
Re from INFORMAT IONAND

Reserved by Academic Press, New York London
Vol. 56. Nos. 1983

in Belgium
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A polynomial time isomorphism test for graphs called k-contractible graphs for

fixed k is included. The class of k-contractible graphs includes the graphs of

bounded valence and the graphs of bounded genus. The algorithm several new

ideas including: (1) It removes portions of the graph and replaces them with groups
which are used to keep track of the symmetries of these portions. (2) It maintains 

with each group a tower of equivalence relations which allow a decomposition of

the group. These towers are called towers of

INTRODUCTION

The author and other researchers independently (Filotti and Mayer, 1979;

Lichtenstein, 1980; Miller, 1980) have presented polynomial time algorithms 

for isomorphism testing of graphs of bounded genus. These algorithms are

based on fairly complicated analysis of embeddings of graphs on two dimen-

sional surfaces. Since then Luks has presented a polynomial time algorithm
for isomophism testing of graphs of bounded valence (Luks, The

ideas used in the bounded valence algorithm are very appealing. They 

showed relationships between computational group theory and graph 

isomorphism. The existance of a common generalization between these two 

of graph isomorphism has been an open question since Luks’ work 

(Babai, 1981). We show that the class of graphs called the k-contractible
graphs contain the graphs of bounded genus. Since they trivially contain the

graphs of bounded valence, these graphs form a common generalization of
the two cases. We give a polynomial time algorithm for testing isomorphism 

of these graphs. 

The paper consists of five sections. First, the preliminaries contain basic 
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2 GARY L. MILLER

definition plus the notation of a tower of which will be used

throughout. Second, intersecting groups with cosets contain the basic group 

theoretic algorithms used in the isomorphism tests. The third section includes 

the notion of a graph where the symmetries at a vertex are not arbitrary but

restricted to a group. This last notion will be used in the fourth section to

decompose a class of graphs where at intermediate stages the graphs are

those with restricted vertex symmetries. The graph for which this contraction 

procedure works will be called the k-contractible graphs. The fifth section

shows that the k-contractible graph contain the graphs of genus for some

> 0.

1 . PRELIMINARIES

Throughout this paper graphs will be denoted by G, H, and groups by

A , B, and and sets by X, and Z. Graphs may have multiple edges but

no self loops. It will be important that they be allowed to have multiple 

edges. The edges and vertices of G will be denoted by and

respectively. The edges common to some vertex or set of vertices will be

denoted by Let ME denote the multiple edge equivalence relation on G,
if e and e‘ are common to the same points. The valence of a

given vertex will be the number of vertices adjacent to the number of

edges ignoring multiplicity. Let G be a graph and We say two edges e

and of G are equivalent if there exists a path from e to avoiding

points of

DEFINITION. The graph Br induced from an equivalence class of

equivalent edges will be called a bridge, or a bridge of the pair (G, The

of Br is the vertices of Br in while the of is

the set of edges of Br common to the vertex frontier. A bridge is trivial if it is

a single edge.

The main graph-theoretic construction we shall use is contracting

nonfrontier edges to a point.

DEFINITION. If YE the vertices of G, then will be the

graph obtained from G by identifying the nonfrontier (internal) vertices of Br

for each bridge Br of G, and removing self loops. If then

is a single vertex.

Let be the vertices of G with valence greater than k. Intuitively

contractible graphs are those graphs for which the successive application of

yields a single point. Here we keep track of the symmetries
of the bridges with groups. We attempt to render this idea.
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Let denote the group of all permutations of X.We let denote

the symmetric group on a set of size n. The group A is a permutation group

on if A The degree of A is while, the order is Let be

an equivalence relation on X . Let denote the subgroup of A which

stabilizes the equivalence classes of = {a A for all 

EX}. If there are two natural equivalence relations defined by

We shall let denote the relation or While will

denote the relation Y or Thus A ( Y ) is the subgroup

of A which fixes Y pointwise, while is the subgroup which

The relation often be denoted by id. We say A preserves if

implies for all a A . The subgroup of A preserving we will

denote by A A is primitive if it only preserves the trivial equivalence 

relations and We say the relation contains if implies for

all x and in X ; denote by If is an equivalence relation then

denotes the equivalence classes of The restriction of an equivalence

relation to is denoted by Formally, is defined by Yy if

x, Y or x, Y and If then are the equivalence

restricted to Y.

The equivalence classes of the relation defined by, if for some

a A , are called the orbits of A . The induced action of A on some

orbit Y is the image of A in which we identify with the quotient

group In general we shall let A denote the faithful action of

on

An isomorphism is a surjective map which sends edges to edges and

vertices to vertices, and preserves incidence and other possible structure.

Groups will be permutation groups and they will act from the left. It is easy

to see that the isomorphisms from G onto G‘, when G is isomorphic to G’,

can be written as where a is a arbitrary isomorphism of G onto G’ and A

is the group of automorphisms of G. The properties of are so similar to a

formal coset of A we shall call a coset. In general is a coset X onto

if A is a subgroup of and is a surjective map from to

Throughout the paper we shall either restrict the groups considered or the

way they may act. 

DEFINITION. For k 2, let denote the class of groups A such that all

the composition factors of A are subgroups of S , .

We shall use the following fact about the primitive actions of groups.

THEOREM 1 (Babai, Cameron, and Palfy, to appear). There is a function

such that any primitive action A degree n has order at most
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As in Miller (to appear) we could have used characterization of the

We also restrict the way arbitrary groups can act.

subgroups of primitive groups in .

DEFINITION. A group A acting on a set X is a if for x

We extend the notation of a to a tower of such actions. The

sequence n,) is a tower of equivalence relations on X if X =

= We shall often write a tower as (n, where it is understood that

=X. This gives a useful generalization of

the subgroup .

DEFINITION. (A, no,..., is a tower of if:

(1) The sequence is a tower of equivalence relations on X.

(3) A preserves for 0 t.

For each YE i < acting on is a
action.

We write (4) more formally.

(4') If and , then

+ +

It is easy to see that (4) and (4') are equivalent since the natural 

We shall prove some simple closure properties about towers of

homomorphism from into has kernel

We state them as lemmas.

LEMMA 1 . If (A, is a tower of and B A then
(B, is a tower of actions.

It is clear that n,)satisfies the first three conditions. We

show it satisfies (4'). Let and .We must show that

But, and
So by the second isomorphism theorem the

correspondence theorem is isomorphic to a
subgroup The latter quotient group is in

Therefore, the first quotient group is in since is closed under taking

subgroups.

LEMMA 2. If ( A , is a tower of and X = then

(A T, T is tower of
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Since A and by the previous lemma, towers of

actions are closed under taking subgroup. We may assume that A =A

Let 0 i and Since and they

are subsets of equivalence classes of and respectively, there exists

unique elements and containing and

respectively. We must show that We have the 
following chain of inclusions

So our quotient is a section of a group and thus

2. INTERSECTING GROUPS AND

In this section we give several polynomial time algorithms for intersecting

groups presented in different ways with a group which is given as a tower of

We say is a coset which is a tower of

from X to if ( A , is a tower of on and is a

surjective map from to We list the first three problems of interest. 

PROBLEM 1. The color symmetries in a tower

Input. Sets X and Y with coloring and a coset n,)which is a 

Find. Coset which preserves color.

tower of from X to

PROBLEM 2. Graph Isomorphisms in a tower

Input. Two graphs G and and a coset which is a tower

Find. of isomorphisms from G to G'.

We list a third problem which we will not need here but whose polynomial 

time solution will follow easily from the idea in this paper and the ideas in

Miller (to appear) and may have application elsewhere.

of from to

PROBLEM 3. Isomorphisms in a tower

This problem is the same as Problem 2 with graphs replaced with 

We first five a polynomial time algorithm for Problem 1.

hypergraphs.

THEOREM 2. The color symmetries in a tower is polynomial

The algorithm to foliow has two phases. The first phase is used to reduce

k.
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the group action on to a group which While the second phase just

applies color isomorphism algorithm to an action in

Procedure n,,

(1) = {x}for some then
return = if the color of x equals colors of

otherwise.

(2) is not transitive on then

(a) pick A-stable partition of say ,
(b) return

no,...,

(3) for some then

(a) Pick

(b) Compute and representatives of in A, say,

(c) Return

I

i +
1

(4) (a) Find a primitive block system of A on say S.

(b) Compute and coset representatives of in
A.

(c) return
I

1

If we set then no,..., n,,0) return with the coset of

elements of which preserve color, where (A, no,..., a tower of
actions. By Lemmas 1 and 2 every recursive call of, say,

will satisfy:

(i) (A S, S) is a tower of

(ii) If > then A is in

(iii) If = 1 then A is a

These three facts give us the following time analysis. Let rn) be the

number of recursive calls of where = and = We obtain the

following three inequalities 

rn) , + if A is not transitive on S for
and where + = n.

(1)
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(2)

(3)

1) m) by step (3) of the procedure.

by steps (4) and (1) where is the

constant from Theorem 1 and 1 is from step (4).

We rewrite (3) as:

j n, j j.

Combining (2) and (3') gives 1) 1). Thus, 1)

So implements at most recursive calls. Since each call is

implementable in polynomial time is a polynomial time algorithm for fixed

k.

We now apply this solution to the color problem to obtain a solution to

the graph isomophism problem in a tower of The isomorphism

problem is reduced to the color problem by lifting the group or coset action 

to an action on unordered pairs of vertices and viewing the edges as a

coloring of these pairs. Since any graph can be viewed as a directed graph

we consider ordered pairs. We only need to know that a tower of 

can be lifted to ordered pairs. 

Given A acting on X we define an equivalence relation on from one on

X . If is an equivalence relation on X we define the relation on by

if and This gives

If ( A , n,) is a tower of then ( A ,

is a tower of

As in previous lemmas we need only consider condition (4').
Suppose ( A , is a on X . Let and

Now, = and = x where

and and Using this notion 

and Thus
we need only show that and are then

B We do this with a lemma.

,

LEMMA 3.

Proof:

LEMMA 4. If and then

The proof follows by standard techniques. We give a proof

for completeness. The group B n =B B and

is isomorphic to a subgroup of Therefore,

Similarly, and

By the correspondence theorem isomorphic to
normal subgroup of B and B C/B is isomorphic to

its quotient. Since B contains a normal subgroup and

the subgroup's quotient also must be by the Jordan-Holder

theorem.

B
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The proof is most easily seen by following the quotients in Diagram 1.

DIAGRAM 1

These arguments actually prove a strong fact which we will need. If R is a

relation on X and 7 is a relation on Y then define 7 on X by

if and

LEMMA 5. If (A, and (B, Y, 7 , are towers

then so is (A B, X x Y,

These observations give

THEOREM 3. Graph isomorphisms in a tower of in

Combining Theorem 3 with the algorithm in Theorem 3 from Miller (to

polynomial-time constructable for fixed k.

appear) gives

THEOREM 4. Hypergraph isomorphisms in a tower of is

polynomial time constructable for fixed k.

Let A act on X and B act on The amalgamated intersection of A and B

or simply the intersection of A and B, A is the group of elements

which stabilizes X and Y and whose action on X is in A and on 

Y it is in B. In general, if is a coset from X to X‘ and is a coset from 

to then the (amalgameted) intersection of and is the set of
surjective maps a from XU to such that a and

a It is easily seen that n = or for any

a Using these notions we define

PROBLEM 4.

Input. a tower of and a coset.

Find. Generators for

The intersection of a coset with a tower of
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In general will not be a tower of but we can still solve 

Problem 4 in polynomial time.

THEOREM 5. is a tower of and is an 

arbitrary coset then the amalgamated intersection is polynomial
time constructable.

Since the ideas of the algorithm are a natural combination of

those used in computing the color symmetries in a tower of and

standard techniques (Luks, 1980) we only sketch the proof.

Let and be as in the hypothesis of the lemma. Suppose

is a coset from X to X’and is a coset from Y to Y’.

Using the algorithm for computing the color isomorphism in a tower of

we can compute the coset contained in which sends Y to

Since the intersection of this coset with will be the same we may

assume that sends X n Y to Y’.

Let (a, y ) A x B be a coset from X Y to x Y’, and A,) be a

subcoset of (a, A B. Let and be the projections of X and Y,

respectively. Consider the following predicate on A,) C, where is

and contained in Y.

r r

We list some simple facts about J.

where and

(4) If { z } then

7 =0,

= (A, otherwise,

where such that =

these four facts about J and the recursive structure used in the color

isomorphism algorithm we can compute the intersection in recursive
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calls of the form of fact (4). Since we can compute the of (z, z ) in

and find in (4) using algorithm analyzed in Hopcroft, and

Luks (1980).
In the case where B is also a tower of then we can return not

only the intersection but a tower of The following lemma will

suffice.

LEMMA 6. (A,X , and (B, Y, 7 , 7 , ) are tower

then (A B , X Y, n

Proof: Let A and B be as in hypothesis of lemma. The lemma follows by

Lemmas 1 and 2 for the actions of A B on X - Y and -X.So without

loss of generality assume that X = Y and A = = A Let
and ,n As other cases, = n and =

where , and

The

, Lemma 4,
This proves the lemma.

n is a tower 

3. SYMMETRIES OF A VERTEX GIVEN BY A GROUP

In Miller (1979) we discussed gadgets, graphs which were used to denote

symmetries or as data structures for syrnmetrics. Here we reverse those

ideas and replace bridges or gadgets of a graph by a group or coset which 

will represent the symmetries of the frontier of a bridge. We shall apply these

ideas to testing isomorphism of graphs which we will call k-contractible.

Here, we present an algorithm which under certain conditions tests 
isomorphism of graphs where the vertices have specified symmetries. We

make these notions precise in what follows. It seems crucial that the graphs 

considered have multiple edges. Throughout this section the graphs are

assumed to have multiple edges.

DEFINITION. A graph with specified symmetry is a graph G , a set of

permutation groups A , where is a vertex of G plus a list of

maps where or which is 1-1 and onto.

The are also required to be consistent. That is,

(1)
relation.

(2)

The relation defined by if is an equivalence

For all and in if then =A

We could have included symmetries of the edges of G but these
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symmetries can easily be handled by direction and color. We will in general

consider symmetries between two graphs, say (G, The pair (G, G’) have

specified symmetry if the graph G has specified symmetry.

DEFINITION. A graph G has its vertex symmetries given by towers of

actions if G has specified symmetry where A, is given in the form

a tower of and the map for # preserve this 

structure. shall say the symmetries are on the edges for

every vertex the induced action of A, on is a
We shall often refer to these graphs as simply

The map f: G‘ is an isomorphism between two graphs with specified 

symmetry if (1) is a simple graph isomorphism between G and G’ and (2)

if = then Since the symmetries of (G, G’) are

consistent it is easily seen that the automorphisms of a specified graph form

a group and the isomorphism between two graphs form a so-called coset of 

the automorphism of G. We state the main theorem of this section.

THEOREM 6. The coset of isomorphisms for is polynomial time

constructable for k.

The assumption that the symmetries are on the multiple edge

relation will ensure that the induced action on vertices will be tractable. By

identifying multiple edges the symmetries become In this case, the

edge stabilizer of a connected graph a group state this well-

known fact as a lemma.

LEMMA 7. If G is connected with symmetries which are

actions then the automorphisms of G which stabilize an edge form a group in

The algorithm will use the leveling idea. By standard techniques we may

assume the two graphs G and are connected. We pick an e in and

compute the coset of isomorphisms from e to for each edge in

We shall level the edges and vertices by their distance from and

respectively. Using this leveling we shall construct the coset of

partial from edges to edges and from vertices to vertices. We

begin the formal construction. 

Label each edge of G with the integer which is the distance (the number of

vertices in a shortest path) that the edge is from e, e is labeled 0. Label

each vertice of G with the integer which is the number of edges it is from e,

the end points of e are labelled 1. Similarly, label the edges and vertices

of G’. We say an edge is even if both end points are the same,

otherwise we say the edge is odd.



12 GARY L. MILLER

Let be the induced graph on edges labeled That is, is the graph 

on vertices labeled 1 and edges labeled The graph consists of
(1) (2) all odd edges labeled i + 1 where the end point labeled i + 2 has

been replaced with a new distinct vertex for each edge; (3) two copies of

each even edge labeled 1 where one copy is attached to one end point

labeled 1 and the other copy is attached to the other end point labeled

i + 1. Again, the other end point of these even edges is a new vertex. The

vertex symmetries for vertices labeled of will be those of G. While, the

vertices labeled 1 will have no restriction on symmetries. The vertex

symmetries of for labeled + 1 will be those of G. Again, the

of vertices labeled i 2 will not be constrained. Analogously 
construct and

Let be the isomorphisms from to which send e to

Similarly is the set of isomorphisms from to which send e
to The is a trivial coset of a group of order 2.

We shall need inductively two conditions or facts concerning the

isomorphism. First, that the automorphisms of and which fix e acting

on the edges are written as a tower of Second, the automorphisrns

of G, leaving e fixed acting on the vertices is in We consider the second

condition first. If we identify multiple edges of but not multiple copies

of the vertices and the symmetries are those induced from the vertices of

then the new graph satisfies the hypothesis of Lemma 7. Therefore, the

group of automorphisms fixing the edge of e is in Now, any

automorphism of induces an automorphism on this graph. Since the

action on the vertex is unchanged by identifying multiple edge we have the

second condition for If we now also identify the multiple vertices of
the automorphism fixing e will still be in But this is the same graph

we obtain by identifying the multiple edges of This proves the second 

condition. We shall maintain the first condition throughout the construct.

We need only give a polynomial time alogorithm for constructing 

from GI) and constructing , from

where the cosets are given as towers of We consider

the latter case first.

The elements of are simply those elements of
which preserve multiple copies of vertices and edges. That is, they preserve 

the relation a b if a and b are copies of the same edge or vertex. We obtain

the coset preserving this relation by applying the isomorphism in a tower of
algorithm from Section 2. Here the graphs have vertices consisting

of the vertices and edges of and respectively, and the edges are the

multiple copies relation. Since towers of are closed under taking

subgroups the first condition is inductively satisfied for

We have left the construction of from Gf) which we
must show is a tower of Let ( A , = a tower of
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Let be the edges of which are common to a vertex

labeled i. The coset of maps from to which preserve the symmetry of

vertices labeled i can be written as a direct product of wreath products since

the symmetries are consistent. That is, it will be of form Let

be that coset. The coset will be the amalgamated intersection of

and By section 2 this intersection is constructable in polynomial time 
since A is given as a tower of To show that the intersection can

be written as a tower of we note the following. Let be the ith

equivalence relation of vertex j. We claim that = where has label

+ 1, form a tower for By induction it is true for A where the

intersection is taken over vertices labeled In the construction of B we

used the symmetric group in the wreath product. But we know that the 

induced action on the vertices labeled i + 1 given by A is in So we may

restrict the wreath product to this group. Let be this smaller group. 

Now, is a tower of where = has label

i + 1. This proves the theorem.

We shall need that the coset of isomorphisms from G to G' can be written

as a tower of

Let G be a graph whose vertex symmetries are given by towers of
actions and these symmetrices are on the multiple edges. Suppose the

vertex symmetries of G are for vertex Let ME be the

multiple edge relation on G. In this case the automorphisms of G are a tower

of

LEMMA 8. G and are as above and A is the group

automorphisms G acting on the edges then ( A , ME, where
= ME is a tower

Let be the edges of G. By Lemma 7 A acting on is a
action. We need only show that if then (A

E , ) is a tower of Let x, y be the end points of the
edges It will suffice to prove the condition for the normal subgroup of
A of index at most 2 which fixes and y. Let A A which fixes 

and NOW A But is a

tower of by Lemmas 2 and 6.

4. GRAPHS

In this section we simultaneously define the valence k-contractable graphs 

and present a polynomial time algorithm for testing isomorphism of these

graphs. We define the valence k-contractible graphs via a decomposition

algorithm. This definition is unsatisfactory since small perturbations may 
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result in a different class of graphs. We leave it as an open problem to find a

satisfactory definition. However, the definition is enough so that

any perturbation will still contain the graphs of bounded genus and bounded

valence. Let G be a graph with prescribed symmetries either given by towers 

of or unconstrained. We shall assume that two unconstrained

vertices have at most one edge between them. We shall call these graphs

contractible graphs.

We shall say a vertex is if the symmetries of induce a on

the multiple edge relation ME otherwise it is not Br is a if it is

a bridge of where Y is the set of vertices which are not in G. A

bridge is not formally a for two reasons. First, the unconstrained

internal vertices have no associated tower of relations. This problem is 

remedied by allowing these unconstrained vertices to “inherit” the

symmetries from their neighbors. Note that, each neighbor of an

unconstrained vertex either shares only a single edge with or else its

symmetries are a tower of Thus, the symmetries of an

unconstrained vertex can be restricted to a product of wreath products where

the wreath products are of the form where A the inherited

symmetry from a neighboring vertex. Now, k since the number of

neighbors of an unconstrained internal vertex for a must k’ k.
Second, we have not specified the symmetry of frontier vertices. We

transform Br into a modified bridge so that it has the form of a
For each vertex of Br common to a frontier vertex of Br we introduce a

new copy of the frontier vertex and have edges between and go

between and We now view these new frontier vertices as unconstrained

vertices and allow them to inherit the symmetrices of their neighbors. Let Br

be the bridge obtained from Br by the above construction. 

Given two Br and Br’ we can compute the isomorphism

between them by first constructing Br and then applying the
isomorphism test for This procedure will return with a coset in the

form of a tower of Applying the isomorphism test for towers of

we can compute the subcoset of isomorphism from Br to Br’,

which sends multiple copies of vertices to corresponding multiple copies of

vertices. But these are the isomorphisms from Br to Br’.

LEMMA The isomorphisms between two is polynomial time

constructible and the coset can be written as a tower of

This gives a natural decomposition of a graph say G. For

each Br of G we identify the internal vertices of Br and remove

self-loops. We denote this graph by For each pair of 

bridges Br and ’ the coset of vertex symmetrices between

and will be the tower of induced by the
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isomorphisms between Br and Br’. If Br = G then the procedure returns a

single point. It follows by standard arguments that any isomorphism between

two contractible graphs G and G’ induces an isomorphism from 

to where it is understood that the two Contract 

constructions are done simultaneously. And conversely, any isomorphism

from to can be extended to an isomorphism of 

G onto G’. Both directions are polynomial time implementable for fixed k.
If we apply Contract, to a tree of valence + 1 then the procedure will

simply return the original graph. Graphs that are sent to themselves under 

the procedure will be called fixed points. We introduce a decomposition

procedure analogous to the tree isomorphism algorithm. For each pair of

vertices which are not leaves, valence 1 ignoring multiplicity, we

restrict the symmetries between x and to those that send leaves to leaves

and preserve symmetry of a leaf. For these symmetries construct the induced

action on the edges which are not common to a leaf. We then remove all

vertices of valence 1 and their edges from G. Call this procedure Remove

Leaves. Again, Remove Leaves preserves isomorphism, G and G’ are

isomorphic if and only if Remove Leaves (G) and Remove Leaves (G’) are

isomorphic. The two reductions Contract, and Remove Leaves will not be

sufficient to reduce graphs of bounded genus to a point. We introduce a third 

reduction which will correspond to a generalized 3-connected decomposition.

Two vertices of valence 2, ignoring multiple edges, are multiple if their

neighboring vertices are the same. This gives a natural equivalence relation

on valence 2 vertices. An equivalence class will simply be called a set of

multiple vertices. Let be a set of multiple vertices of G. We consider

two cases. First, suppose that the common neighbors, x and have

unconstrained symmetries. This case will not occur for graphs that are 

connected originally. Here we replace with a vertex of valence 2
counting multiples. The symmetries of z will either be or the cyclic

group of order 2. We must also determine which pairs of multiple vertices

are isomorphic. Since the symmetries at and are unconstrained the

isomorphic pairs are easily determined from the We decompose the 

second case into two subcases: (1) x and both have constrained symmetries

or (2) only or only have constrained symmetries. We discuss in more

detail the first subcase. The second subcase is simpler and follows easily 

from ideas from the first subcase. We may assume that the tower of

actions of x and y , say (A, and preserve the multiple

edge relation. We must construct a coset of symmetries for each pair of sets

of edges = = where is another set of
multiple vertices. Let and be the neighbors of We can restrict

our attention to the subcoset of index at most 2 which sends x to x’ and to

y’ . Let and be the given symmetries from x to x’ and to y’, respec-

tively. An isomorphism which sends to and to y’ when restricted to
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y), can be viewed as contained in A acting on y ) .

By Lemma 5 (A x B, is a tower of Using the color

symmetry algorithm we can compute which preserves the coloring 

(e, x and share a vertex or they are the same edge}. Let

be this coset. The coset restricted to v,) will send vertices to

vertices and be a tower of We now intersect this restriction of
with the natural picture of wreath products of towers of given by

the symmetries of onto

The third reduction called Remove Multiple Vertices will consist of iden-

tifying multiple vertices and introducing the symmetries on these new

vertices as described above. 

We include in the last reduction one other case. If is of valence 2 with

neighbors and and these vertices also contain common edges we shall

introduce as a midpoint for these edges and modify the symmetries as in

the other cases.

The graph G is a fixed point of these three reductions if it is a fixed point

of each reduction. Note that we may arrive at a different fixed point

depending on the order which we apply these reductions. W e consider fixed

points of the following procedure. 

Procedure Reduction, (G)

G Remove then

G Remove

else G Remove Multiple then

G Remove Multiple 

else G

DEFINITION.

From the discussion above we get

G is a k-contractible graph if successive applications of

Reduction applied to G yield a singleton.

THEOREM 7. Isomorphism k-contractible graphs is polynomial time 

testable.

5 . THE BOUNDED GENUS CASE

Here we shall show that graphs of bounded genus are k-contractible

graphs.

This will demonstrate that the k-contractible graphs form a class of graphs

which is a common generalization of the bounded valence and the bounded

genus graphs. The containment will follow by showing that the fixed graphs
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under the reduction operation have the property that their genus grows
linearly in k. Throughout the rest of the discussion let G be a fixed point.

Since neither the genus nor the fact that G is a fixed point is affected by

multiple edges we may assume without loss of generality that G has no 

multiple edges. We may assume that G has no vertices of valence 2. The

procedure Remove Multiple vertices will ensure that no pair of vertices
share both an edge and a vertex of valence 2. Not all vertices of G will have
valence + 1. Let be the set of vertices of G with valence Then,
will be an independent set. Let denote the number of vertices of G in

V-S. We first state a relationship between genus and k-contractible graphs

as defined in the previous sections. We shall actually prove a slightly 

stronger result for a stronger notion of k-contractible.

THEOREM 8. If G is a fixed point Reduction,-, then the genus G,

g,

- + 2.

To see that such a large value of k is necessary consider the infinite tiling 

of the plane in Diagram 2. Since this tiling is periodic we can construct

arbitrarily large graphs of genus 1 which are fixed points of Reduction,, .

2

Let denote the vertices -S. We distinguish two types of edges of G.

The edges between points of will be called type A edges and those 
between V‘ and will be called Since we can easily distinguish these 
two types we can in Reduction a procedure which restricts the 
symmetries at each vertex to the which preserves type. Call this new
reduction procedure Reduction’. For Reduction: the example from
Diagram 2 will contract to a point. For get the following
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THEOREM 9. G is a fixed point of Reduction; then the genus of G, g ,

satisfies

((k - + 2.

Note that we are using Reduction; since fixing one edge at a vertex will

only in general effect one of the two types of edges at that point. This gives

the following corollary for k-contractible graphs with respect to Reduction‘.

COROLLARY. If k > 4g + 2 and g I then the k-contractible graphs 

include the graphs of genus g . For g =0 (theplanar case) k 5 will suffice.

To see the corollary we simple note that 3 since a fixed point can

have no multiple valence 2 vertices.

Proof of Theorem 9. The proof uses standard counting argument based

on formula v + 2 , where g is the genus of some

embedding and e, and are the numbers of edges, faces, and vertices,

respectively.

We divide the vertices of into two sets. Let a,, and be the number of
edges of and common to u, respectively. Define 

= { v a , > b , } and = { v b,, Throughout the rest of the

proof we fix some embedding of G of genus g with faces. Let a , and a , be

the number of occurrences of type A edges common to a vertex in and

V,, respectively. Similarly, define b , and to be the number of edges of
common to vertices of and V , , respectively. Thus,

e = ( a ,+ + b , + b,. Using these notions we prove an upper bound on 

the number of faces.

LEMMA. + + +
Proof: For each corner in S a triple (e,x, where e, are

edges common to x - and follows e in the cyclic ordering at x) we

assign it weight if either e or is of type B and otherwise assign it weight 

Let be the sum over all the corners in - S .

We claim that The claim follows by showing that the sum of the

weights of the corners of each face is greater or equal to one. Consider two

cases. First, suppose the face contains an edge of type B. The face must then 

contain two type B edges and therefore weight Second, suppose all edges

on the face are of type A . The face must then contain three type A edges with

three corners contributing each to the sum.
We do this by considering the arrangement of

the edges at a vertex which maximizes the sum. It should be clear that the

sum is when they are alternately type A and type B. Thus, for

the weight at v is + and the sum over all vertices of

1

We next show the RHS
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has weight + For we must have a, -b, type AA corners.

So the weight at is - + and the sum over all vertices in

has weight + This proves the lemma.

Now (b, + since the valence at each point of is
Substituting the inequalities into Euler’s formula gives

Now, a, k since every vertex in has valence in type A at least k

times and a, is the occurrence of type A edges in V,. Recall that if an edge
has both end points in then it contributes 2 to a,. Similary k

this gives ((k - + 2, Theorem 9.
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