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An open question is the computational complexity of recognizing when two graphs are
isomorphic. In an attempt to answer this question we shall analyze the relative com-
putational complexity of generalizations and restrictions of the graph isomorphism
problem. We show graph isomorphism of regular undirected graphs is complete over
isomorphism of explicitly given structures (say Tarski models from logic). We also show
a fundamental difference between how automorphism groups can act on a graph of valence
n and how they can act on graphs of valence n 4 1 (with one exception). This group
theoretic result seems to have implications on the role of valence for graph isomorphism
algorithms. Finally, we introduce “certificates’” for symmetric cubic graphs.

INTRODUCTION

In the late 60’s and early 70’s a new technique was developed to analyze the computa-
tional complexity of decision problems. Three of the many people who worked on this
technique were Cobham, Cook and Karp. Cobham [64] was one of the first people
to define the class of polynomial time recognizable sets. We shall denote this class by P.
It is this notation of polynomial time computable which will be our notation of feasibly
computable problems. Cook [70] defined the notation of nondeterministic polynomial
time (NP) and NP-completeness and showed that there was a problem which was
NP-complete, thus initiating a fundamental technique for classifying problems with
respect to P. Following Cook, Karp [72] presented dozens of natural problems which
were also NP-complete. These techniques are so widely applicablé that since these
papers literally hundreds of seemingly different problems have been shown to be either
NP-complete or polynomial time computable.

One of the problems mentioned in both Cook [70] and Karp [72] which has not
yielded to this classification technique is the problem of recognizing when two graphs
are isomorphic.

The goal of this paper is to use reducibility techniques and other computational
complexity notations to understand generalization and restriction of the graph iso-
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morphism problem. The paper is divided into three sections, each quite different in
both technique and goals. The first section shows that a broad class of isomorphism
problems can be reduced to graph isomorphism. An example of such a reducible problem
is that of isomorphism of two groups when they are given as multiplication tables.

The last two sections use considerably more group theory. In fact, the results of the
second section are motivated by the question of the role of valence in graph isomorphism
algorithms, but at the present time are more applicable as group theoretic results. An
example of a question considered in section two is: can isomorphism of graphs of valence 4
be reduced to isomorphism of graphs of valence 3? One should point out that only
positive answers to questions of this form can be given at the present time without
settling the “P — NP” question. Thus negative results must be less than absolute.
In light of the fact that negative results do not exist for these types of questions, I think
the results are quite strong. We show that there is a fundamental difference between
how groups act on graphs of valence n and how they can act on graphs of valence n +- 1
(with one exception, A, is not a simple group).

Finally, in the last section we look more closely at solutions to the graph isomorphism
problem which do not give a polynomial time algorithm but still may be of practical
value. We define the notation of a succinct certificate for a graph. The basic idea is
that a graph may have a short characterization and also a short proof of that charac-
terization, but it may be hard to find such characterizations or proofs. As an example,
we show that the symmetric cubic graphs have succinct certificates.

Notation. A graph throughout this paper will be a combinatorial graph. Namely,
a graph G is a finite set of vertices plus a set of ordered or unordered pairs of vertices
called edges. The set of vertices will be denoted by V(G) while the set of edges will
be denoted by E(G). Graphs consisting of ordered pairs are called directed, while those
consisting of unordered pairs are called undirected graphs. The graphs are undirected
unless otherwise noted. The number of edges associated with a vertex is the valence
of the vertex. The valence of a graph is equal to the maximum over the valences of the
vertices. A graph is said to be regular if all vertices have the same valence. Two graphs
G and G’ are said to be isomorphic if there is 2 1-1 map from V(G) onto V(G’) which
preserves edges. We will denote G is isomorphic to G’ by G=~G.

We shall need the computational notations of Cook [70], Karp [72]:

(1) P(NP) is all sets recognizable in (non)deterministic polynomial time;

(2) A <, B denote that 4 is polynomial time reducible to B.

1. CoMPLETENESS OF GRAPH ISOMORPHISM OVER ISOMORPHISM

The main result of this Section is Theorem 2, which states that isomorphism of
undirected graphs is complete over the general isomorphism problem. We first state
and prove a special case which contains most of the ideas and techniques to be used
in the general case.
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‘THEOREM 1. Directed Graph Isomorphism <, Undirected Graph Isomorphism.

Proof. Suppose that G and G’ are two directed graphs on n vertices. We define
a map or procedure, say «, from directed graphs to undirected graphs, such that G ~ G’
iff «(G) ~ «(G"). Given G we construct o(G) as follows:

(1) For each vertex of G construct a vertex for «(G).

(2) For each directed arc of G (say (x — y)) construct a “‘gadget” using 7 new
vertices and connect it to x and y as in Fig. 1.
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FiGcure 1

By the construction it should be clear that if g is an isomorphism of G onto G’ then
the natural extension of g to a(G) is also an isomorphism of «(G) onto «(G’). Thus,
to complete the proof of the theorem it suffices to prove the following lemma:

LemmMa. If g is an isomorphism from o(G) onto o(G’) then g restricted to the vertices
of G is an isomorphism of G onto G'.

Proof. The neighborhood sequence of a vertex x in a graph on 7z vertices is a sequence
of natural numbers S(x) = (q, ,..., a,)> such that g; is the number of vertices whose
minimum distance to x is 7. Note that the neighborhood sequence is an invariant under
isomorphism. Now, neighborhood sequences of v and w of Fig. 1 have the form
<1,1,2,..> and <1, 1, 1, 2,...> respectively. If x € V(G) and x is of valence ! in G then
the neighborhood sequence of x in o(G) is of the form (I, 21,...>. Thus, the vertices v
(or w) from gadgets in o(G) are invariant under isomorphism, e.g. any isomorphism
must send v vertices to v vertices. Therefore gadgets are invariants. The function g
maps V(G) onto V(G’). Finally, g restricted to V(G) is an isomorphism of G onto G,
since x — y iff x is connected to y by a gadget in «(G). This completes the proof of the
lemma and hence the proof of Theorem 1.

A structure is a set A with relations R, ,..., R, , where R; C A4, which we will denote
by {4, R, ,..., R,,>. We will say {4, R,,.., R, is isomorphic to (A', R, ,...,R.> if
there exists a one-to-one map g from 4 onto 4’ such that (x, ,..., x,> € R; if and only if
(gl g(m)> €RL, 1 <i <.

To prove that undirected graph isomorphism is complete over isomorphism of
structures, using the techniques developed in the proof of the last theorem, we will
need to define a general construct o.
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Given a structure (4, R, ,..., R,,> we defined «((4,...>) as follows:

(1) For each element of A construct a vertex for «((4, R, ,..., R;,>);

(2) (a) For each ordered sequence (x, ,..., %) € R; , k > 3, construct a R;-gadget
gadg
(see Fig. 2); '

(b) For each {x, x,> € R;, use the construction in Fig. 3;
(c) For each <{x,> € R;, use the construction in Fig. 4.
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By arguments similar to those previously used, we see the neighborhood sequence
of the “leaves” are unique hence invariant under isomorphism. Thus, R;-gadgets are
invariant, which implies 4 is an invariant. Finally, any isomorphism of «(4) onto «(4")
induces an isomorphism of 4 onto 4’. This proves the following theorem.
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THEOREM 2. Isomorphism of Structure <, Graph Isomorphism.

By a group we shall mean a multiplication or Caley table. Since a group can be viewed
as a trinary relation over a set, namely (x ¥, 2y it x-y =2z, we get the following
corollary

CoroLLARY (Miller, Monk). Group Isomorphism <, Graph Isomorphism.

The best-known upper bound for group isomorphism is O(n!°87+3) due to Tarjan,
where 7 is the order of the groups. For a discussion of this result and generalization
to latin squares and some graphs derived from latin squares, see Miller [78]. On the
other hand, isomorphism of semigroups is equxvalent to graph 1somorphlsm see Booth
[in press].

Theorem 2 seems easily strengthened in many ways. For example, let a hypergraph
be a pair (4, ) such that + C 24. Then, by similar methods, hypergraph isomorphism
can be easily shown polynomial time reducible to graph isomorphism.

The next result says that when we consider graphs of valence « where o is odd we
need only consider the subcase of regular graphs of valence «.

THEOREM 3. Isomorphism of graphs of valence o« <, isomorphism of regular graphs of
valence o, when o is odd.

Proof. Consider a T, , gadget, with vertices {x, a;; , b;; | ]| <i <o — 1,1 <j < n}
with connections:

{<x a11>11 a— 1}
{<u)bk;>|1 lk a—landl<] }

{bijsaip |1 <j <n}
{<bin ’ bi+1n> I 1 < : < ax— 1, ) Odd}

For example, T, , is given in Fig. 5.

Given a graph G of valence «, « odd, we can pick 7 large enough so that T, , never
occurs in G. Now the valence of any vertex can be increased by one by simply attaching
a new copy of T, , with an edge from the vertex to x. Thus by adding as many gadgets
as necessary we can increase the value of any vertex to a. Thus Theorem 3 is proved.

This gadget has the property that all its vertices have valence « except one which
has valence « — 1. Any other gadget, it would seem, also needs to have this property.

a1, byy 219 byo
X \
351 521 Y b9

FIGURE 5
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But if « is even and K is a gadget with the above property then K is a graph with an
odd number of nodes of odd valence. By a simple counting argument of Euler’s we
see this is impossible.

Up to an increase in valence of at most one we can assume our graphs are regular.!

COROLLARY. Graph Isomorphism <, Regular Graph Isomorphism.

This corollary has been proven independently by Booth [in press].

11. BouNDED VALENCE

All the constructions of Section I preserve valence in the sense that the valence of G
equals the valence of «(G). Our goal in this section is to analyze the importance of valence

in the isomorphism problem. A natural formalization of this problem is the following
open question. '

OpeN QuEsTION. Graph Isomorphism <, Isomorphism over Graphs of Bounded
Valence.

Let us first consider bounding the valence to 3. One way of constructing a cubic
graph from an arbitrary graph is to replace vertices of valence n (n > 3) by an n-gon.
This procedure is not well defined, as the following example shows. Consider Graph 4
from Fig. 6a. These are two ways to replace x by a 4-gon, giving graphs B and B’ (see
Figs. 6b, 6c). These two graphs are not isomorphic; in fact, B is planar while B’ is not
planar. Thus it seems that replacing vertices of higher valence by polygons fails because
the polygons induce an orientation on the arcs attached to them. A polynomial time
procedure which uniquely replaces vertices by polygons independent of how the graphs
are presented would seem to have implications in both algorithms for graph isomorphism
and algorithms for computing genus of a graph (see section three on surfaces (2-dimen-
sional manifolds)).

If C is a permutation group acting on S, S'C S and c € C, then c is said to stabilize
S’ if it sends elements of S’ to elements of S’. We shall denote the subgroup of C which
stabilizes S” by C(S’). On the other hand, ¢ fixes S* if it fixes each element of S’. The
subgroup of C which fixes " we shall denote by C(U S’). Using these definitions an
edge of a graph is stabilized if its vertices are stabilized, and it is fixed if its vertices
are fixed.

Since the n-gon is only one of an infinite number of possible graphs that might work,
we now formalize the properties we seem to need of such a graph and then proceed
to show that no such graph can exist (with one exception).

DErFINITION. An isomorphism (m, n)-gadget, for m > n, is a pair (G, 4) consisting
of a connected graph G with valence at most n together with m distinguished vertices I

1 Corneil and Kirkpatrick [PC] have been able to prove Theorem 3 without the constraint that «
is odd by using two copies of the graph.
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of valence at most #» — 1, such that the group of automorphisms which stabilize I'
induces all permutations of T, i.e., induces symmetric group S,, on I'. In the case that
m = n + 1 we shall simply call them n-gadgets.

The main theorem is:

TueoreM 4. If (G, I') is a (m, n)-gadget then m = 5 and n = 4.

We first prove a special case. Consider the special case of a 3-gadget. In this case
we use the following theorem:
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‘THEOREM 5 (Babai, Lovisz) [75]. If G is a connected graph of valence 3 and H is a

group of automorphisms of G which leaves some edge of G fixed then H is a 2-group (H is
of order 2™, for some m).

Proof. Suppose the theorem is false. Let H be as in the hypothesis of the theorem
and let p divide the order of H, p an odd prime. Further, let (x,, x,> be the edge fixed
by H and x, and x, be the other two possible neighbors of x, . If H' is the subgroup
of H whi-h also fixes x, and x; then [H : H'] < 2. By our assumption that p divides
| H| and the fact that [H : H') < 2 we have p divides | H'|. Using induction and the
fact that .; is connected, Theorem 5 is proved.

Suppose G is a 3-gadget and x,, x,, %3, ¥, are distinguished nodes of G. Let H 4
be the fixer of x, . By attaching a new edge to x, (using a new vertex), H satisfies
Theorem 5. But, H induces S, on {x, , x5 , ¥,} by definition; therefore H is not a 2-group.
This contradicts Theorem 5. Thus, 3-gadgets do not exist.

Proof of Theorem 4. We shall in fact prove something slightly stronger; namely,
given a connected graph with valence n and m distinguished vertices of valence 7 — 1,
say I', then the permutations induced on I' cannot contain the alternating group 4, ,
when 7n £ 4. The cases where 7 £ 1, 2 are trivial; thus we can assume that z = 3.

Suppose the Theorem is false and (G, I') is a (m, n)-gadget, and m % 5 or n # 4.
Since m = 5 or n % 4 we can pick an integer / such that n < I < m and the alternating
group A, is a simple group (i.e. 5 4). Letxe 'and I" Csuch thatx ¢ " and | I | = 1.
Now define a subgroup H of B, the automorphism group of G, by:

H =

o

x€B (U (' — F’)) and « restricted to I'' is a member of 4.

We have the following two properties of H:

(I) H(UI")is a normal subgroup of H;

(2) HHUI) ~ A4,.
Using only properties (1) and (2) of H, we shall construct a proper subgroup which
also satisfies these properties. By induction, this is a contradiction.

Let P be a path from x to x’ (some member of I'”). Now x is fixed by H and &’ is

moved by H. Thus, by induction, there must exist some point y on P satisfying:

(2) the point y is fixed by H;

(b) not all neighbors of y are fixed by H;

(c) at most n — 1 neighbors of y are moved by H.

If Y is the set of neighbors of y then we have the following two facts:
(1) H(U YY) is a proper normal subgroup of H;
() HHHUY)~ KCS,_,.

We need only show that H(|) Y) satisfies conditions (1) and (2). The fact that
HUY,UT)<HUY) is clear. Let L~ H(JY)/H(UY,UT) and consider the
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diagram shown in Fig. 7. The upper L follows by the second isomorphism theorem
(see Rotman [65]). Now by the third isomorphism theorem (Rotman) L <1 4;. Hence
L = A, or L = I since A, is simple.

H(ur)-H(uY)

H(ur) | ' ~H(UY)

H(ur,uY)

FiGure 7

Now |A;| =|K|-|L|. Therefore, (I!/2)/(n —1)! <|L|. Since this implies
|L| > 1 we know that L = 4, . Thus, H(|) Y) satisfies (2).

I find Theorem 4 quite surprising. What is more surprising is that 4-gadgets exist.
After the presentation of this paper at the Ninth Annual ACM Symposium on the
Theory of Computing, Carter found a 4-gadget. So we have:

THEOREM 6 (Carter [77]). A 4-gadget exists.

Using this 4-gadget and the tagging tricks developed in the previous section, we get
the following corollary.

COROLLARY. Isomorphism of graphs of valence 5 <, Isomorphism of graphs of valence 4.

11I. SHORT PROOFS OF NONISOMORPHISM

It is often stated that efficient graph isomorphism algorithms are useful to Chemistry
since molecules can be viewed as a graph where the vertices are the atoms and edges
are the bonds. A problem which arises is classifying molecules; namely, we have a very
large table of molecules and we are given some new molecule and asked whether or not
it is already in the list. Since the number of molecules is potentially exponential in the
number of atoms per molecule, even a linear time isomorphism algorithm naively
produces a potentially exponential search. We now attempt to characterize a feasible
solution to the Chemist’s problem.
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A function f from a class of objects 4 to the natural numbers is called a certificate
with respect to some equivalence relation = if forall G, G’ in 4, G = G’ iff f(G) = f(G').
In the case that 4 is a set of incidence matrices and = is isomorphism, then a com-
putable f exists since we can simply enumerate all graphs and assign a number to each
graph according to when it first appeared. So the interesting question to ask of a certificate
is its computational complexity. We shall say that f is a deterministic certificate if f is 2
certificate and it is computable in polynomial time.

If graph isomorphism has deterministic certificates, then graph isomorphism is in P.
Thus deterministic certificates seems too strong a condition to prove existence for at
the present time. If f is a certificate which is computable in nondeterministic polynomial
time, then f is called a succinct certificate. The definition of nondeterministically com-
putable function is given in Miller [76]. For completeness, we define it for partial func-
tions:

DEeFINITION. A function f over a domain 4 is said to be computable in non-deter-
ministic polynomial time if there exists a non-deterministic machine M such that on
all inputs X € A some path halts and all halting paths must output f(X) in a polynomial
number of steps in terms of the length of X.

The existence of a succinct certificate for graphs under isomorphism seems to formally
characterize what Harary [69] calls a complete set of invariants for graphs.-

OpeN QuestioN. What is the relation between .the following four properties, other
than (1) implies (2) implies (4) and (1) implies (3) implies (4):

(1) <4, =) has deterministic certificates;

(2) equivalence of 4 over = is in P;

(3) <4, =) has succinct certificates;

(4) equivalence of 4 over = is in NP N NP?

(where = is an equivalence relation over a set 4).

It is not known if graph isomorphism satisfies any of the above four conditions.

Since polynomial time reducibility preserves all of the conditions, a positive solution
for graph isomorphism would imply a positive solution for structures. In particular,
group isomorphism is not known to satisfy any of the four conditions. It seems we
need to find a tractable restriction of the class of graphs so as to solve the molecular
classification problem.

Before we give an example of succinct certificates we give a short discussion of
certificates. Since an incidence matrix for a graph can easily be viewed as a natural
number, we need only construct unique matrices, i.e., enumerations of the vertices
which produce identical matrices. In general this seems difficult to find, but if we also
have an embedding of the graph on some 2-dimensional orientable surface then there
are enumerations dependent only on the graph and the embedding.

Suppose G is a connected graph embedded on some orientable surface. Note that
an embedding can be viewed as simply a cyclic ordering of the edges incident with x,
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for each vertex x of G. Given an edge and a vertex x incident with it, we can induce
a linear order on the remaining edges of x. Thus, given G, e and x, where G is a connected
and embedded graph and e is an edge incident to vertex x, we can define an enumeration
of the vertices of G starting with x, say depth first. Since the number of pairs (e, x)
we need to consider is only n%, where 7 is the number of vertices of G, we could compute
all the incidence matrices associated with the pairs (e, x) and take the minimum where
the matrices are viewed as natural numbers. Similarly, we need not assume that G is
connected. Thus an embedding of a graph produces a unique incidence matrix. We have
reduced the problem of finding vertex enumeration to finding unique embedding.
The above arguments hold for unorientable surfaces.

Tutte [66] showed that 3-connected graphs have at most 2 embedding on the sphere.
Thus many authors have noticed that isomorphism of planar 3-connected graphs is
decidable in polynomial time, after finding a polynomial time planar embedding
algorithms. In fact, we see that planar 3-connected graphs have deterministic certificates.
In fact, Hopcroft and Tarjan [73] give an enumeration of 3-connected components.
The author knows of no similar results for higher genus.

I1V. SuccineT CeRTIFICATES FOR ARC TRANSITIVE CuBiCc GRAPHS

Since molecules have bounded valence and Theorem 5 gives us reason to believe
graphs of bounded valence may be easier, we restrict our attention to these graphs.
Valence 3 graphs are the first interesting case and by Theorem 3 we need only consider
graphs of uniform valence 3, cubic graphs.

OpPeEN QuESTION. Is cubic graph nonisomorphism in NP?
There are many ways of partitioning vertices of a graph into classes invariant under
the automorphism group, with the goal of either finding an isomorphism or eliminating

possible isomorphisms. If the automorphism group acts transitively on vertices, then

the only invariance partition is the trivial one. Thus, the vertex transitive graph secms
like an interesting subcase to consider. Now with one further restriction, namely that
not only does the automorphism group act transitively on vertices but it also acts
transitively on arcs (transitive over paths of length 1), we are able to say something
interesting. Following Tutte, graphs which are arc-transitive are called symmetric.

THEOREM 7. Symmetric Cubic Graph Nonisomorphism is in NP.

In fact, we may make a stronger statement:

THEOREM 8. Symmetric Cubic Graphs have Succinct Certificates.

Our proofs of Theorems 7 and 8 seem to require a fair amount of group theory and
algebraic graph theory. Some of Tutte’s finest and least understood works [47, 59]
form the basis of our argument. This general paper is not the place for a detailed proof,

§
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and we hope the diligent reader will checks the references Biggs [74], Djokovi¢ and
Miller [77], Tutte [47] and Tutte [59].

It is sufficient to prove Theorems 7 and 8 for connected graphs since we can let the
certificate of a graph be the order tuple of the certificates of the connected components.
In general all four properties of the previous section can be reduced to the connected
case. For the remainder of the proof we shall assume that the graphs are connected.

In the last section we showed that an embedding gives rise to an associated incidence
matrix. Similarly we shall see that for vertex transitive graphs certain elements of the
automorphism group give rise to an associated incidence matrix.

Let G be a vertex transitive graph and x be a vertex of G with adjacent vertices
Xy 5.y X5 . Since G is vertex transitive there exist automorphisms q ,..., @, such that
ay(x) = xp ..., ap(x) = x; .

If H is the subgroup generated by a4, ,..., a; then H is vertex transitive. This statement
follows by noting that if y = f(x) is in the orbit of x where fe H then fa,(x),..., fa,(x)
is an enumeration of the vertices adjacent to y and hence the neighbors of y are all in
the orbit of x.

If H is a vertex regular group (i.e., for every pair of vertices x, y there exist a unique
J € H such that f(x) = y) then the enumeration of the vertices with respect to x, a, ,..., a;
can easily be defined by the methods used for embedded graphs. Here, the ordered
neighbors of y are fa,(x),..., fa,(x).

If on the other hand H is not vertex regular then we can systematically assign an
automorphism to each vertex. This can be done many ways. In particular we construct
a depth first search tree rooted at x which simultaneously assign an automorphism
to each vertex.

Let f be an automorphism of G, x, a, ,..., a; as above and let trace be a recursive
procedure defined as follows:

Procedure trace(f, x, 4, ,..., a;)

(1) assign f to f(x) if f(x) has no automorphism assigned to it; otherwise return.
(2) trace(fa,,x, ay,..., a;)

(3) trace(fa,, %, a, ,..., a;)

(R + 1) trace(fay , x, a; ,..., a).

Now, trace(l, x, a, ,..., @;) where I is the identity automorphism defines an enumeration
of the vertices of G. It is interesting to note that trace defines an ordered rooted spanning
tree of G. Let T(G, %, a, ,..., ;) denote the enumeration of the vertices of G induced
by trace(l, x, a, ,..., @) ~

In the case when the graph is cubic and arc transitive, Tutte [47] characterized a
canonical set of automorphisms which will allow us to have a canonical enumeration
of these graphs. At this point we introduce the terminology to define these automorphisms.

An s-arc is a path xg,..., x; and a l-arc is simply an arc. A graph is s-arc transitive
if the automorphism group is transitive on s-arcs. A group acting on a graph is s-regular
if it acts regularly on s-arcs (uniquely maps s-arcs to s-arcs). Now, Tutte proved that



140 GARY L. MILLER

if a cubic graph is arc transitive then it is s-regular for some s < 5. Tutte also proved
that there exist cubic graphs which are s-regular for 1 <s < 5.

Suppose G is an s-regular graph and S is some s-arc, say Xp ;... X5, and the other
two neighbors to x, are x and y. Now, S has two unique Successors, Xy ..., X5, ¥ and
Xy 3oy X5 , ¥ Which we will denote by S; and S, . Let a; and a, be the unique auto-
morphisms of S which sends S to S; and S, respectively. Automorphisms which push
arcs forward are called shuntings. Tutte also proved that @, and 4, in a very natural
way generate the automorphism group of G.

In defining T(G, , a; ,..., a) Wwe used three automorphisms for cubic graphs. For
arc transitive graphs we need only & — 1 shuntings for graphs of valence k (Tutte [66]).
Thus T(G, %, , a, , a,) is well defined when G is cubic, s-regular and x,, a, , a, are as

-above. '

Now if M(G, a, , a,) is the incidence matrix induced by T(G, x,, ay , ay), it is inde-
pendent of our choice of x, and dependent only on the order of 4; and a,. That is,
if M(G, a,, a;) is the matrix induced by T(G, %, , a, , @) and M(G) is the minimum
of M(G, a; , a;) and M(G, a,, a,) viewed as integers then M(G) is dependent only
on G. Therefore we have defined a certificate for arc transitive cubic graphs, namely,
f(G) = M(G). But it is not clear that f is computable in nondeterministic polynomial
time. In nondeterministic polynomial time we can guess the shuntings &, and a,, but
we also need to recognize that G is at most s-transitive. Thus, we need to show that
the set of s-regular cubic graphs is in NP for each s. A stronger fact is provable. First
we formally define shuntings.

DEFINITION. A shunting in G is an ordered pair (x, @) where x is a vertex and a
is an automorphism of G such that a(x) is adjacent to x and a%(x) # x. If G is finite,
then ai(x), i € Z, determines a simple closed path which is rotated by a. Two shuntings
(%, a), (*, b) have overlap s if a=*(x) = b~(x) for0 < k < sand a(x) # b(x), a~+V(x) #*
b—ts+(x). Finally, (x, a) is conjugate to (y, b) if there exists an automorphism o such
that (y, b) = (ax, caa™®). Using this notation we can show:

TueoreM 9. Given two shuntings of overlap t == 1 for some connected cubic graph G,
then in polynomial time one can find the automorphism group of G.

Proof. Since the automorphism group of G contains 3 -2%-1-n elements where
s is the transitivity and z is the number of vertices, the size of the group is only linear
in the number of vertices. Using the shuntings (x, ¢,) and (x, ;) we can construct
the subgroup generated by a;, @, denoted <a, , a;>. Now, <a, , @y is t'-regular for
some ¢’ < 5, by Tutte’s result. If the overlap of (x, a,) and (x, a,), t, is strictly less than ¢/,
we can find new shuntings with overlap ¢’ in <a, , @3)- Without loss of generality, we
can assume that the overlap is in fact ¢ = ¢’. Thus it is sufficient to show the following:
given a t-regular subgroup of an s-regular group, for a cubic graph, we can quickly
find the s-regular group. Certain of the pairs (2, s) cannot exist by the following theorem:

TreoreM 10. If a group of automorphisms for a connected cubic graph is 4- or 5-regular
then it cannot contain a 2- or 3-regular subgroup.
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Proof. (See Djokovi¢ and Miller [77].)

We next consider the cases when s =1t + 1, that is, H is the z-regular subgroup
of a t + 1 regular group 4. We show how to construct 4 from H. By our counting
argument, the index of Hin Ais 2. Hisa normal subgroup of A. Now there exists a
unique element w in 4 of order 2 which fixes S. By the normality of H and the uniqueness
of a, and a, in H, we bave waw™ = a,, i.e., (¥, 4;) and (x, a,) are conjugate. We can
rewrite this as wa; = a,w and wa, = a,. The automorphism w is uniquely defined by

w(ail | A a‘ik(X)) = a‘Y(il) L AR a‘/(ik)(X)

where 7; € {1, 2} and 9(1) = 2, ¥(2) = 1.

All this boils down to M(G, a, , a,) is identical with M(G, a,, a,)-

Thus if w exists we can quickly find it; in fact, it is not hard to show that wa, and a,
are two shunting functions of overlap ¢ + 1. :

The cases t = 1, s =3 and t = 1, s = 5 can be handled by the following theorem:

Tueorem 11. If H, A are 1- and 3(5)-regular groups respectively, acting on some
cubic graph, then there exists a 2(4)-regular group B such that H < B < A.

" Proof. (See Djokovi¢ and Miller [77].) ‘

Thus we need only deal with the case ¢ = 1 and s = 4. The smallest 4-regular cubic
graph is Heawood’s graph on 14 vertices; its automorphism group contains 1-regular
subgroups. We shall show that all graphs which have both a 1-regular subgroup and a
4-regular subgroup “look like” Heawood’s graph. Let G be a cubic graph which is
4-transitive and let H be a 1-regular group over G. Then H contains shuntings of overlap
one, say (x, ;) and (¥, a,). Using this notation, we have the following:

TueoreM 12 (Djokovié, Miller). Given G, H, a, and a, as above, then there exists
a 1-regular subgroup of Heawood’s graph with shuntings (y, b,) and (¥, by) with overlap 1,
such that the map

f(ai1 ai,,x) = bi, by

is a well-defined covering of G over Heawood’s graph, gla;, ~a;) = by v by, is a well-
defined homomorphism from H to (b, , b, and, finally, (f, &) form a covering morphism.
This covering morphism allows, in a natural way, the lifting of the full automorphism group
of Heawood’s graph to G.
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Proof. (See Djokovi¢ and Miller [77].)

Summing up, the lattice of possible regular subgroups is as shown in Fig. 8 (see
Djokovi¢ and Miller [77]). Each inclusion is of index 2 except a. Thus we can climb
up the lattice using the normality trick except for inclusion a. For inclusion a we rely
on the fact that the graph is a covering of Heawood’s graph.

Remark. It has been brought to the attention of the author that certain equivalent
or related results appear in the literature. In particular, in Hedrlin and Pultr [66] re-
ductions are used to prove certain algebraic reducibilities. These constructions can be
used to prove Theorem 2. Using Theorems 1 and 2 of Babai and Lovész [73] and simple
properties of the symmetric group one can prove Theorems 4 and 6 respectively.
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