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I. Introduction

We present an algorithm which determines iso-

morphism of graphs in VO(g)

steps where v is the
number of vertices and g is the genus of the
graphs. In [FMR 79] an algorithm was presented
for embedding graph on suriaces of genus g in
vo(g) steps. Here we show how to extend this al-
gorithm to isomorphism testing for graphs of small
genus. This result is noteworthy for at least two
reasons. First, this extends the polynomial time
isomorphism results for the plane [HT 72} and also
the projective plane [L 80] to arbitrary surfaces.
Sccond, this gives one of the few known natural
decdmbdsitions of the isnmorphism problem into an
infiniic hicrarchy of problems Po,il,... such that
jsomcrprism testing of problems in P, is decidable
in time vo(i). a

The com;.utational complexity cf isomorphism
testing is one of the classical unresolved ques-
tions in theory of computation. Few computational
problems have such a wide appeal and also have the
property that we know so little about their compu-
tational compiexity. Karp [Ka 72] presented three
problemz, Primality Testing, Linear Programming,
and Graphs Isomorphism which are in NP but had not
been shown either to be in P or to be NP-complete.
These yroblems are not a complete list, but they

are fundamental problems, which torm examples for
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large areas of resaarch. Recently Khachian [Kh 79]
has given a polynom‘:] time algorithm for linear
programming, see [GL 79]. In (il 76] some evidence
was given in favor of primality also being poly-
nomial time decidable. This in some sense leaves
only, of the three, graph isomorphism still unre-
sclved. Graph isomcrphism and factoring integers
are “he twe ocutstanding problems.

Embedding graphs on surfaces seems to be as
old as g:apn theory itself, going back to the
father of graph theory, Euler. Other than embed-
ding graphs on thz plane, research in embedding
graphs has focused mostly on embedding very regu-
lar araphs. ~.g. thc complete graph. The other
main fosts uas been on extending Kurotowski's for-
bidden subgraph theorem to surface of higher genus.
The author feels one possible explanation for the
lack of research in embedding arbitrary graphs is
the divergence in the interests of graph theorist
and topologist which has created a void in the
amalgam. At the present time there seems to be nd
simple source of good notation and, or simple
results. The notation used is simply an arbitrary
scheme that the author has found ccnvenient during
the research of this paper.

In thic paper we explicitly only handle the
orientable case. ilost of the ideas are presented
to handle the unorientable. e leave a formal
discussion of the unorientable case until the
final version of this paper.

Similar work has been dcne by J.N. Waye% and
1.S. Filotti [MF 80].

I11. Codes and Caronical Forms
Before we prove the main results it is worth-

while pointing out (possibly) harder isomorphism



problems which this and most other isomorphism
algorithms solve.

7 Besides determining isomorphism between graphs
we may want a unique code or a canonical form for
graphs. We first make these two notations precise.
Let C denote a class of presentation for graphs,
say, incidence matrices. A function f from C to
stringsor the natural numbers is a code if for all
6,6'eC, GZG' iff f(G) = f(G'). The function f is
succinct if length (f(x)) = O[length (x)]k for some
constant k. We shall say a function f from CtoC
is a canonical form or a canonical labeling if
1) 6= f(G) and 2) GZG' iff f(G) = f(G'). Note

In order to clar-

that canonical forms are codes.
ify the definition given in [M 791 we shall say a
code f is a certificate if the set {(6,f(G))|GeC}
is recognizable in polynomial time. Note that for
"natural® presentations of graphs isomorphic graphs
have the same size presentations. So, canonical
forms are succinct.

Using standard reducibility technique it is
easy to see that succinct codes and canonical forms
are polynomial time equivalent. By minor modifica-
tion most known isomorphism algorithms can be trans-
formed into canonical form algorithms. The algo-
rithm in this paper for isomorphism of graphs of
bounded genus will be viewed as a procedure to
produce a succinct code for these graphs.

111. Notations and Definitions

The definitions and theorems from [FMR 79]
will be used extensively in this paper. For the
sake of conciseness it is assumed that the reader
js familiar with the paper. We present some of
tne definitions from the paper which are nonstan-
dard or which make a technical distinction of

commonly used words. The following definition of

a graph which has more of a topological form and

seems much easier to work with will be used.

Definition: A graph G is a triple (P,V,R) where

(1) P is a finite set where elements are called
points.

(2) V is a subset of P whose elements are called
vertices.

(3) R is an antireflexive and symmetric binary
relation on P such that:

(3.1) No two vertices are related.

(3.2) Points in P-V are related to at most two
other points.
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(3.3) The connected components of (P-V,R) are
called the edges of G. The edges are
acyclic.

A graph is closed if every point in P-V is
related to exactly two other points. An embedding
I of a closed graph G is simply a cyclic orienta-
tion of the edges associated with each vertex of
6. A pair (G,I) consisting of a closed graph and
an embedding will be called an embedded graph
often denoted G;. In [FR 79] we allowed split
embedding. For this presentation they do not seem
to be necessary. Thus, we shall assume that all
embeddings are simple. A standard graph (V,E)
consisting of a collection of vertices .and a bin-
ary relation E on V can be transformed into the
above definition of a graph as follows:

1) P = VDE
2) v=Y
3) (v,e),(e,v)eR if ecE, veV and e contains v.

If U is a subset of vertices of G the star
of U denoted S(U) is the subgraph of G consisting
of the vertices U plus the edges common to at
least one vertex in U.

1v. Isomorphic Embedded Graphs

Let GI and Gi be two embedded graphs; we
shall say f is an orientation preserving isomor-
phism if f is an isomorphism of G onto G' and f
preserves orientation, i.e., I(x) = <e;,....e>
implies I'(f(x)) = <f(e]),...,f(er)>. Note that
there are at most 2e orientation-preserving iso-

morphisms since any two such maps which agree on

a chain xey must be the same map. We shall say
that G| is isomorphic to G'y, if there is an
orientation-preserving isomorphism from GI onto
G'I.. By the above remark we can test isomorphism
of embedded graphs in O(ez) steps.

We can also quickly generate succinct codes
for embedded graphs. Let list (GI,E) be some
fixed systematic 1ist of the edges and vertices of
an embedded graph GI starting from the edge e in
6 which is oriented; e.g. List (GI,E) is a depth
first search starting from e where the priority
for searching edges from some vertex is determined
by I and the edge with which we first encountered
x. To get a succinct code for GI we simply take
the minimum over all edges of G, i.e. Code (GI) =
min {l.ist(Gl,E)IeeG}. By a previous remark Code is



a polynomial time succinct code for isomorphism of
embedded graphs.

Hopcroft and Wong [HW 74] have shown how to
construct a succinct code for embedded 3-connected
planar graphs in linear time. It is open whether
there are linear time constructable codes for non-
planar embeddings.

The basic approach of this paper for checking
jsomorphism or generating codes is to simply find
all minimal embeddings I of G and take minimum
{Code(GI)}. This approach fails even in the planar
case when the graph is not 3-connected for the
number of embedding may be exponential in the num-
ber of vertices, but if the graph is simple and 3-
connected then it can have at most 2 embedding in
the plane. This fact is known as Whitney's
theorem: '

Theorem I: (Whitney) [W 33] A simple planar 3-
connected graph has exactly 2 embedding in the
plane.

This theorem of Whitney's is widely referenced
in the literature but the author knows of no simple
proof in print. We present a simple proof due to
Edmonds [E pc].

Proof of Theorem: Let GI be a planar embedding of
3-connected graph 6. We need only give a charac-

terization of the faces of GI independent of I.
But the faces of Gl are simply those cycles F of
6 such that G-F is connected. It is clear that if
F is a cycle which is not a face then G-F is not
connected by the planarity of GI‘ Suppose F is a
face of GI and x,y are two vertices of G-F. Since
G is 3-connected there exist 3 vertex disjoint
paths from x to y. iow, one of these 3 paths must
be disjoint from F since F is a face and GI is
planar. We need only consider the case when some
component of G-F is an open edge e. Let Xx and y
be the attachments of e on F. Since G is simple
these two vertices cannot be consecutive elements
of F. Thus x,y separate the vertices of F. There-
fore, no component of G-F is an open edge.

If the graphs are not 3-connected then the
number of embedding in the plane may be exponential
in the number of vertices. A simple example is
the n-bond (i.e. a.graph on two vertices with n
edges between these two vertices). We shall al-
ways identify multiple edges when we count the
number of embedding (except in extension problems).
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So an n-bond will have but one embedding, namely

as a 1-bond. In genefa]-a graph is decomposed

into its 3-connected components. '

Hopcroft and Tarjan were able to resolve the

planar graph isomorphism problem by using the

following facts:

1) The 3-connected components are unique and
quickly computable.

2) The 3-connected components form a tree.

3) Tree isomorphism is quickly decidable.

4) 3-connected components have at most 2 embed-
ding in the plane.

When the graph is not planar then 3-connecti-
vity is not sufficient to force the graph to have
only a "small" number of minimal embedding.
Lichtenstein has exhibited 3-connected nonplanar
graphs which have an exponential number of embed-
dings on the projective plane. MWe shall present
a graph which has an exponential number of embed -
dings on the torus.

Note that, if a graph has only d minimal em-
beddings then the size of the automorphism group
must be < 2d-e where e is the number of edges. So
by simply exhibiting a graph with an exponential
large automorphism group we have exhibited a graph
with an exponential number of minimal empeddings.

Consider a graph on 4n vertices which we shalt
call the n-nest. As an example, consider a 3-nest
in Figure 1.
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Figure 1

How an n-nest is a cubic graph with a vertex trans-
jtive automorphism group. The vertex stabilizer
is an elementary 2-group of size 2", n>3. The
size of the full automorphism group is n 2“+2.
Consider the embedding of a 4-nest on the torus

in Figure 2.
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Figure 2

An important fact to notice about the embed-
dings of n-nest on the torus is that by removing
only 2 vertices from the n-nest it becomes embedd-
able on a cylinder and hence the plane.

In order to solve the isomorphism problem we
We shall prove that
0(g)

embeddings must have two vertices such that the

must introduce one more trick.
a 3-connected graph having more than v minimal
graph minus these two vertices has strictly smaller
genus.

Definition: An embedded graph GI is k-stable if
for all subsets U of k vertices of G

1) 6-S{U) is connected

2) genus (S-S(U)I) = genus (GI)'

We shall say GI is k-critical if it is not k-
stable.

“Using this notation and using the E-P formula
for graphs one can prove the following lemmas:
Lemma 1: The embedded graph GI is 1-critical if
and only if there exists a vertex x of G which
appears at least twice on some face of GI.
lemma 2: Let GI be 1-stable; then GI is 2-critical
if and only if there exist two vertices x and y
such that
1) x and y share an edge e implies x and y share

a face not common to e
2) x and y share no edge but they share 2 faces.
We find the following definition convenient:
Definition: A graph G is k-stable if G is 3~
connected and for all minimal embedding I the
embedded graph GI is k-stable. We shall say G is
k-critical if it is not k-stable.
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. for 3-connected components of a graph.

In the simple extension section we shall

show that 2-stability is testable in time vO(g);

V. Constructing the 3-Connected Components

Throughout this paper we shall use the nota-
tion and definition of Hopcroft and Tarjan [HT 73]
Hopcroft
and Tarjan gave a linear time algorithm for unique-
1y decomposing a graph into its 3-connected compo-
nents.

we shall need to attach labels to vertices
and edges of our graph. So, we shall assume that
a graph is partially edge labelled, partially
vertex labelled and some edges are directed.

The algorithm (HT 73] divides a graph into a
tree of components with the following properties:
1) The components of the tree T are either 3-
connected homeomorphic subgraphs, cycles, or

vertices.

2) Two adjacent components of T are related via
a common edge or a common vertex.

3) The total number of new edges or vertices is
linear in V.

4) 1If any vertex or edge of G is labelled and

this vertex or edge is duplicated then all
copies have this label.

We shall denote this procedure by 3-connected
components (G).

We shall need a procedure which removes the
star of a vertex x from a graph G. This procedure
should modify the labels such that (1) the origi-
nal graph is "quickly" reconstructable and (2)
the construction is unique up to isomorphism.

This can be done in many ways, so let Remove (G,x)
be some fixed procedure which given a labeled
graph G and a vertex x outputs the graph G-S(x)
plus the appropriate labels satisfying the above
conditions.

Let L be a leaf of a tree of components T
with attachment vertex or edge p. We shall need
a procedure which given L and p assigns a dis-
tinguishing label to p in L. In the case when p
is a vertex, we simply assign a distinguishing
label to p. If p is an edge we must keep track
of the orientation of p. In the edge case we
shall try both orientations of p and take the
lexicographic minimal of the two codes of L.
fix some procedure 1abe1](L,p) which satisfies

We



the above conditions. Let label,(L,p) be the pro-

cedure which agrees with labell(i,p) except that it
assigns the opposite orientation to p when p is an

edge.

Simple Extension Problems
In [FUR 79] it was shown that the embeddings
of G of genus g can all be obtained by one of vO(g)

vi.

simple extension problems. An extension problem is
a pair (HI'G) where H; is an embedded subgraph of
G. The extension problem was simple if HI was
quasiplanar and every component of G-H could be
embedded in HI
In [FMR 79] we allowed some of the simple ex-
tension problems to be obtained from vertex split-
ting in H.
and 1 is extendable to G then G-S(x) has genus at
most g-1. 1f any of
the simple extension problems for G are split
embedding then we can simply guess a vertex of G
whose removal decreases the genus of G. These

in at most two ways.

If HI has a proper vertex split at x

Therefore 6 is l-critical.

remarks prove the following lemma:

lemma 3: G is l-critical if one of the vO(g)
simple extension problems (HI’G) is extended and
1 is a proper split embedding of H.

Testing 1-stability requires at most v(g)
steps. We shall now characterize the 2-critical
graph 6 and again get a vO(g) algorithm for test-
ing 2-stability. )

Lemma 4: A 3-connected graph G which is 1-stable

is 2-critical if and only if one of the simple

extension problems (HI’G) has two vertices x and

y satisfies lenma 2 and after adding two edges

from x to y in HI then 1 is still extendable to G.
. This gives the following theorem:

Theorem: 2-stability is decidable in vo(g) time.

We shall say (HI’G) js a split free exten-
sion problem if HI has no split vertices. For
2-critical graphs we may guess two vertices whose
removal decreases the genus of G. So we need only
show how to handie the case when some 3-connected
component of G is 2-stable. For these graphs we
shall show that the number of embedding is not too
large. Since there are at most vO(g) simple exten-

sicn problems we need only show that these are at
most v0{9) For

extensions per extension problem.
3-connected graphs the distinct extension of a
simple extension problem are precisely the

instantiations of its 2-CNF formula. we state
this as a lemna:
Lemma 5: If (HI.G) is a quasiplanar extension
problem and G is 3-connected then there is at most
one embedding of a component of G-H in any face of
HI'
Proof: Let F be a face of Hy in which some compo-
nent C is embeddable. Since HI is quasiplanar f
is a simpie cycle. Me can easily construct an
embedded planar 3-connected graph Li which con-
tains F as a face.

We first show that FUC reduced is 3-connected.
Let v,w be two arbitrary vertices of the reduced
form of FUYC. Note that all vertices of FUC
reduced are contained in the closer of C. We need
only show that for any two vertices X,y distinct
from v and w, x and y are in the same connected
component of (FYC) - {v,w}. If v and w are both
on F then x and y are connected via C.
assume that it is not the case that both v and w
are points of F. Since G is 3-connected x and y
are each 3-connected to F. Using these facts

So we may

we have:

1) x is connected to F- {v,w} in FUC- {v,w}
2) F-{v,w} is connected

3) y is connected to F- {v,w} in FUC- {v,w}.

So x and y are connected. We have shown that
FYC is 3-connected. By the previously mentioned
theorem of Whitney's [W 33] 3-connected simple
graphs have at most 2 embedding in the plane.
After fixing F, FUC must have only one embedding.
This proves the result.

Since the only information about the compo-
nents of G-H we shall use is their attachments to
H we shall assume that the components are star-
shaped.
pefinition: A component of G-H is star-shaped or
simply a star if it consists of an edge or the
star of a vertex. We shall also require the
attachments to be distinct.

VII. Algorithm

Using the procedures defined in the previous

section we can now present an algorithm (in pigeon
ALGOL) which when input a graph G outputs a
succinct code for G.

Procedure: Code(G):

while G is 3-connected do



begin
if G is l-critical then guess a critical vertexx;
Code(Remove(G,x))
If G is 2-critical then
1) guess a critical pair (x,y) in.G;
2) Code(Remove(Remove(G,x),y)
else
Code(G)+Hin[1ist(GI)|I minimal genus-embedding}
end
T+3-connected components(G);
While T is not a single component do
Comment Let LI""’Lk be the leaves of T with at-
tachments Py--Py-
begin
for each L, do
If Code(label](Li,pi)= Code(labe]z(Li,pi))
Then,
T+T minus Ly [where Code(labe](Li,pi)) is
added to the label of Py without orientation.].
else
1) pick j such that Code(Labelj(Li,pi)) is
the minimal of the two codes;
2) T«T minus Ly where Code(Labelj(Li,pi))
added with orientation to the labtel of Py-
. end
If T is a single component H then Code{G)~Code(H)
Roughly speaking, the algorithm decomposes a
graph into 3-connected compbnents for each compo-
nent which is not 2-stable, it decomposes the com-
The
algorithm continues in the manner until we have a
nested set of trees such that the final components
are 2-stable.
a homeomorphic subgraph of the graph on the level

ponent into a tree of 3-connected component.

Since each component on a level is

above the genus of the component must be less than
or equal to the genus of the graph it was derived
from. On the other hand we only reconstructed 3-
connected components when we have removed a vertex
So the nested

Therefore if we

which strictly decreased the genus.
trees of trees is at most g deep.
show that step A) will only require vO(g) steps in
the case when G is 2-stable we will have proved
the main theorem:

Theorem 2: Isomorphism testing of graph of genus
g can be performed in vO(g steps.

So to prove the theorem we need only prove

the foliowing "structure” theorem.

Theorem 3: A graph which is 2-stable has at most
vO(g) minimal embedding.

It is also important to observe that the em-
bedding algorithm generates all embeddings in
vO(g)+ kno(]) steps where k is the nuiber of em-
bedding of genus g. The rest of the paper will
prove Theorem 3.

VIII. Logical Components and a Theorem on 2-CHF

Let (HI’G) be a simple extension problem and
Let #(P)

be the number of distinct satisfying truth assign-
ments to P. By the last section we know that the
number of extensions of (HI,G) is precisely #(P).
In this section we analyze #(P) in terms of
“independent" variables of P. Hote that #(P) is
#P-complete [V 79] so we cannot hope, at the
present time, to explicitly characterize #(P)

P be its corresponding 2-CHF formula.

but we can get good enough estimates on #(P).

Let A,B,C either be viewed as variables of P
We shall
say two variables A and B conflict if as components

or the corresponding components of G-H.

they conflict in HI' i.e. they appear in some
clause of P. The transitive closure of P, denotad
P, where the variables of P are Ay,...,A  is:
P=00(XN)|P B(XUY) and X,Y are literals in
the variables A]...An}.
We can view P as a labeled graph over the vari-

XY

ables Al"'An as follows: For each pair of
variables A,B in A]...An (1) add a directed edge
from A to B if P contains (-IA‘aB) (2) add an X
edge labeled T from A to B if P contains (~AU-8)
(3) add an edge labeled F from A to B if P con-
tains AUB. Let G(P) denote this graph. In
general we shall say that a graph is a logical
graph if its edges are either directed edges or
undirected edges with labels T and F.

The transitive closure of a logical graph G
is minimal graph G containing G which is closed
under the following rules:
1) If A+B»C is in G then A»C is in
2) 1f A+BLC is in G then AC is in
3) 1f Afgsc is in G then AEC is in
4) 1If aLsfc is in § then A+ C is in
It follows that G(P) = G(P). Since a 2-CWF
formula and its graph are essentially the same we
shall confine our. attention to the graph.

Certain transformations of P or G(P) do not

o o o of



“ change‘#(P). We consider a few transformations we
shall need.
cedure which replaces every occurrence of A with

For G this
corresponds to siumultaneously replacing subgragiis

Ad, Af, AL, and AL with AR, AT, A, and A res-
We shall say two logical graphs or two

A switch of the variable A is the pro-

— A and every occurrence of mA with A.

pectively.
propositional furmulas are equivalent if one is de-
rived from the other by switching a coliection of
variables.

We shall say that two variables A and B are
equivalent if G(P) contains A<-»B or alfg (i.e.
=1 A¢>B). The number #(P) is independent of the
size of these equivalence classes. By an appro-
priate switch of variables we may assume that A is
equivalent to 8 if and only if A48B.
made this change of variables we can identify
equivalent variables of P or G(P). Note that #(P)
is unchanged. Some variables of G(P) may have
selfloops, i.e. AJ;A or AF . In a natural way we
can evaluate tiese variables. We shall ignore
After evaluating selfloops and identi-

Once we have

edges A-A.
fying equivalent variables the new graph G(P) is
simple, i.e. no multiple edges or selfloops.

A set of variables X are independent if they
form an indepandent set in G{P). A variable with
a selfloop is not independent. The independence
number of P is the size of the largest independent
set in P. Note that if P has independence number
k then #(P)g_Zk. We next show that the upper bound
is not much worse.

Theorem 4 (Miller-Reid) If P is a 2-CNF in n
variables with independence number k>1 then #(P)
5nk+1.

This bound daes not seem to be tight. By
taking k "chains" of size n/k we get a lower bound
of (ﬂEﬁqk_ We make the following conjecture:
Conjecture: If P is a 2-CNF in n variables with
independence number k> 1 then #(P)i(-n{-&)k.

We prove Theorem 4 via a collection of lemmas.
Lemma: Every simple logical graph G is equivalent
to a graph G' with only directed edges and edges
labeled T. .

Proof: The proof is by induction on the number of
edges labeled F in G. Suppose Af8 is contained
in G. Let X be the following variables of G:

X = {C]A~C}U{A}.
We note two facts about X:
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1) The variable B £ X since B ¢ X implies ~
855 but this contradicts the fact that G is
simple. T
2) If the variables C, D e X then G does not
contain CID since this would simply the self-
Toop AEA. Yle need only prove the following
claim.
Claim By switching the variables in X no new F's
are created.
To prove the claim, we need only consider
those edges common to a variable in X. Llet
C,D ¢ X and E £ X then the following cases are
transformed by the switch on X as follows:

C-+Dgoes to C+D

CED goes to CID
C +« E goes to CIE
CEE goes to C »~ E
CIE goes to C « E.

The other two cases were eliminated by properties
of X and 2). The pair A——8 goes to A - B by 1).
-X-

Lerma If G 1is simple with no edge labeled F
then there exists a variable A with indegree
zero, i.e., +A is not contained in G.
Proof Pick a vertex A of G if A does not
have indegree zero then pick a predecessor i.e.,
B such that B + A in G. This process either
cycles or it finds a variable of indegree zero.
Since G is simple it cannot have a cycle.

: .

Let Tk(n) be the maximum number of
satisfying instances over all formulas on n
variable and independence number k. For
simplicity let To(n) = 1.
temma T (n) for k > 1 and n > k satisfies
TK(n) 5-Tk("'1).+ Tk_](n-l).

Proof Let G be a simple logical graph with
n variables and independence number k. By
previous lemma we may assume that the labeled
edges of G are label T.
G contains a variable A with indegree zero.
Let G(A/F) and G(A/T)
obtained by evaluating A to F and T
respectively and evaluating all "induced" self-
loops. Hote that #(G) = #(G(A/F))+#(G(A/T)).
Now, G(A/F) has independence number at most k
and has at most n-1 variables. So,

#(G(A/F)) < Tg(n-1).

By the last lemma

be the simple graphs
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By assigning T to A, and the fact that all

edges common to A are eitner of the form A -~ B
or A—I;B, all variables which share an edge with
A are forced to be evaluated to T or F. Thus

the variables of G(A/T) have no edge in common

with A and so the independence number k-1. This

gives #G(A/T) :_Tk_](n-l).
lerma.

The following lemma gives theorem 4:
Lemma Tl(n) < n+l and T, (n) 5_nk for
k >2,n>Kk.
Proof
most 2" truth assignments we have T (k) < 2k
< kk for k > 2.- This gives one set of initial
conditions. Ye first prove the cases k = 1 and
k = 2. Now T](n) 5_T](n-1) + 1 by the previous
lemma. So by induction T](n) < n+l. Now
T (n) < Tz(n -1) + T {n- 1) < T2(n -1) + n. By
induction Tz(n -1) < (n 1) soT (n) < n2 - n.
This proves the case k = 2.
the general case, assume the lemma true for
T (n-1) and T ](n -1. Now Tk(n) < T (n 1) +
Tk 1(n-1) < (n 1) + (n- 1) = n(n- 1)
This proves the lemma and hence the theorem

This proves the

Since a formula on n variables has at

To show inductively

A strong component of P or (HI,G)
will be a class of equivalent variables of P.
while the weak components will be connected
components of G(P).
Lemma 7: If {S]...Sk} is a independent set of
strong componrents of (HI,G) then there is a
partial extension such that {51..
precisely the strong and weak components.
Proof:
in SI"'
variables in Sl...
S1 are independent.

.Sk} are
e simply evaluate all variables not

Sk such that they do not force
Sk using the fact that

IX. Planar Strong Components

By the previous section we know that we
can restrict our attention to simple extendable
extension problent (HI’G) such that the strong
components are also weak components, and where
each component of G-H is star shaped.
edges to H we can assume that the strong com-
ponents span distinct faces of HI.

By adding

this a canonical extension problem.
If X 1is a set of components of (HI,G)
we can construct an embedded graph from X and

Lemma 8:

We shall call

(HX’G) as follows:

1) For each CeX construct two copies of C.

2) Embed these two copies in the two possible
ways. If a pair of copies conflict or share
a face then identify their vertices in that
face.

3) Let 2X be the two copies of components after
jdentification plus the attachment points of
X on H. Let (ZX)I be the above embedding
restricted to 2X.

The graph 2X is bipartite.

in H we shall call face vertices.

Those vertices not
While the
vertices on H will be called attachment vertices.

The faces spanned by X are the faces of HI
used by (2X)I.

If X 1is an independent strong
component of (HI,G) and (2X)I js planar then X
only spans two faces and G has a critical pair.
Proof:
(Since 2XI is planar no two cycles of 2X can

By lemma 7 we can assume that G-H is X.

scrossover” so X must span only 2 faces used by
X.) Llet A be one of the two faces. Let

X] X be the attachments of X as they appear
on A. For each pair (X X]+]) there is a unique
cycle in 2X which passes through these two points.
Since (2X)I {s planar these cycles are precisely '
the faces of (2X)I
not homologous to zero then we can simply remove

1f any of these cycles are
the two corresponding vertices. In the case when
all these cycles are homologous to zero they must
partition the graph G-C. The graph G cannot be
planar by Whitney's Theorem. So some pair

(xi.x1+]) must be a separation pair for G but

this contradicts the fact that G is 3-connected.

X. Counting the Number of Nonplanar Independent

Strong Components
In the 1ast section we showed that if G
is 2-stable then no strong component of (H +G)
We shall now show that the number

can be planar.
of nonplanar independent strong components of
(HI,G) js bounded by 0(g).

Throughout this section let (HI,G) be a
simple extension problem of genus g where the
components consist of k independent strong ’
nonplanar components X]...Xk.

We next prove a lemma which will extract
a very simple embedded graph from each strong



component 2X,. Let B{;Bi and B; be the
following embedded graphs

W y z

i
Figure 3

Lemma 9: If X is a strong component then 2XI
contains either an isomorphic¢ copy of BI’Bi or
Bi where f,f' are face vertices. ‘
Proof We consider two cases depending on the
number of faces spanned by X.

Case I X spans 3 or more faces.

We form an equivalent relation on the
component of X by relating all components
which span the same two faces. Since X
more than 2 faces X has more then one equi-
valence classes. Since X
component there must be two equivalence

class which each contain a component say D]

and D2 such that they conflict. HNow the graph
2(D]U02) must contain two cycles C; and C,
one in ZD] and the other in 202 which conflict.
The embedded graph (C]UCZ)I is isomorphic to
BI'

Case 2:

spans

is a strong

X spans 2 faces.
Let A be one of the two faces spanned
by X and let Xpe e Xy be the attachments
vertices of X on A. Each pair (xi,xi+])
determines a cycle in 2X say Ci’ How the cycles
of C]...Ct_] form a basis for the cycle
space of 2X. Since 2X
pick two cycle Ci and Cj from C]...Ct_] such
that Ci and C. crossover i.e. (Ci,C.)=1, see
(Mta]. The embedded graph (CiUCj)l must be
isomorphic to Bi or B;.
Let (BI)I""(Bk)I
given by the last lemma for the strong components
Xl"'xk' Let B
We shall assume that B

is nonplanar we can

be embedded graphs

be the union of 31
is connected independently.

to ﬁkn

Let g' = genus (BI)' These embedded sub-

graphs BI’ Bi. and B; were chosen because they

have no important properties:

1) The cycle space of the B's is generated by
two cycles.

2) These two cycles cross over i.e., (C].Cz) =1

and C2 is Bi'

Thys, the 2k cycles C],...,C2k where we

choose pairs from each BI form a basis for

for the two cycles C]

the cycle space of B.
vector spaces there must be a subset of 2g'
cycles, say c],...,czg. such that genus
(Cﬂl...Utzg.) = g'. Since each C; are con-
tained in some B, there must be at most 2g'
Bj's which contain C] to ng.. Let L be
the union of these Bj's' So g(LI) =g’ <aq.
We intend to view (LI’B) as an extension problem
but first we must enlarge L to a connected
graph. Note that every cycle Ci not contained
in L must "cross over" some cycle of L
otherwise using properties of interproduct
spaces the genus of L could not be maximum.

So each BisB-L is connected to L. We can now
construct a spanning tree over the Bi.scL using

By basis arguments for

since

pairs of Bi's at a time. So by adding at most
2(2g'=1) more B,  to L we can force L to be
connected.

We can now view (LI.B) as an "extension
problen” where the Bi's & L are the components
of B-L. We list all possible ways of embedding
f of some B.eB-L' in L' where LS L' CB.




Fig. 4D Fig. 4E
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Let B;...B,B£ be a new indexing of the old Bi's
not in L. Define L, = {LUBi\L..UB;} for
0<1<t. Since the genus (L) = genus (B) we
have genus (Lo)I = ... = genus (Lt)l' The main
technical fact which we still have to precve is
that t=0(g'). 1ie shall prove this fact using
characters similar to the ones used in the
analysis of the embedding algorithm {FMR 79].
Consider the following two characters not

L' = L; for scme 0 <ic<t:

1) nf(LI') = f%F) ) nf(F)-2
nf(F)>2

2) in{L;) = F(x)-1
IR IUORY

where F varies over faces of Li, X over non-

face vertices of Li, nf(F) = the number of non-
face vertices of L' on F with multiplicity,

and F(x) = the number of occurrences of x on

F. ‘

Since B is a bipartite graph with minimum
cycle size 4 it must be the case that nf(F) > 2.
For these graphs we can rewrite nf(Li) = ez 2f
where e 1is the number of edges and f {s the

number of faces of Li. Let nf + 2in be the

character nf(Li) + 2 (in(Li) ). -

We next prove a collection of lemmas which
will give us the technical fact. ’
Lemma 10: nf + Zin(LI) < 1444’

Proof By the above remarks L consists of at
most 2(2g'-1) + 29" £ 6g' B... MNow,

nf(LI) = e - 2f < e. Since each B,, can have
at most 8 edges we have nf(LI) < 8-5g' = 43g'.

By a similar argument i"u(LI) < 48g'. This proves
the lemma.

temma 11: The character nf + 2in is strictly
decreasing i.e. nf + Zin(Li)I > nf + Zi"(L1+])I
for 0 <i <t.
Proof We prove the lemma by considering each of

the cases A,...,G separately. We shall explicitly
handle the case A and leave its other 6 cases
for the reader.

Suppose B, is embedded in (Li)l as in
Figure 4A. How "f(Li+1)I - "f(Li)I =
(# edges of Bi+]) - 2 (# of new faces) = 8 - 6 = 2.
Consider i"(Li+1)I'i"(Li)I' The difference is

x < - 2 since the sum in(X) = [ F(X)-1 will de-
xefF

crease by at least 1, similarly in(Y) will de-
crease by at least 1. We have nf+2in(l.i+])I -
nf+21n(Li)I:;2.

Using arguments similar to case A we get

the following table of values: the values are
upper bounds on the difference C(Li+])1 - C(Li)l

for C equals the characters nf, in, nf+2in:

“‘Case anf _ Ain___ a(nf+2in)
A 2 -2 -2
B 0 -1 -2
C -2 0 -2
D 0 -2 A
E -2 0 -2
F 0 -2 -4
] -4 0 -4

Since the a's are strictly negative the
lemma is proved.

‘Lemma 12: If nf + 2in(Li)I = 0 the L; = B.

Proof: Since nf and in are nonnegative we must
have that "f(Li)I=0 and i"(Li)I = 0. Now,
"f(Li)I = 0 implies that (Li)I has at most 2
non-face vertices per face. But, to embed a
B,y to (Li)l we must have 3 or more non-face
vertices.



Using the above 3 lemmas we se2 that
t < 144g'. In fart we prove t < 72g' < 729.
Thus we have proved the following theorem:
Theorem 5: If (HI’G) is a simple extension
problem which is Z-stable then the independence
number < 78g’.

Using the last theorem and theorem 4 we can
get an explicit bound for theorem 3. lamely,
if (HI’G) is a simple extension problem which
is 2-stable then (HI'G) has at most nlag
extensions.
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