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ABSTRACT

W show that every 2-connected triangulated
planar graph with n vertices has a simple cycle C
of length at most 4/n which separates the interior
vertices A from the exterior vertices B such that
neither A nor B contains more than 2/3n vertices.
The method also gives a linear time algorithm for
finding the simple cycle. In general, if the
maximum face size is d then we exhibit a cycle C
as above of size at most 2v2d.n.
1. Introduction

Many computational problems on graphs can be
performed more efficiently on planar graphs. One
basic technique used on planar graphs is "divide-
and-conquer.”” Here one uses the fact that every
planar graph has a set of vertices B of size 0{Vn)
which separates the vertices A from the vertices
C where A, B, C is a partition of the vertires
and the size of A and C < 2n/3 [LT 79). The set
B is called a O(Y’H) separator. Two, now classi-
cal, applications of a separator are layouts for
VLSI [Le 80, Va 81l] and nested dissection in
numerical analysis [LRT 79].

Some applications require that the separator

B have further properties. The planar flow
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algorithm of Johnson and Venhatrsan [JV 83]
required that the separator be a collection of non-
nesting cycles. The algorithm can be further
simplified if the separator is a simple cycle which
we shall exhibit. The work of Dolev, Leighton and
Trickey (DLT 83] can also be simplified by using a
separator which is a simple cycle.

Some applications may require that the separa-
tor be a subset of edges. If BC V is a separator
of a graph G = (V,E) of size b and the maximum
vertex degree is d then it follows that the edges
at B form a separator of size d-b. W may also
want to require that the separator consists of
edges which form a simple incision. We formally
capture this notion bv asking for a simple cycle C
In G* the geometric dual of C, which separates the
faces of G*. This motivates a natural generaliza-
tion of the problem of separators consisting of
vertices and separators consisting of edges. Here.
we assign weights to the faces and vertices of G
so that the combined weights sum to 1. W say that
C is a weighted separator if the weight of the

interior < 2/3 and the weight of the exterior < 2/3.

We now state the main theorem of the paper.

Theorem 1. If G is an embedded 2-connected

planar graph, # is an assignment of weights to the
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vertices and faces that sum to 1, and no face has
weight > 2/3 then there exists a simple cycle
separator of G of size 2/2:n constructible in
linear time.

In the special case when G is triangulated,
that is d = 3, we get a separator of size &g,
This is comparable to separators of size ¥8/n of
Lipton and Tarjan [LT 79} and of size Y/é/n of
Djidjev [Dj 82}, Their separators in general are
not simple cycles- However, they did not require
their graphs be 2-connected.

Theorem 1 is false if the hypothesis that G
is 2-connected is dropped. A tree is a simple
example. We next observe a simple generalization
of the previous theorem which eliminates the need

for the 2-connected hypothesis.

Theorem 2. If G is an embedded planar graph
and # is an assignment of weights which sums to 1,
such that nonsimple faces have weight zero and no
face has weight > 2/3, then either there exist a
vertex which is a weighted separator or there
exist a simple cycle separator of size at most
2/2d a.

We will modify the embedding of G by
rearranging the 2-connected components. As in
Theorem 1 the separator is constructible in
linear time.

We first show that Theorem 1 implies Theorem
2. Let G be an embedded graph as in the
hypothesis of Theorem 2.

Since a face is simple if and only if all
its edges are in the same 2-connected component
the faces with nonzero weight can be associated
with a unique 2-connected component. Thus, every

2—connected component has a unique associated

weight. Tt follows that either there is a vertex
which is a weighted separator of the 2-connected
components or there exists a unique proper
2—connected component H (not a simple edge) such
that each subtree of components common to H has
weight < 1/3. Let T be such a subtree with
vertex of attachment X. Since H is a proper

component there are at least 2 faces, F, and Fz,

1
common to x in the embedding of H. If the weight
on either Pl or Fz is > 1/3 we shall pick that
face as the separator and embed T in the other
face. Otherwise, we can discard T and add its
weight to either the weight of Fi or Fo,
Continuing in this manner we can reduce the
question of separators to a 2—connected graph

with weights and then apply Theorem 1. Note that

the size of faces only decreases. (]

2. Preliminaries.

There are many formal definitions and many
intuitive definitions of graphs "drawn" or smbed-
ed in the plane. Following Edmonds, Lehman. Tutte,
and many others, we make the following formal
definition: Let G be an undirected graph. We
view each edge of G as two directed edges or
darts. An embedding will simply be a description
of the cyclic orderings of the darts radiating
from each vertex. Formally, let Sym(E) denote
all permutations of the darts of G.

Definition: The permutation ¢€Sym(E) is an
embedding of G if:

1) Tatl(e) = Tail(é(e)) for any =2 <&,

2) ¢ restricted to the darts at V&V is a

cyclic permutation.

To specify the faces of this embedding

consider the permutation R such that R(e) is the



reflection of the dart e. Now, successive appli-
cation of ¢ will traverse the darts radiating from
a vertex, in say, a clockwise order. On the other
hand, the permutation §*=¢<R will traverse the
darts of the boundary of a face in counterclock-
wise order. W say that ¢ is a planar embedding
if the number of faces of the embedding, say f,

satisfies Euler's formula:
f-e+v=2

We shall not distinguish between a face and
its boundary of counterclockwise oriented darts.
Given two boundaries of two distinct faces, F and
F', the boundary of their union will be equal to
F + F' where e + R(e) = 0. By a path in C we
shall mean the darts on the path. It follows
easily, in this formal model, that any simply
cycle C has a well-defined interior int(C) (the
faces, vertices, and edges to the left of C) and
a well-defined exterior ext(C) (the faces,
vertices, and edges to the right of C).

Let C be a simply cycle of the embedded
planar graph G. W€ next define a natural breath
Let EF be

first search into the exterior of C.

the faces of G in the exterior of C which share

a vertex or an edge with C, R(e) = e. Consider
the sum C' = C + CF where FEEF. W next show
that C' can be written as a disjoint sum of

simple cycles such that their exteriors are also
disjoint. Let EF* be the subgraph in the

geometric dual of G induced by the faces in
let L be the faces in a

ext(C'). Further,

connected component of EF*, Consider D the
boundary of the union of the faces of L, D = LF
for FEL. It follows that R(D), the reflection

of all the darts of D, is contained in C'.

Ve need only show that D is a simple cycle.

ILemmma 3. The graph D as described above i:

simple cycle.

Proof: We note that the boundary of L

consists of a collection of cycles. Since, given

a dart on the boundary of L, there is a unique

successor and a unique predecessor. If D is not

simple it can be decomposed into 2 or more simple

cycles. Suppose that D is not simple. Let e and

'

e' be two darts of D on distinct simple cycles,
say, Cl and C2' Since the regions defined by L
and C' are connected there are two vertex disjoint
paths, one in the interior of L and other in the

interior of C' which only share a point on € and a

point on e'. These two paths form a cycle T on

the surface that crosses over Cl in a fundamental

Thus T and C, form a graph of genus 1.

1 This

way.
is a contradiction. Thus we may conclude that D
is simple. a
Thus, the unsearched region decomposes into a
collection of connected regions each with a bound-
ary consistinq of a simple cycle. We shall call

C' the next level out from C and each R(D) a

branch of C.

3. Finding a subgraph of small diameter.

The algorithm consists of two passes. In the

first pass, outlined in this section, we find a
subgraph H which has 0(¥n) diameter and 0(/n)

face size. The second pass will find a separator
contained in H. The planar embedding of H will b¢
the one induced by the embedding of G, the origi-
nal graph. The weight on a vertex of Hwill equal
the weight assigned in G. A face F of Hwill have
weight equal to the sum of the weights of faces

and vertices of G which are embedded in F. This



wefght will be called the induced weight on F. W
wive the main theorem of this section.

Theorem 4. 1f G is a 2-connected embedded
planar graph with weights on its faces and
vertices which sum to 1, no face weight > 213 and
the maximum face size is d, then there exist a
7-connected subgraph H with spanning tree T
satisfying:

1) The diameter of T plus maximum size

of any face of H is at most 2/2d.n
2) The maximum induced weight on any

face of H is € 2/3,

Proof: Note that G is 2-connected if and
only if every face of G is simple. Let G
satisfy the hypothesis of the theorem and F be
some face of G. Further, let # be an assignment
of weights also satisfying the hypothesis.

W start by constructing a breath first
search of the levels from F as defined in the pre-
liminaries. Namely, we construct the next level
out from F and decompose it into branches. For
each branch we again construct its branches.
This gives us a tree of branches with root 7.
Note that by starting from the leaves of this

tree we can compute the induced weight on the
interior and exterior of each branch in linear
time.

Let C be the first branch such that
#(int(C)) < 1/3, the interior of C is the side
containing F. Further, let B be the Z;h
ancestor of C such that dll + size(B) < Y2d-n.
Such a B must exist since otherwise the ith
ancestor B, of C must have size > b, = Y2d-a - d-t
for 0 < i < /20/d.

Now, the Bi'S have disjoint

vertices and therefore the sum over the bils

Q

must be < n. By a straightforward calculation the
sum of the bi's is larger than n which is a
contradiction.

Let C = Bo,...,B£1 = B be the ancestors of
C up to B. Consider the subgraph H' obtained from
G by deleting 1) the exterior of any branch of Bl

thru lewhich is distinct from Bl" .., 32,-1 plus

2) the interior of B. Note that we have deleted

the exterior of C. The subgraph H' has small
diameter and induced face weights < 2/3 but the
face sizes may be too large. For each face of H'
construct the next level out until the maximum
number of levels constructed 12 and the maximum
branch size f satisfies d.£, +f < 72d n. By
similar arguments as used above this procedure
will terminate, The subgraph Hwill be G minus
the exteriors of these branches. W call the
portion of G added onto a face of H' a cap. We
next construct the spanning tree T.

Note that if D is a simple cycle and x is a
vertex on the next level out from D then the
distance from x to D can be at most d/2 since they
must share a face of size < d. Thus a breach
first search from any point on B in H' will
generate paths of length at most (d'tl‘i’lBl)/Z- By
similar arguments, any point in a cap is at most
d-£2/2 away from H', Thus, H has a spanning tree
of diameter d(f_1+1,2)+|13|. Adding in the maximum
face size we get d-£1+lB‘+d'£2+f < 2/2d-n from the

inequalities above.

4. Finding a separator in a graph of small

diameter.
By the last section we can find a subgraph
of radius 0(/d.n), Here we find a small simple

Cycle which is a separator. The main theorem of

il
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this section is: must do this in such a way that the cycle is
L]

simple. W introduce a partial order on the C ‘s,
Theorem 5. If G¢ is a 2-connected embedded !

Let x and y be the end points of the edge «.

planar graph with spanning tree T then there exist
Since F is a simple cycle, if we remove e from ¥ we
a simple cycle weight separator of size at most
obtain a simple path from x to y on F. Let XX,

DX T be the vertices on the path in the order

dia+S, where dia= the diameter of T, S the maximum

face size, and no face weight > 2/3.

they appear. Given any cycle Ci it will have a

Proof: The proof will consist of a sequence

vertex of minimum index and one of maximum index
of successive approximations that will converge to

in {xl,. ..,xt}. We shall call these vertices the
a cycle that is a weighted separator. Let e be any

left most and right most vertices of Ci respective:

non-tree edge and C the induced simple cycle in

ly. W say C; domains C,, it if 1, <j <14,

. i
the spanning tree T.

< i _, where ip, and i_ are the indices of the left

3 . = r 2 r
If C is not a weighted separator then,

most and the right most vertices of Ci and simi-
without loss of generality, we may assume that the

larly for j, and jr' Using the fact that the
weight of the interior of Ce > 213. Let F be the

graph is planar we get a forest on the Ci's by
face common to € on the interior of Ce. Further,

adding a directed edge from Ci to C, if C, domains

b i

C.‘i and there is no k such that Ci domains Ck and

let e be the non-tree edges on F distinct

107 %

from e. Note that ¥ > 1. For if k = O then F
Ck domains C,. By adding Ce we get a

would ve the interior of C_ since F is simple. ]
& directed tree. If Ci and Cj have the same parent
This contradicts the facts: 2/3 > #(F) =
then ¢, is left of Cyif 1 <3,
#(iﬂt(Ce)) > 213. W now partition int(C ). )
e W associate with each region Ci the union

Let Ci be the cycle induced by e such that

of all regions domained by it, i.e., Ei=fZleC1
int(Ci) is contained in int(Ce). Thus the regions
domains C, or i=j}. Similar to the fact that

3

int(Ci),...,int(Ck) ,int(F) are a partition of
trees have a separator consisting of a single

int(C ) up to vertices and edges. W first reduce

vertex we get:
the problem to the case when #(ext(F)),
Lemma 6. Either a) there exists an i such
#(ext(cl)), caasy /}(ext(ck)) > 213 as follows: (*) _
that F+Ci is a weighted separator or b) there
i 1) If {z‘(int(Ci)) > 2/3 for some 1 <i<k _
E exists an i such that #(int(F+Ci)) > 2/3 and for

then set e to 2 and repeat.

2) If #(ext(F)) € 2/3 then F is a weighted

all 3, such that C, is a child of 61,

]
()(ext(5‘+<':j)) > 2/3.

simple cycle separator of size € S. _
Note that Ci forms a simple cycle which inter-
3. If #(ext(C,)) < 2/3 for some 1< 1 <k _
1 sects F on some interval of F. Thus, F+C:l. will
then C, is a weighted simple cycle sepa—
t consist of an interval of F plus and interval of
rator of size < dia+l. _
Ci which are disjoint except at the end points .
Given condition (*) we shall construct the _
Since the interval of Ci is contained in T the

separator from F plus some of the C,'s. But we " .
* size of F+C is at most dia+S. W will assume that

380



(isties condition b) of Lemma 6 for the
inder of the proof of Theorem 5.

let D ..,Dt be the children of Ei' W say

1’

. Ieft of DJ if the vertices of Di on F are

'+ of the vertices of Dj on F. W partition the
' into those that are left of e; and those that
1o right of e, W shall successively add either

tne left most Di if it is left of e, or the right

i

ot Di if it right of e Let D=D, be such a b,.

¢
+ must show that #{(int(F+D)) < 2/3. W know that
“(int(F)), #(int(D)) < 1/3. But, FAD will also be
in the interior of F+D. W shall use the stronger
tact that #(ext(F) > 2/3.

Lemma: If G is an embedded graph, A and B
are faces, #(ext(A)) > 2/3, and #(int(B)) < 1/3
then #(A+B) < 2/3.

Proof: Let A and B satisfy c &
the hypothesis. Let a=A-(AMB),
b=B-(ANB), ¢=ANB, and C=2(A+B).
The figure may help keep track
of the notation. The lemma will
follow if we show that #(b)+#(int C) > 1/3.
Now ext(A) is the disjoint union of int(B), b, anc
int(C). Thus #(int(B))+#(b)+#(int(C)) > 2/3.

Since #(int(B)) < 1/3, we get that

#(b)+#(int(C)) > 1/3. a

Using the last lemma we can simply pick

D ...,D:.l for some j such that F'=F+0.+...+D, is

1 3

a separator. We must show that F' is simple and

1?

of small size. We state without proof the follow-
ing simple lemma.
Lemma: If Dl""’Dj are consecutive and all

left (right) of e, then F+b +,...,+Dj is simple

1
and consists of an interval from F plus a simple
path in T, the spanning tree.

Thus, the new region will consist of F plus

consecutive elements from the left of e and
consecutive elements from the right of e Its
boundary will consist of two paths from the tree
plus 2 paths from F. Thus, the size of this
region is at most 2dia+S. Actually these two
paths in the tree can be joined to form one simple

path in T. Thus the size < dia+S. a

Conclusions

In this paper we have concentrated on worst
case separators. That is, an algorithm which
finds a relatively small separator when the small-
est separator is relatively large. It is open
whether there is a polynomial time algorithm which
finds the optimal separator for planar graphs. It
is easy to show that there is always an optimal
separator which consists of non-nesting simple
cycles if the graph is triangulated. W say a

simple cycle C is a separator of ratio k if

size(C) /min{I(int(C)) £ (ext(C))}=k. Question: IS
finding an optimal ratio separator for planar

graphs polynomial time computable?
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