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ABSTRACT

We show t h a t every 2-connected t r i a n g u l a t e d

p lana r graph wi th v e r t i c e s has a s i m p l e c y c l e C

of a t most which s e p a r a t e s t h e i n t e r i o r

v e r t i c e s A from e x t e r i o r  v e r t i c e s  B such t h a t

n e i t h e r A nor B c o n t a i n s more than v e r t i c e s .

The method a l s o g i v e s a l i n e a r t i m e a lgor i thm f o r

f i n d i n g t h e s imple  cyc le .  I n g e n e r a l , i f t h e

maximum f a c e s i z e is d then w e e x h i b i t a c y c l e C

as above of s i z e a t most

1. I n t r o d u c t i o n

Many computat ional problems on graphs  can be

performed more e f f i c i e n t l y on p l a n a r graphs .

b a s i c t echn ique used on p l a n a r graphs is

and-conquer.’’ Here one u s e s t h e f a c t t h a t

p l a n a r graph has a se t of v e r t i c e s B of s i z e

which s e p a r a t e s  t h e  v e r t i c e s A from t h e v e r t i c e s

C where A, B, C is a p a r t i t i o n of t h e v e r t i r e s

and t h e s i z e of A and C < [LT The se t

B is c a l l e d a s e p a r a t o r . Two, now c l a s s i -

cal , a p p l i c a t i o n s of a s e p a r a t o r are l a y o u t s f o r

VLSI [Le 80, Va and nes ted d i s s e c t i o n i n

numerical a n a l y s i s [LRT

Some a p p l i c a t i o n s  r e q u i r e  t h a t t h e  s e p a r a t o r  

B have f u r t h e r p r o p e r t i e s . The p lana r f low
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a lgor i thm Johnson and Venhatrsan

requ i red t h a t t h e s e p a r a t o r be a c o l l e c t i o n of

n e s t i n g  c y c l e s .  The a lgor i thm can be f u r t h e r

s i m p l i f i e d i f t h e s e p a r a t o r is a s imple cycle which

w e s h a l l e x h i b i t . The work of Leighton and

Trickey (DLT can a l s o be s i m p l i f i e d by us ing a

s e p a r a t o r which is a s imple c y c l e .

Some a p p l i c a t i o n s may r e q u i r e t h a t t h e separa-

t o r be a s u b s e t of edges.

of a graph G = s i z e b and t h e maximum

v e r t e x degree is d then i t fo l lows t h a t  t h e  edges

a t B form a s e p a r a t o r of s i z e

want t o r e q u i r e t h a t t h e s e p a r a t o r c o n s i s t s of

which a s imple i n c i s i o n . formal ly

c a p t u r e t h i s n o t i o n bv ask ing f o r a s imple c y c l e C

G*, t h e geometr ic d u a l of C , which s e p a r a t e s t h e

f a c e s of G*. This  mot iva te s  a n a t u r a l gene ra l i za-

t i o n of t h e problem of s e p a r a t o r s c o n s i s t i n g of

v e r t i c e s and s e p a r a t o r s c o n s i s t i n g of edges.

w e a s s i g n weights t o t h e f a c e s and v e r t i c e s of

so t h a t  t h e  combined weights sum t o 1. We s a y t h a t

C is a weighted s e p a r a t o r if t h e weight of t h e

i n t e r i o r and t h e weight of t h e e x t e r i o r

W e now s t a t e t h e main theorem of t h e paper.

I f B V is a s e p a r a t o r

We may also

Here.

Theorem 1. I f i s an embedded

p lana r  g raph ,  i s an of weights t o t h e



vertices and faces that sum to 1, and no face has

weight then there exists a simple cycle 

separator of G of size constructible in

linear time.

In the special case when G is triangulated,

that is d = 3 , we get a separator of size

This is comparable to separators of size of

and Tarjan [LT and of size of

Djidjev Their separators in general are 

not simple cycles- However, they did not require

their graphs be 2-connected.

Theorem 1 is false if the hypothesis that G

is 2-connected is dropped. A tree is a simple 

example. We next observe a simple generalization

of the previous theorem which eliminates the need

for the 2-connected hypothesis. 

Theorem 2. If G is an embedded planar graph 

and is an assignment of weights which sums to 1,

such that nonsimple faces have weight zero and no

face has weight either there exist a

vertex which is a weighted separator or there

exist a simple cycle separator of size at most

We will modify the embedding of G by

rearranging the 2-connected components. As in

Theorem 1 the separator is constructible in

linear time.

We first show that Theorem 1 implies Theorem

2. Let G be an embedded graph as in the 

hypothesis of Theorem 2.

Since a face is simple if and only if all

its edges are in the same 2-connected component 

the faces with nonzero weight can be associated

with a unique 2-connected component. Thus, every

2-connected component has a unique associated

weight. It follows that either there is a vertex

which is a weighted separator of the 2-connected

components or there exists a unique proper

2-connected component H (not a simple edge) such

that each subtree of components to H has

weight

vertex of attachment x. Since H is a proper

component there are at least 2 faces, F 

common to x in the embedding of H. If the weight

on either or is 1/3 we shall pick that

face as the separator and embed T in the other

face. Otherwise, we can discard T and add its

weight to either the of or F
1 2'

Continuing in this manner we can reduce the

question of separators to a 2-connected graph

with weights and then apply Theorem 1. Note that

Let T be such a subtree with

and
1

the size of faces only decreases. 

2. Preliminaries.

There are many formal definitions and many

intuitive definitions of graphs "drawn" or

ed in the plane. Following Edmonds, Lehman. Tutte,

and many others, we make the formal

definition: Let G be an undirected graph. We 

view each edge of G as two directed edges or

darts.

of the cyclic of the darts radiating

from each vertex. Formally, let denote

all permutations of the darts of G.

Definition: The permutation is an

An embedding will simply be

embedding of G if:

1) for any

2) restricted to the darts at is a 

cyclic permutation. 

To specify the faces of this embedding 

consider the permutation R such that is the
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r e f l e c t i o n of t h e d a r t e. Now, success ive a p p l i -

c a t i o n of w i l l t r a v e r s e  t h e  d a r t s r a d i a t i n g from

a v e r t e x , i n s a y , a clockwise orde r . On t h e o t h e r

hand, t h e permutat ion w i l l t r a v e r s e t h e

d a r t s of t h e boundary of a f a c e i n counterc lock-

w i s e o r d e r . We say t h a t i s a p l a n a r embedding

i f t h e number of f a c e s of t h e embedding, say f ,

s a t i s f i e s E u l e r ' s formula:

W e s h a l l n o t d i s t i n g u i s h between a f a c e and

i t s boundary of counterc lockwise o r i e n t e d d a r t s .

Given two boundar i e s of two d i s t i n c t f a c e s , F and

t h e boundary of t h e i r union w i l l be equa l t o

F + F' where e + = 0. By a pa th i n C w e

s h a l l mean t h e d a r t s on t h e path . It fo l lows

e a s i l y , i n t h i s formal model, t h a t any simply

c y c l e C has a well- def ined i n t e r i o r ( t h e

f a c e s , v e r t i c e s , and edges t o t h e l e f t of and

a well- def ined e x t e r i o r ( t h e  f a c e s ,  

v e r t i c e s , and edges t o t h e r i g h t of

L e t be a simply c y c l e of t h e embedded

p l a n a r graph G.

f i r s t s e a r c h i n t o t h e  e x t e r i o r  of C. L e t EF b e

t h e f a c e s of G i n t h e  e x t e r i o r  of C which s h a r e

a v e r t e x o r an edge w i t h e. Consider

t h e sum C ' = C + CF where FEEF. We next show

t h a t C ' can be w r i t t e n as a d i s j o i n t sum of

s imple c y c l e s such t h a t t h e i r e x t e r i o r s are a l s o

d i s j o i n t .

geometr ic d u a l of G induced by t h e  f a c e s  i n

F u r t h e r , l e t be t h e f a c e s i n a

connected component of 

boundary of t h e union of t h e f a c e s of L , D

f o r FEL. It fo l lows t h a t t h e  r e f l e c t i o n  

of a l l t h e d a r t s of D , is conta ined i n C ' .

We nex t d e f i n e a n a t u r a l b r e a t h

L e t b e t h e subgraph i n t h e

Consider D t h e

need only show t h a t D is a s imple cyc le .

Lemma 3. The graph D as desc r ibed above

simple cyc le .

Proof : n o t e t h a t t h e boundary of

c o n s i s t s of a c o l l e c t i o n of cyc le s .  S ince ,  

a d a r t on t h e boundary of L, t h e r e is a unique

successo r and a unique predecessor . I f D is not

s imple i t can b e decomposed i n t o 2 o r more

c y c l e s . Suppose t h a t D is no t s imple . L e t e and

e' b e two d a r t s of D on d i s t i n c t s imple c y c l e s ,

s a y , and S ince t h e reg ions  de f ined  by L

and C ' are connected t h e r e are two v e r t e x d i s j o i n t

p a t h s , one i n t h e i n t e r i o r of L and o t h e r i n t h e

i n t e r i o r of C ' which only s h a r e a p o i n t on e and

p o i n t on e ' .

t h e  s u r f a c e  t h a t c r o s s e s ove r C i n a fundamental

way. Thus T and C form a graph of genus 1. Thi s

is a c o n t r a d i c t i o n . Thus w e may conclude t h a t D

These two p a t h s form a c y c l e T on

1

1

is simple .

Thus, t h e unsearched reg ion decomposes i n t o a

c o l l e c t i o n of connected r e g i o n s each w i t h a bound-

a r y c o n s i s t i n q of a s imple  cyc le .  

C ' t h e n e x t level o u t from C and each a

branch of C.

W e s h a l l call

3. Finding a subgraph of s m a l l diameter .

The a lgor i thm c o n s i s t s of two passes . I n t h e

f i r s t pass , o u t l i n e d i n t h i s s e c t i o n , we f i n d a

subgraph H which has diameter and

f a c e s i z e .

conta ined i n H. The p l a n a r embedding of H w i l l

t h e one induced by t h e embedding of G , t h e o r i g i -

n a l graph.

t h e weight as s igned i n G .

weight equa l t o t h e sum of t h e weights of f a c e s

and v e r t i c e s of G which are embedded in F. Th i s

The second pass w i l l f i n d a s e p a r a t o r

The weight on a v e r t e x of H w i l l equa l

A f a c e F of H w i l l have



w i l l be c a l l e d  t h e  induced weight on F.

t h e main theorem of t h i s s e c t i o n .

We

Theorem 4. I f G is a 2-connected embedded

graph wi th weights on i t s faces and

v e r t i c e s which sum t o 1, no f a c e weight 213 and 

the maximum f a c e s i z e is d , then t h e r e e x i s t a

7-connected subgraph H with spanning tree T

s a t i s f y i n g :

1 ) The diameter of T plus maximum s i z e

of any f a c e of is a t most

The maximum induced weight on any

f a c e of H is

2)

Proof: Note t h a t G i s 2-connected i f and

only i f every f a c e of G is simple.

s a t i s f y t h e hypothesis of t h e theorem and F b e

Let G

some f a c e of G. Fur the r , let b e an assignment

of weights a l s o s a t i s f y i n g t h e hypothesis .

We start by cons t ruc t ing a brea th f i r s t

sea rch of t h e  l e v e l s  from F as defined i n

l i m i n a r i e s . Namely, w e cons t ruc t t h e nex t l e v e l

ou t from F and decompose it i n t o branches.

each branch w e again cons t ruc t i t s branches.

This g i v e s us a tree of branches wi th r o o t

Note t h a t by s t a r t i n g from t h e leaves of t h i s

For

tree w e can compute t h e induced weight on the

i n t e r i o r and e x t e r i o r of each branch i n l i n e a r

t i m e .

Let C be t h e f i r s t branch such t h a t

t h e  i n t e r i o r  of C i s t h e s i d e

con ta in ing F.

ances to r of C such t h a t +

Such a B must e x i s t s i n c e otherwise t h e

ances to r of must have s i z e -

f o r 0 i

v e r t i c e s and t h e r e f o r e  t h e  sum over t h e

t h
Fur the r , l e t B b e  t h e  

t h

Now, t h e have d i s j o i n t

must be n.

sum of t h e bi i s l a r g e r than which is a

cont rad ic t ion .

By a s t ra igh t fo rward c a l c u l a t i o n t h e

Let C B b e t h e ances to r s of

C up t o B.

G by d e l e t i n g t h e e x t e r i o r of any branch of

th ru which is d i s t i n c t from ..

2) t h e i n t e r i o r of B.

t h e  e x t e r i o r  of C.

diameter and induced weights bu t t h e

f a c e s i z e s may be too la rge .

cons t ruc t t h e next l e v e l out u n t i l t h e maximum

number of l e v e l s constructed and t h e maximum

branch s i z e f s a t i s f i e s + f

s i m i l a r arguments as used above t h i s procedure

w i l l

t h e e x t e r i o r s of t h e s e branches. We cal l t h e

por t ion of G added onto a f a c e of a

next cons t ruc t t h e tree T.

Consider t h e subgraph H' obtained from

1

Note t h a t we have de le ted

The subgraph H' has small

For each f a c e of H'

By

The subgraph H w i l l be minus

W e

Note t h a t i f D is a simple c y c l e and x a

v e r t e x on t h e next l e v e l o u t from D then t h e

d i s t a n c e from x t o D can be a t d/2 s i n c e they

must s h a r e a f a c e of s i z e d.

f i r s t sea rch from any po in t on B i n H'

genera te paths of leng th a t most

s i m i l a r arguments, any po in t i n a cap is a t most

Thus a breach

away from

of diameter

f a c e s i z e w e g e t < f r o m t h e

i n e q u a l i t i e s above.

Thus, H has a spanning tree

Adding i n t h e maximum

4 . Finding a separa to r i n a graph of small

By t h e last s e c t i o n we can f i n d a subgraph

of r a d i u s

Cycle which is a separa to r .

Here w e f i n d a small s imple

The main theorem of



t h i s s e c t i o n is:

Theorem 5. I f G is a 2-connected embedded

p lanar graph wi th spanning tree T then t h e r e e x i s t

a simple c y c l e weight separa to r of s i z e a t most

where t h e diameter of T , t h e maximum

f a c e s i z e , and no f a c e weight

Proof: The proof w i l l c o n s i s t of a sequence

of success ive approximations t h a t w i l l converge t o

a c y c l e t h a t is a weighted separa to r . Let e be any

non- tree edge and C

t h e spanning tree T.

t h e induced simple cyc le i n

I f C is not a weighted separa to r then,

without l o s s of g e n e r a l i t y , we may assume t h a t  t h e  

weight of t h e  i n t e r i o r  of 213. Let F be t h e

f a c e common t o e on t h e i n t e r i o r of Fur the r ,

let e b e  t h e  non- tree edges on F d i s t i n c t

from e. For i f k 0 then F

would t h e  i n t e r i o r  of s i n c e F is simple.

This c o n t r a d i c t s  t h e  f a c t s :

213.

Note t h a t 1.

We now p a r t i t i o n

Let b e t h e cyc le induced by such t h a t

i s contained i n

are a p a r t i t i o n of

) up t o v e r t i c e s and edges. We f i r s t reduce

t h e problem t o t h e case when

..., 213 as

Thus t h e reg ions

k

1) I f f o r some 1 i k

then set e t o and repea t .

I f 2/3 then F is a weighted

simple cyc le s e p a r a t o r of s i z e

I f f o r some 1 k

then i s a weighted simple cyc le sepa-

r a t o r of s i z e

2)

3.

Given condi t ion (*) w e s h a l l cons t ruc t t h e

But wesepara to r from F plus some of t h e

must do t h i s i n such a way t h a t t h e cyc le

simple. We in t roduce a par t ia l order on the

Let x and y be t h e end poin t s of t h e

Since F is a simple cycle , i f w e remove e from

I '
obta in a simple path from x t o y on F.

x be t h e  v e r t i c e s  on t h e path i n t h e order
t

they appear.  

v e r t e x of minimum index and one of maximum index

in ..

l e f t most and r i g h t most v e r t i c e s of C

l y . We say C domains i j , i f j,

Let

Given any cyc le it w i l l have

W e s h a l l c a l l t h e s e v e r t i c e s
t

where i and are t h e ind ices of t h e l e f t

most and t h e r i g h t most v e r t i c e s of and s i m i -

l a r l y  f o r  j, and j

graph is planar we g e t a f o r e s t on t h e by

adding a d i r e c t e d edge from t o C

C . and t h e r e is no k such t h a t domains and

domains

d i r e c t e d tree. I f and C have t h e same parent

then is left of C

Using t h e f a c t t h a t t h e

i f C domains

By adding w e g e t a

i f

We a s s o c i a t e with each region t h e union

of a l l reg ions domained by i t ,

domains C o r S imi la r t o t h e f a c t t h a t

trees have a separa to r of a s i n g l e

v e r t e x w e ge t :

Lemma 6. E i t h e r  a )  t h e r e  e x i s t s an such

t h a t is a weighted separa to r o r t h e r e

e x i s t s an i such t h a t 2/3 and f o r

a l l , such t h a t

) )

is a c h i l d of

Note t h a t a simple cyc le which i n t e r-

s e c t s F on some i n t e r v a l of F.

c o n s i s t of an i n t e r v a l of F p lus and i n t e r v a l of

which are d i s j o i n t except a t t h e end poin t s .

Since t h e i n t e r v a l of is contained i n T t h e

s i z e of is a t most

Thus, w i l l

We w i l l assume t h a t

380



cond i t ion of Lemma 6 f o r t h e

of t h e proof of Theorem 5.

. . b e t h e c h i l d r e n of We say
t

I Left of D . i f t h e v e r t i c e s of D on F are
i

t h e v e r t i c e s of D . on F. We p a r t i t i o n  t h e  

i n t o those t h a t are l e f t of e and those t h a t

r i g h t of e We s h a l l success ive ly add e i t h e r

J

i

i f i t r i g h t of

l e f t most i f it i s lef t of o r  t h e  r i g h t  

L e t be such a

must show t h a t We know t h a t

But, w i l l a l s o b e

t h e i n t e r i o r of We s h a l l u s e t h e s t r o n g e r

t h a t

Lemma: I f G is an embedded graph, A and B

f a c e s , and 1 / 3

then

Proof : L e t A and B s a t i s f y

t h e hypothes is . L e t

and

The f i g u r e may he lp keep t r a c k

of t h e n o t a t i o n . The lemma w i l l

fo l low i f w e show t h a t

Now is t h e  d i s j o i n t  union of b,

Thus

Since w e g e t t h a t

b

Using t h e l a s t lemma we can simply p i ck

D. f o r some j such t h a t D is

a s e p a r a t o r . W e must show t h a t is s imple and

of s m a l l s i z e . W e s ta te without proof t h e follow-

ing s imple  lemma.

Lemma: I f D . are consecu t ive and a l l

l e f t ( r i g h t ) of then D. is s imple

and c o n s i s t s of an i n t e r v a l from F p l u s a s imple

pa th i n T , t h e spanning tree.

Thus, the new region will cons is t of F p l u s

consecut ive elements from t h e l e f t of and

consecut ive elements from t h e r i g h t of

boundary w i l l c o n s i s t of two pa ths from t h e tree

p lus 2 pa ths from F. Thus, t h e s i z e of t h i s

r eg ion is a t most Actual ly t h e s e two

pa ths i n t h e tree can be  jo ined  t o form one simple

Its

pa th i n T. Thus t h e s i z e

Conclusions

In t h i s paper we have concentra ted on wors t

c a s e sepa ra to r s . That is, an  a lgo r i thm which

f i n d s a r e l a t i v e l y s m a l l s e p a r a t o r when t h e small-

est s e p a r a t o r is r e l a t i v e l y l a r g e . It i s open

whether t h e r e is a polynomial t i m e a lgor i thm which

f i n d s t h e opt imal s e p a r a t o r f o r p lana r graphs.

is easy t o show t h a t t h e r e is always an opt imal

s e p a r a t o r which c o n s i s t s of non-nesting simple

cyc le s i f t h e graph is t r i a n g u l a t e d . We say a

simple c y c l e is a s e p a r a t o r of r a t i o i f

I ( i n t , (ext (C)

f i n d i n g an opt imal  r a t i o s e p a r a t o r f o r p lana r

graphs polynomial t i m e computable?

Quest ion:

[DLT

[Dj

[GHT 821

[ J V
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