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Abstract

We propose a class of graphs that would occur
naturally in three-dimensional finite-element prob-
lems, and we prove an O(N?%/3) bound on sepa-
rators for this class of graphs. We also propose a
simple randomized algorithm to find this separator
in O(N) time. Such an algorithm could be used as
a preprocessing step for the domain decomposition
method of efficiently solving a finite-element prob-
lem on a parallel computer.

This paper generalizes “local graphs” of Vavasis
[1990] to the case of graphs with varying densities
of nodes. It also generalizes aspects of Miller and
Thurston’s {1990] “stable graphs.”

1 Separators and domain parti-
tioning

Motivation for this work is Poisson’s equation. Let
2 be an open connected region of IR®. Suppose one
is given a real-valued map f on €2, and is interested
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in finding a map u : @ — IR such that

Au =
u

f on , and
0 on 49Q.

Two common techniques for this problem are finite
differences and finite elements. These techniques
grow out of different analyses, but the end result is
the same. In particular, a discrete set of nodes is
inserted into £ and a sparse system of linear equa-
tions is solved in which there is one node point and
one equation for each node interior to . Moreover,
the sparsity pattern of the system reflects inter-
connections of the nodes. Let the nodes and their
interconnections be represented as an undirected
graph G. ,

Two numerical techniques for solving this system
are domain decomposition and nested dissection.
Domain decomposition divides the nodes among
processors of a parallel computer. An iterative
method is formulated that allows each processor
to operate independently. See Bramble, Pasciak
and Schatz [1986], and Chan and Resasco [1987],
and Bjgrstad and Widlund [1986]. Nested dissec-
tion, due to George [1973], George and Liu [1978]
and Lipton, Rose and Tarjan [1979], is a node or-
dering for sparse Gaussian elimination. Although
originally a sequential algorithm, nested dissection
also parallelizes well as shown by Pan and Reif
[1985a,b)].

For either technique it is necessary to partition
the region into subdomains. This is the goal of the
paper at hand. The partitioning is accomplished



by partitioning the nodes into p + 1 disjoint sub-
sets, say G1,...,Gp,G~. Sets Gy,...,Gp are the
subdomains, and set G. is the boundary or sepa-
rator. It is required that no edge connect G; to
G;if1 <1< j < p; all paths between distinct
subdomains must go through the boundary.

For the purpose of efficiency in a domain decom-
position algorithm, it is important for the number
of nodes in each set G; to be roughly equal, and it
is also important for the size of G. to be as small
as possible. In general, such a decomposition may
not be possible; see the counterexamples in Vavasis
[1990] or Miller and Thurston [1990]. Accordingly,
it is necessary to restrict attention to classes of
graphs that occur in practice in numerical compu-
tations. We propose the following definition.

Definition 1 Let G be an undirected graph and
let * be an embedding of its nodes in RY. Then
we say that © is an embedding of density « if the
following inequality holds for all vertices v in G.
Let u be the closest node to v. Let w be the farthest
node from v that is connected to v by an edge. Then

|7 (w) — 7 (v)]
—_—— <.
lI7(u) = x(v)l| =
In general, G is a density graph if there ezist a

7 and o > 0 such that 7 i3 an embedding of density
o

Here and elsewhere in the paper, the norms are Eu-
clidean norms. The idea of this definition is that
a node can only be connected to nodes in its im-
mediate neighborhood. This type of graph arises
often in finite differences and finite elements; see
for example Figure 1 based on Berger and Bokhari
(1987] or Figure 2 generated by Chew’s [1989] mesh
generator. The figures depict graphs embedded in
IR2. We make further remarks about this defini-
tion in the next section. The importance of this
definition is as follows. We are able to show that
any N-node density graph G has a partition into
G1,G2,G. such that G. has at most ¢N@-1)/d
nodes and such that G; and G, are no more than
a constant fraction of the original domain. Here, ¢
is a constant that depends on a and d in Definition
1. This result will take care of the p = 2 case, and
partitions into larger numbers of subdomains can
be accomplished recursively.

Figure 1: Berger and Bokhari’s example of a den-
sity graph.

Figure 2: A graph generated by Chew’s mesh gen-
erator.



This paper allows d to be arbitrary, although
the most interesting cases for numerical analysis
are d = 2 and d = 3, in which case the separator is
bounded by O(N'/?) and O(N?/3) respectively.

We remark that graph partitioning has been
extensively studied for graphs more general than
meshes. The literature is too extensive to sur-
vey here, but we mention work by Pothen, Simon
and Liu [1989] which contains an algorithm for this
problem as well as a bibliography of earlier work.

2 Comparison to other classes of
graphs

The point of Definition 1 is that no node has an
edge connecting it to a node very distant from its
own neighborhood. We make the following trivial
observation: if G has any edges, then the parame-
ter a in the definition must be at least 1. In addi-
tion, one can easily show (see Vavasis [1990]) that
any N-node graph is a density graph if we allow
a as large as ¢cN1/4, Accordingly, the interesting
case is when a is bounded independently of V.

Such behavior is expected from triangulations
generated by automatic mesh generators. For ex-
ample, Chew [1989] has a two-dimensional mesh
generator in which all triangles have angles no less
than 30° and no more than 120°. A mesh generator
by Bern, Eppstein and Gilbert [1990] has a similar
property.

One can easily prove that such a graph satis-
fies the two-dimensional analog of Definition 1 pro-
vided that assumptions are made about the shape
of the boundary of the domain (see below). Sim-
ilarly, a finite-differences mesh with mesh refine-
ment will also satisfy such a condition provided
that no more than one level of refinement is done
per cell (as in Figure 1).

Definition 1 is a strict generalization of “local
graphs” defined by Vavasis [1990]. In particu-
lar, that paper assumed that there was an upper
bound on the ratio of longest edge in the whole
graph to the smallest node separation in the graph.
This means that such a definition could not handle
graphs like the two figures in which the density of
the elements varies from one region of the domain
to the other. Like our main theorem, Vavasis had

an O(N?/3) bound on the separator.

Definition 1 is a partial generalization of the
Miller and Thurston’s class of “stable” graphs. A
stable graph must have edges corresponding to the
edges of a triangulation, and there must be a lower
bound on the aspect ratio of each tetrahedron in
the triangulation. “Aspect ratio” refers ratio of
the inscribed sphere diameter to the circumscrib-
ing sphere diameter of any tetrahedron in the tri-
angulation.

Our class of density graphs do not have to be
triangulations. Moreover, there are certain kinds
of triangulations that fit the density definition but
violate the aspect ratio definition. For example,
the tetrahedron formed by four coplanar points ar-
ranged in a square has aspect ratio of zero but
would not violate the density-graph condition.

Density graphs are not a generalization of sta-
ble graphs. There are examples of stable graphs
that are not density graphs because the aspect-
ratio condition does not require “external bound-
ary” nodes to be well-separated. The concept of
external boundary nodes is well defined in the case
of a triangulation but does not have a meaning for
density graphs of this paper.

Figure 3 shows an example of a stable graph
in two dimensions, that, for the embedding de-
picted, would not be a density graph for a < 20
because vertices z and y are very close together.
The fact that external boundary nodes of stable
graphs can be close apparently requires an extra
term in the estimated size of the separator. Miller
and Thurston are able to prove a bound on the sep-
arator size of the form T} + T, where T} is O(N2/3)
(the same bound in the present paper) and T3
depends linearly on the the number of boundary
nodes. Accordingly, the bound on the separator
size in this paper is better, but this is because our
definition excludes a troublesome case for Miller
and Thurston’s results.

3 A function g based on the
graph G.
The main theorem of this paper is as follows.

Theorem 1 Let G be an N-node density graph
embedded in RY with parameter a. Then in ran-
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Figure 3: A stable graph with two nearby nodes.

domized O(N) time and also in randomized NC
one can find a partition (G,,G2,G.) of G such
that G, and G contain at most (d + 1)N/(d + 2)
nodes and such that G contains at most cN(d-1)/d
nodes, where ¢ depends on o and d.

For the proof of the theorem we will construct a
real-valued function g on IR? based on the graph.
We will find a separator for the function, and de-
duce the existence of a graph separator. This
technique of constructing a function to model the
node density is taken from Miller and Thurston,
although our specific construction is different. The
proof of the theorem is spread over two sections.

We start with a graph G with N nodes as in the
theorem. We define functions f and g as follows.
Assume the nodes of G are numbered 1,...,N. Let
(%) be the point in IR? where node i is embedded.
Let d; be the distance from node ? to its most dis-
tant graph neighbor. For the i¢th node in G we
define a function f; as follows:

oy ) 1/di if|lz—n(3)|| < d;, or
filz) = { 0 otherwise.

Notice that
[ v =
Rd

where v4 is the volume of the d-dimensional unit
sphere. Here and in the rest of the paper, integra-
tions over volumes in IR? are denoted with dV', and
integrations over d — 1-dimensional surfaces in IR?
are denoted by dA. Next, define f and g pointwise
as follows:

f(z) = max(fi(2), ..., fn(z))

and N
9(z) =3 fi(e).
i=1

We notice immediately that
/ AV < vy (1)
Rd

because this integral is bounded by the sum of the
integrals of the fg.

We would like to establish a similar bound on the
integral of g4. This is the purpose of the following
lemma.

Lemma 1 For all z, the following inequalities
hold:

f(2) < 9(2) < 2(4a +1)*f(2).

Proof. The first inequality follows immediately
from the definitions of f and g. For the second
inequality we focus on a particular point z € RY.
If f(z) = 0 then g(z) = 0 as well, so the inequality
follows. Otherwise, let i* be the index such that
fi(z) is maximum over all choices of ¢ (break ties
arbitrarily). Let ¢ be the value of 1/d;» Then we
ask, for integer j > 0, how many of the f; can
satisfy

2-i-1t < fi(z) < 27917 (2)

Notice that all ¢ such that f;(z) > 0 will satisfy ex-
actly one inequality of form (2). Suppose there are
m; distinct values, say set M;, of indices ¢ satisfy-
ing (2) for a particular choice of j. Then =(z) for
i € M; must lie within distance 29+!/t of z by def-
inition of f;. On the other hand, the longest edge
adjacent to 7(7) is of length at least 27 /¢, also by
definition of f;. Surround each point ¢ for ¢ € M;
with a ball of radius 27/(2ta). These balls must be
disjoint for the following reason. The points (%)
for i € M; must be distance at least 27/(ta) from
one another by definition of a density graph. Ac-
cordingly, there are m; disjoint balls of radius at
least 27 /(2ta) around these m; points. All of these
balls lie in a sphere of radius 27+1/t+27/(2ta), that
is, 27*1(1+1/(4a))/t around z since the centers of
the balls are within 29%!/t.

The volume of each ball is [vg/(4a)?] - (27+1/t)4,
and the volume of the enclosing sphere is at most
va(1 + 1/(4a))4(27t1/t)d. This gives an upper



bound on m; because the balls are disjoint. In
particular, m; is bounded by the quotient of these
quantities, i.e.

(1+1/(4a))?
B 1/(4a)?
< (4a+1)4.

m;

Therefore, there are at most a constant number of
values of 7 such that (2) is satisfied for any choice
of j. The contribution to f(z) from a particular
i for a particular choice of a j is at most 2-7t.
Therefore,

w 3
) (4a +1)%277
7=0

< 2t-(4a+1)%

g(z) <

Since ¢ was chosen to be equal to f(z), the lemma
follows. 11

Therefore, g4 is no more than a constant multi-
ple of f4, where the constant is determined by the
previous lemma. By (1) we have an equation of the
form

/R" g?dV =cN (3)

where ¢ < g(a, d) for some function gq.

4 Construction of a separator

The next step in the proof of Theorem 1 is to find
a d — 1 dimensional sphere S embedded in IR? such
that
g%t da = o@vie-n/d) (4)
s

and such that at most SN nodes are inside S and
at most SN are outside for some 3 € (0,1) that de-
pends on d. For this we rely on a theorem of Miller
and Thurston telling us that such a sphere may be
found with constant § = (d + 1)/(d + 2). The
theorem is proved using conformal mapping and
node centers. A simple counting argument gives
the result with § = 1 — 2-9-1. Another counting
argument gives the result with 8 = d/(d + 1), but
for this result S could have a shape more compli-
cated than a sphere. In all three cases the Holder
inequality is required to bound integrals of g4-! in

terms of integrals of g¢. Also, the running time is
randomized linear time (and also randomized NC)
for all three approaches.

We briefly review the Miller-Thurston approach.
The nodes of G are conformally embedded on the
unit sphere in IR9*+! (call this sphere T). A great
circle on ¥ is selected uniformly at random; this
great circle is a sphere S when mapped back to RY,
and the expected value of integral (4) for sphere §
is cN(d-1)/d where ¢ depends on d. Since the inte-
gral is never smaller than 0, no more than 1/2 of
the probability distribution for the integral lies be-
yond 2¢N(9-1)/4, This means that the probability
that the left-hand side of (4) exceeds 2cN{(4-1)/d on
k randomized attempts is 2~*.

Let r be the radius and c the center of the sphere
S that satisfies (4). From this sphere we intend to
find a a set G., of nodes such that G,G,,G.. is a
partition of G satisfying Theorem 1.

First, we give the rule for membership in G..
Suppose sphere S crosses through an edge (4, j) of
the graph, such that that =(7) is inside S and = (j)
outside; let z be the intersection of the segment
(7(3),w(j)) with S. If x(¢) is closer to z then we
put ¢ in G., else we put j in G.. The remaining
nodes are put into either G or G according to the
rule: nodes embedded inside S not in G. are put
into G;, and nodes outside S not in G. are put
into G2. It is clear that there is no edge from a
node of G; to a node of G.

Also, by construction, neither G; nor G, has
more than (d + 1)N/(d + 2) nodes. We now turn
to the problem of establishing a bound on the size
of G..

We first establish the following claim: if a node
i is selected to be in G., then ||7(i) - ¢|| < 3r.
One possibility is that ¢ is interior to S, in which
case the distance between (i) and c is no more
than r. The other possibility is that it is adjacent
to a vertex ¢/ embedded interior to S; since ¢ was
selected for G, rather than ¢/, this implies that the
distance from (%) to c is at most 3r.

We first put an upper bound on the number of
nodes of G.. such that d; > r (recall that d; is
the distance from vertex = (i) to its most distant
graph neighbor). Suppose there are m such nodes;
let M be the set of these nodes. Let 7 be such a
node. Then we know that (%) is within distance



3r of ¢. On the other hand, there is a ball of radius
d;/(2a) around () that is disjoint from all other
such balls for i € M because of the density condi-
tion. Therefore, a similar property is true of the m
balls of radius r/(2a) centered at «(i) for t € M
since we are assuming that r < d;. All these balls
lie in a sphere of radius 3r + r/(2a). Therefore, a
volume argument the same as the argument used
in Section 3 shows that

m < (6a + 1),

Thus, there are at most a constant number of nodes
of G that satisfy d; > r.

Now we turn to the case of nodes of G. that
satisfy d; < r. Call this set W, and choose : € W.
We want to put a constant lower bound on

/s fi-lda. (5)

Recall that the function f; is 1/d; inside a ball of
radius d; centered at (i) and O elsewhere. We
claim that S passes at a distance no more than
d;/2 from =(%); this follows from the inclusion of
i in G.. We consider the “patch” of S that is
contained in the ball {z : ||z — 7 (?)|| < d;}. We can
show that because the radius of S is greater than
d; and the distance of the patch to the ball’s center
is no more than d;/2, we can get a lower bound of
v4—1(v/7d;/4)3-1 on the area of this patch.

Since f3~! is 1/d9-! everywhere on this
patch, we conclude that integral (5) is at least
va_1(v/7/4)3-1, which we will call 74 for simplicity.

This is true for every i € W. Therefore, we get

an upper hound on the size of G.. as follows:
|G~ < T 4+ T
where
= (6a + 1)¢
and

T, = w( /fd—ldA).
1€

Here, Ty accounts for nodes that have d; > r and
Ty accounts for nodes that have d; < r. Now we
derive an upper bound on T as follows.

n= [(G5e)u

IA

/fd"1+...+fg,—1

/ (fi +

The integrand on the last line is exactly equal to
g% 1/74 by definition of g. Therefore, as derived
at the beginning of the section, this quantity has
2¢N(@-1)/d /4, as an upper bound.

Thus, the number of nodes in G. returned by
this construction is at most a constant plus an
O(N(@-1)/d) term, which concludes the proof of the
main theorem.

-+ fN)d_ JA.

IA

5 Future work and open ques-
tions

In future work we will apply our separator the-
orems to problems in computational geometry.
With S.-H. Teng we have extended density graphs
to a class of graphs that encompasses planar graphs
as well; this will be reported in upcoming work.

It would be of interest to prove the existence of
a simple algorithm to achieve a 50-50 split. A 50-
50 split can be achieved using a standard recursive
technique due to Lipton and Tarjan [1979) on our
separator algorithm, but only at the expense of a
large constant in the separator bound. It is also of
interest to remove the randomness from the algo-
rithm at hand without making it too much more
complicated.

In addition, our approach in this paper does not
seem to have optimal dependence on «; the con-
stant factor in the O(N(4-1)/d) separator bound is
proportional to a4 if we trace through all the con-
stants. In upcoming work we show how to tighten
the arguments so that the separator size is at most
cqaN@-1/d 4 ¢hod; the leading term in this bound
is apparently optimal.

Finally, it is of interest to come up with a class
of graphs embedded in IR? with bounded separa-
tor sizes characterized by topological properties in-
stead of geometric properties. Lipton and Tarjan’s
work on planar separators was based entirely on
combinatorial topology.
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