253
Because 1s is a-Lipschitz, 1s(u) < Is(z) + adls(z). Therefore,

1+ 26 + ad® 1+ 36
l1—-a

lsp(z) < 2 1a(a) < TogB(=):

O
Point set P is 1s()-spaced d-somple if F is ls-spaced and a é-sample with respect
to 1s(). Such sets partially capture the intuition of well-spaced point sets.

o Mo e
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Tn Section 4, we will show that if the Lipschitz constant of 1s() isaand ad < 1,
then the Delaunay triangulation of any 1s()-spaced §-sample satisfies the aspect-
ratio condition defined in Ref. [18]. Notice that in the results above we ignore
boundary effects. More discussion and techniques for coping with the boundary
effects will be given in Section 4.3. o -

3. Constructive Feature Geometry

In order to automatically generate test data using local spacing functions, we need to
have a constructive formulation for a user to specify the properties of a distribution
from his/her applications. A distribution is described in terms of its size, locations,
intensities, shape of singularities, and its boundary.

Motivated by constructive solid geometry?33! which defines complex geomet-
ric objects as union and intersection of a set of basic geometric objects, we pro-
pose to use constructive feature geometry (CFG) to define complex feature func-
tions/distributions from a set of basic feature functions/distributions. The global
feature function is then defined by applying a super-imposing operator to a set of
basic feature functions.

Distributions with more than one singularity and with various intensities and
shapes can be modeled by properly choosing the set and the number of basic feature
functions. We use (and perhaps abuse) the term singularity to indicate the point-
spacing becoming smaller and point density becoming larger, but in a controlled
manner, in a neighborhood of the domain. In the next section we present an efficient
algorithm to generate a well-spaced point set from a constructive feature geometry
formula.

3.1. Basic Feature Functions

The basic feature functions are defined using simple geometric objects such as
points, lines (segments), spheres, and simplices.

3.1.1. Point Features
A point feature is defined over a domain  using a point p. In addition, we have

a value p that specifies a desired spacing near p. The feature @‘,‘,(a:) for a point
z € 9, is equal to ¥y(z) = max(p |l — pl)-
Clearly, $p(z) is 1-Lipschitz. By choosing p and p, we can model a singularity

of certain intensity near any point in the domain:

3.1.2. Features Around Geometric Objects

Points features are symmetrical in all directions. To model a wider variety of sin-
gularities, we use the features defined by higher dimensional geometric objects such
as lines (segments), spheres, boxes, and simplices.

Let T be such a geometric object and p be a parameter specifying a desired
spacing near the boundary of . The spacing function induced by I' over the domain
Q is given as follows: for each z € (1, $%(x) = max(p, ||z — T|[), where ||z - T}l is
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the distance between = and I
Clearly, () is 1-Lipschitz.

3.2, Constructive Feature Geometry (CFG) by Super-imposing--

A super-imposing operator can be used to combine the local features defined by
points and basic geometric objects. These points define the centers of singularities
whereas the objects model the locations and shape of singularities.

Suppose 2 is a domain and #,(),..8m() are k basic local spacing functions.
The spacing function $() obtained by super-imposing these basic functions is given
by

#(z) = ?:{{1@‘(:).

The simplest CFG formula is defined by a set of point feature functions. Let
P = {p,,--,p;} be a set of points in 0, representing the centers of singularities.
Suppose the local spacing of p; is ;- Then the global feature function is:

8(z) = min &} (2).

The following lemma shows that super-imposing of two functions preserves the
smoothness of both functions.

Lemma 2 If fi and f2 are a-Lipschitz over Q, then min(f1, f2) is also a-Lipschitz
over Q.

Proof. Let z and y be two points in 2. Let 0 = min(£(), f2()). Without
loss of generality, assume that f(z) < f (y) and f(z) = fi(z). There are two cases.
(1) If f(y) = f1(y), then because fy is a-Lipschitz, |f(y) - f(®)| < elly ~ z||. (2)
I f(y) = f2(y), we have |f(y) — f(@)| < 1) - H(@)] < ally — z||. Thus, fis
a-Lipschitz. : . a
Corollary 1 &() defined above is 1-Lipschitz. It also respects the spacing restric-
tions in the sense that at each point x, $(x) is no larger than the spacing restriction
of all local feature functions.

4. Well-Spaced Point-Set Generation

In this section, we present two techniques, oversampling and filtering, and show
how to apply them to generate a well-spaced point set according to a local spacing
function. We will prove the following theorem.

Theorem 1 (Point Generation) Suppose 1s is a spacing function of Lipschitz
constant a in a domain 2. For any B and § such that B8 < 1/a, a B -1s()-spaced
§-sample of size O(K) con be generated in O(K log K) time, where K is the size of
an optimal well-spaced point set for 1s over the domain Q.

4.1. Point Generation for the Uniform Distribution

The following discussion of uniform distribution may be used to motivate our con-
struction. Bern, Eppstein, and Yao” have shown that the aspect-ratio and degree

a5 R
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of the Delaunay diagram of a uniform point set generated by the Poisson process
are all unbounded.

The homogeneous Poisson point process of intensity one is a standard model
characterized by the property that the number of points in a region is a random
variable that depends only on the d-dimensional volume of the region.!5:!4:7 In this
model,

e The probability of exactly k points appearing in any region of volume V is
e~ VVE /Kl

e The conditional distribution of points in any region given that exactly k points
fall in the region is joint uniform.
Theorem 2 (BEY) If P is a set points generated by the Poisson point process with
" intensity one over a /n X /n square, then with very high probability (> 1 —1/n),
the smallest angle in the Delaunay diagram of P is equal to ©(1//n).

Therefore, with very high probability, a point set from a uniform distribution is
not well-spaced. Suppose instead of using the Poisson point process with intensity
one, we oversample such that with high probability each unit area has at least one
point. Then, still, there is no a priori bound on the degree nor the aspect-ratio,
because with very high probability, there are two points in the uniform set as well
as the oversampled set that are too close to each other. '

Our idea is to selectively remove some of the extra points after this oversampling.
- By carefully using these two techniques, oversampling and filtering, we can efficiently
generate a point set whose Delaunay diagram has a constant degree and a bounded
aspect-ratio.

Suppose, a point set P is produced by oversampling the uniform distribution,
such that each unit ball contains a point from P. The filtering process uses a conflict
graph G, in which each vertex corresponds to a unit ball centered at a sample point,
and ihe vertices of two balls are connecied if each of the ¢two balls contains the
other’s center in its interior. The output of the filtering process is simple a mazimal
independent set S of G.

Lemma 3 The set S constructed above is a 2-sample for the uniform spacing func-
tion.

Proof. Because S is an independent set of the conflict graph, the distance
between any two points from S is at least 1.

We now show that S is a 2-sample with respect to the uniform spacing function.
Let  be a point in the domain. Let B be the ball of radius 2 centered at z, as
drawn in Figure 3. We assume by contradiction that B contains no point from
S. Let C be the unit ball centered at z. By the assumption of oversampling, C
contains a point from P. Call this point p. Let D be the unit ball centered at p.
Note that D is properly contained in B, and hence contains no point from S.

This implies that p does not conflict with any point in S, contradicting the
assumption that S is a maximal independent set of the conflict graph. Thus, B
must contain a point from S and hence S is a 2-sample with respect to the uniform
spacing function. a
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Fig. 3. An Example for Lemma 3.

4.2. Well-Spaced Point Set Generation

Our approach for well-spaced point set generation is to first oversample a random
point set P such that for each point z € Q, the ball of radius 1s(x) centered at
z contains a sample point. We then apply filtering to P to obtain an ls-spaced
(2 + a)-sample.

4.2.1. Hierarchical Trees for Feature Approximation

The oversampling process is guided by a balanced decomposition of €, i.e., a quad-
tree decomposition in two dimensions and an oct-tree decomposition in three di-
mensions. -

Fig. 4. Quad-tree

A quad-tree?® is a recursive partition of a region of the plane into axis-aligned
squares. One square, the root, covers the entire domain Q. It is often chosen to
be a constant factor of the smallest square that contains the domain. A square
can be divided into four child squares, by splitting it with horizontal and vertical
line segments through its center. The collection of squares then forms a tree, with
smaller squares at lower levels of the tree. The recursive decomposition is often
adaptive to the local geometry and local spacing function (See Figure 4). Oct-
tree is the three-dimensional version of quad-tree. Oct-trees are constructed by
recursively and adaptively dividing a box into eight child-boxes, by splitting it with
hyper-planes normal to each axis through its center (See Figure 5).

We refer to both quad-trees and oct-trees as hierarchical trees. Balanced hierai-
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Fig. 5. Oct-tree

chical trees, introduced by Bern, Eppstein, and Gilbert,® can approximate a feature
function. A balanced hi rchical tree has no leaf-box adjacent to another leaf-box
more than twice its side length.
Definition 4 Let T be a balanced hierarchical tree over a domain Q. Define @
ﬁmctionfrsuchthatfq-(z)=l if l isthesidclengthofﬂwboa.‘thatcontaimthe
point z. The function fr approzimates 6 local spacing function 18 if 32,61 > ]
suchﬂtatc1f75h5csz point-wise in 1. y
Lemma 4 Given 6 domain Q with a Lipschitz spacing function 18 (in the CFG
form), a hierarchical tree T of size O(K) that approzimates 1s can be generated in
O(K log K) time, where K is the size of an optimal well-spaced point set for Is over
the domain . - '

Proof. We generate two separate hierarchical trees, one is for the local spacing

- function ls and another is for the domain itself. The union of these two tree define

the final hierarchical tree.

The function 1s is given as a combination (using the min operator over N ba-
sic feature functions). We make the assumption that the final size of the tree, K,
is larger than N. This is true if each basic feature function contributes new in-
formation about the structure of the tree. We also assume that the hierarchical
tree boxes have rational binary co-ordinates and lengths which are a power of two.
Consequiently, when a point is given together with the gize of the box containing
it in the hierarchical tree, we can create in O(1) time & desciiption of that box in
terms of its corner and length. For each basic feature function, we create a set of
leaf-baxes that intersect with its geometric object: A point feature has one leaf-box,
but a general geometric objects may have many more.

The algorithm in Ref. (6] can be used to generate the balanced hierarchical
tree over these boxes. The optimality of K follows from the proof of Mitchell and
Vavasis!® for 3D and Bern, Eppstein, and Gilbert® for 2D.

Because the domain {2 is given in the CSG form, we can use a planar straight-line
graph (PSLG) to model it in 2D (as in Bern-Eppstein-Gilbert and Ruppert) and
a polyhedral region with holes in 3D (an in Mitchell-Vavasis). Therefore, compu-
tationally, we can apply Bem-Eppstein-Gilbert’s balanced quad-tree and Mitchell-
Vavasis’s oct-tree algorithms and software to support our hierarchical decomposi-
tion. The O(K log K) time bound follows directly from the results in Refs. [5,19].
a

A simpler algorithm, which is not theoretically optimal, is to create the tree
level by level. At each level we have a set of active (non-leaf) tree boxes, and a set
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of input boxes. We split a tree box if it contains a set of input boxes of smaller size,
or it has a small leaf box neighbor. In this algorithm we pay linearly for each level,
and therefore will be optimal only for short, logarithm depth trees. Nonetheless, it
is a simple first-cut algorithm to implement.

4.2.2. Oversampling and Filtering

Given the hierarchical tree T' that approximates 1s, an oversampling of Is can be
generated as follows: In each leaf-box of T', we place a set of sample points such
that the 1s(z)-ball at each point z contains at Jeast one sample point. One way
to generate such sample points is to uniformly and randomly generate Qlog K)
points at each leaf-box. Note that the number of leaf-baxes is ©(K). Then with
high probability, the 1s(x)-ball at each point contains at least one sample point.
An alternative way to oversample is to choose a constant integer L = [ca/e1] and
divide each leaf-box into L? smaller boxes of equal size. We then choose a random
point from each smaller box.

Let P be the set of sampling points constructed in the oversampling procedure.
The filtering is guided by a conflict graph Gp defined on P. The set of vertices
of Gp is P. TwoverticespandqePareconnectedbyanedgeoprifllp—
gl < min(1s(p),1s(g)). Geometrically, this condition implies that the ls(p)-ball at
p contains g and the 1s(g)-ball at g contains p. Let S be a maximal independent
set of Gp. We call S a filtering of P.

Lemma 5 Let 1s() be a local spacing function over @ domain Q with Lipschitz ratio
a and let P be a 1-sample with respect tols(). If S is a filtering of P, then S is a
1s-spaced (2 + a)-sample. : ’

Proof. Because S is an independent set of Gp, it follows directly from the
definition of Gp that S is an 1s-spaced point set. _

We now prove that it is a (2 + a)-sample with respect to 1s. Let = be a point
in Q. Let B be the (2 + a) - 1s(z)-ball centered at z. To prove the lemma by
coatradiction, we assume that B does not contain a point from S. Let C be the
1s(z)-ball center at . Because P is a 1-sample with respect to Is, C contains a
point from P. Call this point p € P. Becausels is a-Lipschitz, 1s(p) < Is(z)(1+a).
Let D be the 1s(p)-ball centered at p. Note that D is properly contained in B and{-
hence does not contain a point from S. Therefore, p does not conflict with any
point in S, contradicting with the assumption that S is a maximal independent set
of Gp. Therefore B must contains a point from S and hence S is a (2 + a)-sample
with respect to Is. : . ) ju |

4.2.3. A Well-Shaped Point Generation Algorithm

Lemma 4 shows that a quad-tree or a oct-tree can be used to approximate a Lipschitz
function efficiently and optimally in two and three dimensions, respectively. Lemma
5 guarantees that after oversampling and filtering, we construct an approximate ls-
spaced point set. Lemma 1 shows that an approximate ls-spaced point set is a

well-spaced point set.

#
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However, most of our lemmas assume that the spacing-function 15() has Lipschitz
ratio a < 1, but the local spacing function defined by a CFG formula has Lipschitz
ratio equal to 1. Mo ,LemmaSshowsthatthe:ﬁleaingofahierarchioal-
tree based oversampling for an a-Lipschitz function is an ls-spaced §-sample, where
§=(2+a) To apply Lemmas 1 and7weneedtohavea§< l,whichimpliesjhat
o should be less than vZ2 —1 s 0.4142. e T

If the Lipschitz constant of Is is larger than v2—1, than we-can use the following
Jemma to construct a Li itz function g() of Lipechitz constant gtrictly less than
\/i—uhatisapoint-wiseappmdmationous(). . o
Lemma 6 If 1s() is a-Lipschitz, then for any positive constant ¢, C* 18() is (ac)-
Lipschitz. ,

ot (o la(@) — - ()| = cs() 18| < oalle — - o
The following is our well-spaced point generation algorithm. '

Algorithm Weu-spaeed-Poiﬁt-Gmmtion(ls,n )
OLetabetheLipschitzratioofls. ,
o Chooseaﬂinthemgeo<ﬁ<ﬁ-1andug()=gxs().
« Apply the balanced hierarchical tree algorithm (Lemma 4) to ap-
proximate g.
e In each cell, place a random point set to generate a 1-sample with
respect 10 g- Call this set P.

o Generate the conflict graph Gp and compute a ma:nmal indepen-
dent set S of Gp-

e Return S.

Flgure 6 show an example of well-space point set.

Fig. 6. A well-space point set after smoothing the point set given in Fig. 7 of
Section 5.
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Ruppert’s result,?* showing that all optimal meshes conform to the local spacing

function, can be combined with results showing the balanced quad/oct-tree is an
optimal mesh (see Bern, Eppstein and Gilbert® in 2D, and Mitchell and Vavasis'®
for 3D), to yield the following theorem:
Theorem 3 (BEG-MV-R) Let Is-be a local spacing function with Lipschitz ratio
no more than 1. For all constants 0 < § < 1, there is a constant C depending
only on B and the dimension such that the size of the balanced hierarchical tree for
g = Ph is no more than C time the size of the balanced hierarchical tree for Is.

Theorem 1 then follows from Lemmas 5, 4, and 1, and Theorem 3.

We use a hierarchical tree as an initial approximation to the local spacing func-
tion 1s and then perform oversampling and filtering to obtain a well-spaced point
set. Notice, however, that the vertices of the hierarchical tree themselves are well-
spaced and sampled with respect to Is. We do not use this set of vertices as our
final point set because they are highly degenerated, containing many co-linear and
co-planar points. In theory, our algorithm can be viewed as a smoothing algorithm
which perturbs the balanced tree nodes. However, in practice we can use a much
coarser hierarchical tree to approximate the feature function Is and apply random
points in leaf-boxes to generated a 1-sample. By filtering, we get a well-spaced point
set whose local spacing is closer to the best possible, compared with the hierarchical
tree vertices which is experimentally shown to have high constants.?4

4.3. Mazimally Spaced Points and Aspect-Ratio

In this section, we relate the maximally Is-spaced point set with the following aspect-
ratio condition presented in Ref. [18].

Definition 5 (Radius-edge aspect-ratio) A point set P € R? has radius-edge
aspect-ratio bounded by p > 1 if for each Delaunay simplez of the Delaunay diagram
of P, the ratio of its circumscribed sphere radius to the smallest edge is bounded by
p-

In two dimensions, if the smallest angle of a triangle is 8, then the radius-edge
aspect-ratio of the triangle is given by 1/(2sin#). Hence, a triangle is well-shaped
with respect to the radius-edge aspect-ratio “iff” it is well-shaped with respect to
the standard aspect-ratio. In three or higher dimensions, if the standard asbect-
ratio is bounded from above by a constant a, then the radius-edge aspect-ratio is
bounded from above by a constant o' depending only on a and d, the dimension.
However, the other direction is not true. For example, a three dimensional silver (a
tetrahedron whose four vertices are formed by a small perturbation of one vertex
of a square to a non-coplanar point on the sphere that subscribes the square by a
great circle) has an radius-edge aspect-ratio close to 1/ V2, but its standard aspect-
ratio is unbounded. Miller et al!® have shown that meshes with bounded radius-
edge aspect-ratio are useful for numerical simulation employing the control-volume
formulation.

To make the paper self-contained, we briefly review the definition of Delaunay
triangulations and Voronoi diagrams. Suppose P = {p,,...,p,} is a point set in

© e d i e
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d dimensions. The convex hull of d + 1 affinely independent points from P forms
a Delaunay simplez if the circumscribed ball of the simplex contains no point from
P in its interior. The union of all Delaunay simplices forms the Delaunay diagram,
DT(P). Xf the set P is not degenerate then DT(P) is a simplicial decomposition
of the convex hull of P. Associated with DT(P) is a collection of balls, called
Delaunay balis, one for each cell in DT(P). The Delaunay ball circumscribes its
cell. The geometric dual of the Delaunay Diagram is the Voronoi Diagram. For
more details, see Refs. [22,10].

Theorem 4 Suppose Is() is a-Lipschitz with a < 1. Then any mazimally ls-spaced
point set S is of radius-edge aspect-ratio bounded by 1/(1 — a).

Proof. Let D be the Delaunay simplex of S. Let R be the radius of the
Delaunay sphere of D. Let I be the length of the smallest edge of D. Therefore, one
of the end points, say p, of the smallest edge has 1s(p) < I. The value of the spacing
function Is at the center of the sphere is therefore smaller than I + aR because we
assume that 1s is a-Lipschitz. Notice that there is no point of S in the interior of
the Delaunay sphere of D. Thus, if I + aR < R then the center can be added to
S, which contradicts maximality of S. Therefore, we have R < I +aR, and hence
R/l < 1/(1 — @), implying that the radius-edge aspect-ratio of D is bounded by
1/(1 - a). (m]

We can extend Theorem 4 to 1s-spaced J-samples.

Lemma 7 Suppose Is is a-Lipschitz with a < 1 and let § be a constant such that
ad < 1. Then any Is-spaced 6-sample S has radius-edge aspect-ratio bounded by
6/(1 - ad). :

Proof. Let D be the Delaunay simplex of S. Let R be the radius of the
Delaunay sphere of D. Let I be the length of the smallest edge of D. Therefore, one
of the end points, say p, of the smallest edge has Is(p) < I. The value of the spacing
function Is at the center o of the sphere is therefore smaller than [ + aR because we
assume that 1s is a-Lipschitz. Notice that there is no point of S in the interior of
the Delaunay sphere of D. Thus, if §(I+ aR) < R then the 4ls(0)-ball centered at o
does not contain any point from S, which contradicts the assumption that S is an
1s-spaced d-sample. Therefore, we have R < (I +aR), and hence R/l < /(1 — ad),
implying the radius-edge aspect-ratio of D is bounded by /(1 — ad). o

4.4. Coping with Boundary Effects

Notice that in the theorem and the lemma above we ignore boundary effects, i.e.,
we assumed that the Delaunay ball is fully contained in the domain. In order to
account for boundary effects, the boundary edges will be given a g-spaced point set,
for a spacing function g that is A-Lipschitz with 8 = a/c for a large enough constant.
In effect, we first place points on the boundary edges (a lower dimensional process)
with respect to g, so that points in the interior will be slightly repelled away from
the boundary edges, and will not have too large Delaunay spheres that are mostly
outside of the domain. A more rigorous treatment of the boundary, following the
general ideas sketched here, can be found in Ref. [ 18].
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4.5. Components of a Well-Spaced Point Set Generator

The well-spaced point generator has four major components: the CFG interface, and
point, mesh, and sparse-matrix generators. Below, we discuss the functionalities of
each component. 7 o

The CFG Interface provides a tool for a user to specify a Lipschitz distribution
and the geometry of the domain. In two dimensions, the domain is defined using
general planar straight-line graphs (see Bern-Eppstein-Gilbert® and Ruppert?*). In
three dimensions, the domain is defined by an polybedron based constructive solid
geometry expression (see Mitchell-Vavasis'?).

A Lj itz distribution is given in a CFG formula. Both the domain CSG and
the CFG expression can be read from a file. A two dimensional graphic interface
will allow the user to define a domain and its CFG formula adaptively. The three
dimensional graphic-input-interface is less direct. It allows a user to choose and
define basic feature functions, such as point features and features around geometric
objects, by specifying the locations of points and the structures of geometric objects, #
and the feature parameter 6. "

The Point Generator is built on three functions: the hierarchical-decomposition, ; 3
the oversampling, and the filtering functions. We have already developed a 2D
quad-tree based approximation, oversampling and filtering program. Vavasis’s 3D
balanced oct-tree based mesh software QMG? is used to approximate the local
spacing function. Based on the oct-tree approximation, we use our program to
perform oversampling and filtering.

The Mesh Generator is based on the Delaunay triangulation algorithm given
in Miller-Talmor-Teng-Walkington.'® This algorithm is designed for a well-spaced
point set. It uses the geometric partitioner of Miller-Teng-Thurston-Vavasis.'” The
geometric partitioner code in our software is derived from a Matlab implementation &
by Gilbert and Teng.'® Using the geometric partitioner to support a divide-and- §
conquer scheme, we reduce the Delaunay ’Triangulhtion problem for a well-spaced '- 1
point set to a collection of convex-hull problems in the same dimension. Moreover ‘§
in practice, the size of each convex-hull problem is bounded by 50 in the three
dimensional triangulation. See Ref. [18] for more details.

The Sparse-Matrix Generator receives a mesh computed by the mesh gen-
erator and applies the finite element, finite difference, and/or finite control-volume %
formulations to construct a sparse matrix and a linear system. ~

5. The Smoothness of Galaxies: The Plummer Distribution

The Plummer distribution is used in astrophysics to model the distribution of star
clusters in galaxy formation.! This distribution was found to be convenient for the . {
comparison of numerical methods for the study of star cluster dynamics, and might i
be adopted as a standard model for such comparisons. In this section, we show
that, interestingly, the Lipschitz constant of the spacing function of the Plummer 5
distribution is bounded.

The Plummer distribution is a non-uniform distribution defined around a point.
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The spacing density of the cluster at radius r away from the center is given by:

o) = (1 + 7)™
The total mass within a sphere of radius 7 is then given by

M(r) = /‘;o axr?p(R)dR =r*(1 + )32,

Hence the total mass, when 7 approaches infinity is equal to 1. Assume that
thereisatotalosttars,eachofmass 1/N. Thenthenumberofstarswit.hina
ball of radius r, denoted by N(r),canbeobtainedbyscalingthetotalmassform\ﬂa

by AN N
N =Gqagopr - 1+ e

shows a point set generated by the Plummer distribution.

Figure 7

Fig. 7. A point set from the Plummer distribution.

In 3D the local spacing function is related to the density by Is = p~Y/3, and
therefore the local spacing function imposed by the Plummer distribution is

N—1/3(4_3'_)1/3 [1 + ',2]5/6.

1s(r) =

We are interested in estimating the Lipschitz constant of the Plumimer spacing

function. The derivative of the Plummer spacing function is:

1/3
Is'(r) = N-1/3% [1+72 o

To simplify our discussion, let K be the constant in the above equation. We
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Kr :
J p—r_g e —————————————" G
1s'(r) NIB[L+ /6

The derivative Is'(r) of the Plummer spacing function is an increasing function.
However the Lipschitz constant of Is(r) is unbounded when r is approaching the
infinity. We now calculate the cut-off value when 1s'(r) = 1.

Lemma 8 There is a constant K1 such that1s'(r) < lrifr_<_K1\/—1\7.

Proof. In order to find the cutoff value of r, we solve the equation 1s'(r) =1,

ie., K
r

JE————— T ]
v N3[1 + r2|i/e L
Using the Taylor expansion, we can find the constant K;. An alternative way to
find K, is to solve the above equation using r = Kl\/ﬁ. We obtain

KK.NY?
N1/3[1 +K§N]1/“ -

We can assume N > 1. Thus the left hand of the equation can be approximately
reduced to KK/, So Ky = 1/K*/*. o

‘We now bound the probability that there is one star or more outside of the ball  *
of radius K1\/—ﬁ B 'y
Lemma 9 The probability that there is one star or more outside the ball of radius :
KV N is bounded by o(1/vN).

Proof. In order to prove the lemma, it is sufficient to calculate the expected
number of stars outside the ball of radius K1 VN which is given by

N N
1+ (1/(KaVN)2))/?
N

N - N(K1VN)

N - G5 &N

By the Taylor expansion, there is a constant K such that 1/(1 +z)32 <1 — K z3/?,
we have

N
N - GEi/KeNy"? < N - N(1 - Ko (KEN)? = 0(1/VN).

Therefore, the probability that there is a star outside the ball of radius K3VN
is bounded by 6(1/VN). a
In practical galaxy modeling, the radius of the ball chosen is much smaller than §
O(vN). The two lemmas above show, in practical pumerical galaxy simulation, ¢
that the spacing function of the Plummer distribution has Lipschitz constant less
than 1. Notice that the local feature at the center is of order 1/N/3. g
The Plummer feature function is an interesting variant of a point feature func- -
tion where the local spacing at the point is of order 1/N'/3. Similar to the fact -
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that a point set in uniform distribution, though the underlying spacing function
is Lipschitz with ratio 0, is not well-spaced, points of the Plummer distribution
themselves are not well-spaced with respect to its spacing function; there could
be clustering and gaps among the stars. But the Plummer distribution provides a
natural distribution whose underlying spacing function is Lipschitz. We can make
use of a super-imposing operation (given in Section 3) to model a universe that has
more than one galaxy.

6. Final Remarks

In this paper, we characterize and present a constructive formulation for modeling
non-uniform distributions that arise in scientific computing. We give an efficient
algorithm for generating well-spaced point sets from these distributions. Our algo-
rithms provide an automatic procedure for the generation of experimental data for
Delaunay-based mesh generation algorithms. Our work complements the result of
Bern, Eppstein, and Yao” that the uniform distribution fails to give good test data
for this class of scientific applications.

Our result has potential impact on the design of geometric software and bench-
marks. It provides numerical analysts a much needed automatic procedure for
the generation of unstructured sparse matrices. We will continue our effort in im-
plementing our algorithms and incorporate our software into numerical scientific
simulator.

We hope that our work will help to raise the issue of careful theoretical treat-
ment of characterizing problems from practical applications and generating relevant
experimental data.
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