Efficient Parallel Ear Decomposition with Applications

Gary L. Mz;ller*

MSRI, Berkeley, and University of Southern California, Los Angeles

Vijaya Ramachandran*x

MSRI, Berkeley, and University of Illinois, Urbana

1. Introduction

A ear decomposition of an undirected graph is a parti_tion pf its edge set into an ordered col-
lection of paths having certain properties. This is useful in determining several connectivity pro-
perties of the graph. In this paper we present an efficient parallel algorithm for ear decomposition
and a triconnectivity test based on it. Our algorithm runs in O (logm) parallel time using
0 (h+m) processors, where n is the number of vertices inlthe graph and m is the number of
edges. :

2. Definitions ;

An undirected graph G =(V ,E) consists of a verlez get V and an edge set E containing

unordered pairs of distinct elements from V. A path P in G is a sequence of vertices.

<vg - +,u> such that (v_,9)€E,i=1,- - k. The path P contains the vertices

v, * - *,v; and the edges (vo,v,), " * - ,(v;1,v¢) and has endpoints v, and v,. P is a simple path
if vg, -+ *,v;_, are distinct and v, - - - ,v; are distinct. P is a simple cycle if it is a simple path
and vo=v;.

A ear decomposition D of an undirected graph G =(V ,E) is a partition of E into an

++ Supported by NSF under ECS 8404866 and by an IBM Faculty Development Award.

-2-

ordered collection of edge disjoint simple paths Py, - - - P, such that Pg is a simple cycle and
each endpoint of P,,i =1, - - - ,r—1 is contained in some P;,j <t.The P,’s are called the ears of
D. D is an open ear decomposition if none of the P, ,i =1, - - - ,r -1 is a simple cycle.

Let G=(V,E) be an undirected graph and let V' CV. The subgraph of G induced by

V' is the graph G =(V' E')where & =E({(v,,v,)| v,,v,€V }.

An undirected graph G =(V,E) is connected if there exists a path between every pair of
vertices in V. A connected component of G is an induced subgraph of G which is maximally

connected.

A vertex vEV is an articulation point of a connected undirected graph G =(V ,E) if the
subgraph induced by V-{v} is not connected. G is biconnected if it contains no articulation
point. A biconnected component of G is an induced subgraph of G which is maximally bicon-

nected.

Let G=(V ,E) bev_‘a,__biconnected-‘undirected graph. A pair of vertices v;,u,€V is a separa-
g .
tion pair for G if the 1nduced subgraph on V- {u,,vz} contalns two conuected components. G is

triconnected if it contains no separatlon pair.

An undirected graph G =(V ,E) is k-vertex (k-edge) connected if there exist k vertex-
disjoint (k edge-disjoint) paths between every pair of vertices in V. Note that G is connected iff
it is 1-vertex or l-edge connected, G is biconnected iff it is 2-vertex connected, and G is tricon-

nected iff it is 3-vertex connected.

‘E’ An undirected graph G =(V ,E) is 2-edge connected iff every edge lies on a simple cycle. A
\\ 2-edge connected component of G is a maximal set of edges Y CE such that ea.ch e €EE lies

e e ———e

ISP

.~ on a simple cycle in G thh edges from .Let E,=E-~ {e | ¢ is not on a simple cycle in G }.

A e e B i T

Then the set of 2-edge connected components of G forms a partition of E;. An edge ¢ EE-E; is
called a bridge of G. A 2-edge connected component consisting of a single edge is a bridge of

G.

-3.-

3. Some Properties of Ear Decomposition

Lemma 0 Let G=(V,E) be an undirected graph with a ear decompositidp containing r ears.
Then r=|E |-| V| +1. _ Cl/ :
Proof By induction on r. C)/\//\/j

Basis r=1. Then by definition G is a simple cycle. Hence |E|=]|V | and
|E|-{V|+1=1=r.

Induction Step Let lemma be true for all r <i and let r=1.

Let G have a ear decomposition Py, - - - ,P,_;. Let G' =(V ,E') be obtained from G
by removing P,_; (except for its endpoints). Then G' has a ear decomposition with i -1 ears and
hence by the induction hypothesis i-1=|E' |[-| V' | +1;: Let the number of edges in P, be
e, and let the number of vertices in P;_,, excluding the endp%)ints, be v. Then ¢ =v +1 since P,_;
is a simple path. But |E|=|F |+e z%md |V]|=|V |+v, hence

|E|-|V|+1=|E |-|V |+1=i-141=i]

!
|
i
|

Lemma 1 An undirected graph G =(V ,E) has a ear decompbsition iff G is 2-edge connected.
Proof See [Wh]. |

Lemma 2 An undirected graph has an open ear decomposition iff it is biconnected.

Proof See [Wh].

Lemma 3 Let G =(V ,E) be a biconnected undirected graph for which vertices v, and v, form a
separation pair. Let D be an open ear decomposition for G . Then there exists a ear P, in D that
contains both v, and v,.

Proof Since v, and v, form a separation pair, the subgraph induced by V-{v,,v,} contains at

least two connected components. Let C; and C, be two such connected components (see figure 1).
Case 1 The first ear P lies wholly outside of C,:

Consider the lowest-numbered ear, P,, that passes through a vertex in C,. Since its end-

points are distinct and must be contained in earlier ears, P; must contain v, and v,.

figure 1
Illustrating the proof of Lemma 3

Case 2 P, contains a vertex in Cy:
If P, lies wholly outside of C,, then case 1 applies to C';. Otherwise P, contains at least
one vertex from C,, and one vertex from C,. But then, since P, is a simple cycle, it must contain

v, and vy

4. A Fast Parallel Ear Decomposition Algorithm

In this section we present an efficient parallel algorithm for finding ear decomposition for 2-
edge connected components of a connected graph, such that each biconnected component of the

graph has an open ear decomposition.
Algorithm A: Effictent Parallel Ear Decomposition

Input A connected graph G =(V ,E).
Output A numbering on the edges of 2-edge connected components, specifying their ear number,

such that each biconnected component has an open ear decomposition.

begin
1) Preprocess Find a rooted spanning tree T for G (with root r), and number the vertices of
T in preorder. Let low (v)= minimum numbered vertex reachable from a descendent of v

followed by exactly one nontree edge, high (v)= maximum numbered vertex reachable from

2)

- 5.

a descendent of v followed by exactly one nontree edge, nd (v)= number of descendents of
v, and let p(v) be the parent of v in T for each v€V-{r}. Mark each vertex v for
which low (v)<p(v) or high{v)>p(v)+nd(v). Al of these preprocessing steps can be
done in O (logn) time with O (m) pl;ocessors [TaVi].

Assign ear numbers to nontree edges in T Find the least common ancestor (Ica) in T for
each nontree edge ¢ in G, and label the nontree edges from 0 to | E |-| V | in nonde-
creasing order of their lca in a proper way to form the required ear decomposition. This
step is executed using rake and compress [MiRe|. Each nontree edge is given an ordered pair
as a label, the first element of which is the preorder number of its Ilca, and the second ele-
ment gives the position of the edge among those with the same lca. The first element of
each label is computed during a tree contraction of T and the second elements are com-

puted at the end, as follow:

A rake step is executed at a leaf only when all but on% of its siblings have been evaluated.
Let vy, -+ - ,v; be the children of vertex v, and let vl‘:, -+ - ,u_; be leaves at this stage of
the computation. Let by, - - - ,b, be the nontree edges from the v,’s, i=1, - - - ,k-1 to the
subtree, T}, rooted at v,. Detach each b, from its eﬁdpoint in T, and coalesce the free
endpoints into a new vertex v ;. If v, is a marked vertex, then mark v ,. Form G, as

the subgraph induced on v,, - * - ,v;_;,v' ;, and save it for later processing.

Restore the detached endpoint of each b, to its original position in T, and move all nontree
edges at the raked leaves vy, - * * vz to their parent v.

A compress step moves all nontree edges at a vertex being corﬁpressed to the vertex it is
compressed into.

A contract step is a rake and compress step performed simultaneously.

Before the first contract step and after each contract step, check for each nontree edge, if
one endpoint is an ancestor of the other in the current contracted tree. If so, the ancestor is

the lca of the nontree edge. Remove this nontree edge after assigning the preorder number

of the ancestor endpoint to the first element of its label pair. To check for ancestor-

3)

-6-

descendent relationship, note that u is an ancestor of v in T iff ¥ <v<u+nd(u).

After T has been contracted to the root, find a spanning forest for each G, in parallel.
Order the trees in the forest arbitrarily, and root each tree at a marked vertex, if one exists.
Number the vertices of the forest in preorder. For each edge in the spanning forest assign
the number of its child in the spanning forest as the second element in its label. For nontree
edges not in the spanning forest and with lca v, assign /+1 as the second element of the

label, where [is the number of vertices in the forest.

Sort the nontree edges in nondecreasing order of their labels in O (logn) time with O (m)
processors [AjKoSz] and renumber using prefix sums by initializing all labels to 1, again in

O (logn) time with O (m) processors [TaVi].

Eztend the numbering assigned in step 2 to the tree edges Number each tree edge { by the
label of the smallest numbered nontree edge ¢ for which ¢ ison a path from one of the end-
points of e to the lca of e¢. This gives the required ear decomposition. Label the tree edges

using rake and compress as follows:

a) Each vertex gets a label which is the number of the minimum numbered nontree edge
incident on it. This can be determined in O (logn) time with O (m [logm) processors.

Delete all nontree edges.

b) Implementing rake: Let v be a vertex for which children vy, - - - ,v; are leaves that need
to be raked. Let the label of v be b and the label of each v, be b,. Edge e, connecting v
to v, gets label b,,i=1, - ,k. The label of v gets labeled by min(b,by, - - - ,b;).
Although we are doing a2 minimum computation over k elements, we can break this down
into binary computation by transforming our spanning tree T into a binary tree by intro-
ducing new vertices. The number of new vertices introduced is O (n). Hence the tree size

remains O (n).

¢) Implementing compress: Let v, be a vertex with label b, that needs to be compressed
into vertex v, with label 5,. Let the edge connecting the two vertices be ¢. Then ¢ gets

label b, and v, gets label min(b,,b).

- 7-

Step 3 can be implemented in O (logn) time with O (m) processors.

end.

Claim I Assume we number nontree edges with the same lca arbitrarily in Algorithm A (i.e., we
do not form G, to obtain the second element of the label of nontree edges). Then Algorithm A
obtains a valid ear decomposition of a 2-edge connected graph.

Proof We prove the result in four parts:
a) The first ear is a simple cycle.

b) Ears formed by nontree edges with lca 1 are simple paths that lie on earlier ears (by induc-

tion on ear number). These could be closed ears.

¢) The first ear formed by a nontree edge with lca i is a simple path that lies on earlier ears

(by induction on Ica number). This could be a simple cycle.

d) Ears formed by nontree edges with lca ¢ are simple paths that lie on earlier ears (by induc-

tion on ear number). These could be closed ears.

The details of each part are straightforward.||

Claim 2 Let G be a biconnected graph. Then Algorithm A obtains an open ear decomposition for
G.

Proof First note that if G is biconnected then each forest in Gy, for each v, will have a marked
vertex (if not, then v is an articulation point). If we can ensure that each edge from v to a child
is assigned a different ear number then we are done. Edges from v to marked children belong to
ears with lca higher than v and hence satisfy this condition. Edges from v to unmarked vertices
belong to ears that 'hook on’ to smaller numbered ears with same lca and hence again form open

ears.[|

