e e L A TR A A U EEES Sim - R W S e ok o e

SIAM J. ALG. DISC. METH. © 1984 Society for Industrial and Applied Mathematics
Vol. 5, No. 2, June 1984 006

LAYOUTS FOR THE SHUFFLE-EXCHANGE GRAPH
BASED ON THE COMPLEX PLANE DIAGRAM®*

FRANK THOMSON LEIGHTON,t MARGARET LEPLEY{ AND GARY L. MILLER?

Abstract. The shuffle-exchange graph is one of the best structures known for parallel computation.
Among the things, a shuffie-exchange computer can be used to compute discrete Fourier transforms, multiply
matrices, evaluate polynomials, perform permutations and sort lists. The algorithms needed for these
operations are quite simple and many require no more than logarithmic time and space per processor. In
this paper, we analyze the algebraic structure of the shuffie-exchange graph in order to find area-efficient
embeddings of the graph in a two-dimensional grid. The results are applicable to the design of Very Large
Scale Integration (VLSI) circuit layouts for a shuffie-exchange computer.
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1. Introduction. The shuffie-exchange graph has long been recognized as one of
the best structures known for parallel computation. Among its many applications, a
shuffie-exchange computer can be used to compute discrete Fourier transforms,
multiply matrices, evaluate polynomials, perform permutetions and sort lists [S71],
[P80], [S80]. The algorithms needed for these operations are quite simple and many
require no more than logarithmic time and space per processor. .

Recent developments in Very Large Scale Integration (VLSI) circuit technology
have made it possible to fabricate large numbers of very simple processors on a single
chip. As most of the processors contained in a shuffle-exchange computer are very
simple, the shuffie-exchange graph serves as an excellent basis upon which to design
and build chip-sized microcomputers. One of the main difficulties with such an
architecture, however, is the problem of routing the wires which link the processors
together in a shuffle-exchange network. Current fabrication technology limits the
designer to two or three layers of insulated wiring on a chip and demands that he
make the chip as small in area as possible.

Abstracted, the designer’s problem becomes the mathematical question of how
to embed the shuffie-exchange graph in the smallest possible two-dimensional grid.
Thompson was the first to formalize the question mathematically. In his thesis [T80],
he showed that any layout (i.e., embedding in a two-dimensional grid) of the N-node
shuifie-exchange graph requires at least R{N"/log’ N) arca. In addition, he described
a layout requiring only O(N 2/10g'2 N) area. Shortly thereafter, Hoey and Leiserson
[HL80] described an embedding for the shuffie-exchange graph in the complex plane
(which we call the complex plane diagram) and showed how the diagram could be
used to find an O(N?/log N)-area layout for the N-node shuffie-exchange graph.

In this paper, we investigate the algebraic properties of the complex plane diagram
in order to find several O(N'?/log*? N)-area layouts for the N-node-shuffie-exchange
graph. In addition to being asymptotically superior to previously discovered layouts,
the layouts described in this paper are also superior for small values of N. In fact,
one of these layouts serves as the basis for the more recent work of Leighton and
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Miller who have described optimal layouts for small shufﬂe-exchange graphs in
[LM81].

Subsequent to the completion of the research pres_ented in this 3paper we learned
that Rodeh and Steinberg independently discovered an O (N*/log>’? N)-area layout
for the N-node shuﬁie-exchange graph. Their work is also based on the complex plane
diagram and appears in [SR81]. Even more recently, Kleitman, Leighton, Lepley and
Miller [KLLM81] have discovered an entirely new method for laying out shuffle-
exchange graphs which can be used to find asymptotically optimal O(N*/log” N')-area
layouts. Although their layouts are not entirely practical, they are the only layouts
known to achieve Thompson’s lower bound asymptotically.

The remainder of the paper is divided into six sections. In § 2, we define the
shuffle-exchange graph and the grid model of a chip. We also describe Thompson’s
O(N?*/log'/? N)-area layout for the N-node shuffie-exchange graph. In § 3, we define
the complex plane diagram for the shuffle-exchange graph and mertion several of its
properties. In § 4, we describe several layouts for the shuffle-exchange graph which
are based on the complex plane diagram. These include a straightforward
O(N?/log N)-area layout and several new O(N>/log>’? N)-area layouts. Section 5
contains some remarks and open questions, and §§ 6 and 7 contain the acknowledg-
ments and references.

2. Preliminaries.

2a. The shuffle-exchange graph. The shuffle-exchange graph comes in various
sizes. In particular, there is an N-node shuffle-exchange graph for every N which is
a power of two. Each node of the (N = 2*)-node shuffle-exchange graph is associated
with a unique k-bit binary string a,_, - - - ao. Two nodes w and w’ are linked via a
shuffle edge if w' is a left or right cyclic 1-shift of w (i.e., if w=ax_; - - ao and
W =ag_ 5 Golx_; OF W =aodr_, " * a,, respectively). Two nodes w and w' are
linked via an exchange edge if w and w' differ only in the last bit (i.e.,if w =a;—, - - - 10
and w'=ax_; ‘- a;1 or vice versa). As an example, we have drawn the 8-node
shuffle-exchange graph in Fig. 1. Note that the shuffie edges are drawn with solid
lines while the exchange edges are drawn with dashed lines. We shall follow this
convention throughout the paper. o
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FiG. 1. The 8-node shuffle-exchange graph.

By replacing the nodes and edges of the shuffle-exchange graph by processors
and wires (respectively), the shuffle-exchange graph can be transformed into a very
powerful parallel computer (which we call the shuffle-exchange computer). The compu-
tational power of the shuffle-exchange computer is partly derived from the fact that
every pair of nodes in an N -node shuffle-exchange graph is linked by a path containing
at most 2 log N edges and thus the communication time between any pair of processors
is short.
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More importantly, however, the shuffle-exchange computer is capable of perform-
ing a perfect shuffie on a set of data in a single parallel operation. For example,
consider a deck of 8 cards distributed among the 8 processors of the 8-node shuffle-
exchange graph so that processor 000 initially has card 0, processor 001 initially has
card 1, processor 010 initially has card 2, and so forth. Next, consider a (parallel)
operation of the shuffie-exchange computer in which each processor a,aiao sends its
card across a shuffie edge to the neighboring processor a1a04,. It is easily verified
that, after completion of the operation, processor 000 contains card 0 (the top card
in the shuffled deck), processor 001 contains card 4 (the second card in the shuffled
deck), and so forth.

The power of card shuffling and its mathematlcal abstracnons is well known to
magicians and mathematicians [DGK81] as well as to computer scientists [S71, $80].
For a good survey of the computational power of the shuffie-exchange graph, we
recommend Schwartz’ paper on ultracomputers [$80]. In addition, Stone’s paper [S71]
contains a nice description of some nmportant Parallel algonthms based on the
_shuﬂie-exchange graph.

2b. The grid medeél, Among the many mathematical models that have been
proposed for VLSI computation, the most widely accepted is due to Thompson and
is known as the Thompson grid model [T79), [T80]. The grid model of a VLSI chip
is quite simple. The chip is presumed to consist of a grid of vertical and horizontal
tracks which are spacgd apart by unit intervals. Processors are viewed as points and
are located only at the mtersethon of grid tracks. Wires are routed through the tracks
in order to connect pairs of processors. Although a wire in a horizontal track is.allowed
to cross a wire in a vertical track (without making an electrical connection), pairs of
wires are not allowed to Qverlap for any distance or to overlap at corners (i.e., they
cannot overlap in the same track). Further, wires are not allowed to overlap processors
to which they are not. lmked (The routing of wires in this fashion is also known as
layer per direction routing and Manhattan routing.)

As an example, we have included a grid layout for the 8-node shuffle-exchange
graph in Fig. 2. As before, the shuffie edges are drawn with solid lines while the
exchange edges are drawn with dashed lines. Notice that we have omitted the self-loops
in Fig. 2 since they are electrically redundant. In general, the processors need not all
be placed on a single horizontal line (as they are in this example).
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F1G. 2. A grid model layout of the 8-node shuffle-exchange graph.

Practical considerations dictate that the area of a VLSI layout be as small as
possible. The area of a layout in the grid model is defined to be the product of the
number of horizontal tracks and the number of vertical tracks which contain a
processor or wire segment of the layout. For example, the layout in Fig. 2 has area
48. As can be easily observed, this is far from optimal.
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2¢. Thompson’s layout. Given any k-bit string w, define the (Hamming) weight
of w to be the number of 1-bits it contains. For example, the weight of 10110 is 3.
Thompson’s idea was to lay out the N =2* nodes of the shuffie-exchange graph ona
straight line in order of nondecreasing weight. It is easily seen that shuffie edges link
nodes which have the same weight and that exchange edges link nodes which have
weights differing by one. Thus the edges of such a layout are relatively short. In fact,
nodes connected by shuffle edges can be placed in a group, so that only 2 horizontal
tracks are used for all thé shuffle connections. The femaining horizontal tracks are
occupied by exchange edges. ’

The exchange eges are inserted from left to right so that each exchange edge
occupies two vertical tracks and a pottion_ of the lowest horizontal track which is
empty at the time of its insertion. (For example, Fig. 2 displays a layout for the 8-node
shuffie-exchange graph designed in this way.)- This well-known strategy for inserting
exchange edges guarantees that the number of horizontal tracks used will be minimal,
and equal to the maximum number of edges which must (at some fixed point) overlap
one another. Since exchange edges link nodes which differ in weight by one, it is easily
seen that the maximum overlap is at most. O(maxosssk B;) where B is the number
of nodes of weight s. :

It is easy to show that B, = C(k, s) for each s, where

C(k,s)=k!/[s!(k —s)]

is the well-known function for binomial coefficients. It is also well known that C(k,s)
achieves its maximum value at s = k/2 for any k. Using standard asymptotic analysis,
it is easily shown that C(k, k/2)~(2/m)"*(2%/k"/?) for large k. (For a good review
of such techniques, see Bender and Orszag’s book [BO78].) Thus Thompson’s layout
requires only O(N/log"/> N) horizontal tracks. Since only 1 or 2 vertical tracks are
needed to embed the vertical portions of the edges incident to any given node, we
can conclude that Thompson’s layout has area O(N 2 g /> N).

3. The complex plane diagram. In [HL80], Hoey and Leiserson observed that
there is a very natural embedding of the shuffie-exchange graph in the complex plane.
In what follows, we describe this embedding (which we call the complex plane diagram)

and 'pofmt out some of its more impprtant,,p;operti@s.
3a. Definition. Let 5, = ¢>™/* denote the kth primitive root of unity. Given any
k-bit binary string w=ai-1 - * * ao, let p(w) be the map which sends w to the point

/ p(w)=ak_18ﬁ-l+- . ‘+015k+¢o

in the complex plane, As each node of the (N =2%)-node shuffle-exchange graph
corresponds to ‘a k-bit binary string, it is possible to use the map to embed the
shuffle-exchange graph in the complex plane. For example, we have done this for the
32-node shuffle-exchange graph (whence k =5) in Fig. 3. For simplicity, each node is
labeled with its value instead of its 5-bit binary string. (By the value of a node, we
mean the numerical value of the associated k -bit binary string.)

3b. Properties. Examination of Fig. 3 indicate$_ that the complex plane diagram
has some very interesting properties. First, it is apparent that the shuffic edges occur
in cycles (which we call necklaces) which- are symmetrically placed about the origin.
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FIG. 3. The complex plan diagram for the 32-riode shuffle-exchange graph (iaken from [HL80D.
l n from (I

This phenomenon is easily explained by the following identity:
Swar-1-- ao) = ax-15% a5y 28k +- - +a18% +a0Bk
=ay-p8% '+ - -+ aght ok
=p(ar—2 - * * GoGk-1)-

Thus traversal of a .shu_ﬂie edge corresponds to a 2a/k rotation in the qomplei plane.
Except for .degenerate. cases, the preceding identity also indicates that each

necklace is composed of k nodes, each a cyclic shift of the other. (Two nodes which

are cyclic shifts of each agher are also known as conjugates.) Such necklaces are called
full necklaces. Degenerate necklaces contain fewer than k nodes and, because they
must have some syinmétry, are mapped entirely to the origin of the complex plane
diagram. Fot' exaipie; {00000} and {0101, 1010} are degenerate necklaces while both
{101,011, 110} aﬁ‘&ﬂ’itﬂﬁ, 11601, 10011, 00111,01110} are full. As we note in
the following proposition, the number of degenerate necklaces is quite small compared
to the number of full necklaces. v -

ProposiTioN 1. There .are. O(N'/?) degenerate necklaces and Nflog N —
O(N'"/1og N) full necklaces in the N-node shuffle-exchange graph.

Proof. A node w is in a denerate necklace if its binary representation has a
nontrivial symmetry with respect to cyclic shifts. Without loss of generality, such a
string of bits must consist of a‘block of k/}: bits which is repeated p times where p
is some prime-divisor of k. As there are 2*/® binary strings of length k/p, this means
that the number of niodes il degenerate necklaces is at most

. plk
Y ok/p < O(N”z).

s ad -
p&2

The remaining N — O(N /%) nodes are in full necklaces. As each full necklace contains
log N nodes, thieré are N/logN-O(N 12 /16g N) full necklaces. O

It will often bé converient to refer to a necklace by one of its nodes. In particular,
we will use the notation (w) to indicate the necklace generated by w. This is simply
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the collection of cyclic shifts of w. For example, the necklace generated by 101 is
(101)={101,011, 110}. e S

Exchange edges are also embedded in a very regular fashion by the complex
plane diagram. In fact, each exchange edge is embedded as-a-horizontal line segment

of unit length. This phenomenon 1S explained by the iden'tity
plary -+ 30)+1= a8 40 -+ a8+ 1=p(a -~ - i),

In some cases, several exchange edges are contained in the same horizontal line
of the diagram. Such lines are called levels. For example, there are 9 levels in the
diagram of the 32-node shuffie-exchange graph shown in Fig. 3. We will use the
properties of levels to find O(N?/log’’* N))-area layouts for the N-node shuffie-
exchange graph.

4. Layouts based on the complex plane diagram. In this section, we present
several layouts of the shuffle-exchange graph which are based on the complex plane
diagram. We commence with a straightforward ‘O(N"/log N)-area layout of the
N-node shuffie-exchange graph. This layout has been discovered by many researchers
(including Hoey and Leierson). Later, we show how the layout can be modified so as
to require only O"(Nf/lo‘gg,”N) area. N

4a. A straightiorward OGN flog N)-area Iayout. -In what follows, we describe a
straightforward layout of the shuffie-exchange graph which requires only O(N %/log N)
area. The layout is formed from a grid of levels and: necklaces which we call the
level-necklace grid. Each row of the grid corresponds to a level of the complex plane
diagram. The columns of the grid are divided into consecu! ive column pairs, each pair

corresponding to a necklace. The lettmost column of each columi pair corresponds
to that part of the necklace which is containéd in the left half of the complex plane.
Similarly, the rightmost column of each pair corresponds to the part of the necklace
contained in the right haif of the complex plane.

“The rows of the level-necklace grid must have the same top-to-bottom order as
do the corresponding levels in the complex plane diagram. The columns, however,
may be arranged arbitrarily (provided that columns corresponding to the same ne cklace
are adjacent in the grid). ; ' :

Each node of the shuffie-exchange graph is placed at the intersection of the row
and column of the grid that corresponds to the level and part of the necklace (left
half or right half) to which it belongs in the complex plane diagram. For example, we
have done this for a random ordering of the necklaces of the 32-node shuffle-exchange
graph in Fig. 4. (Notice that we have used just one column each for the degenerate
necklaces (0) and (31) since they each contain just one node. In general two columns
will be required for necklaces which are mapped to the origin of the complex plane
diagram, but the nodes of each such necklace should still be lumped together at a
single point of the level-necklace grid.)

Given a level-necklace grid for a shuffle-exchange graph, it is not difficult to
produce a layout for the graph. The main step is to partition the exchange edges in
each row of the grid into nonoverlapping subsets. Each subset can then be assigned
to a horizontal track of the layout. Except for the row corresponding to the real line
in the complex plane diagram, the assignment of subsets to horizontal tracks within
a row is arbitrary. (The assignment of horizontal tracks containing nodes on the real
line must preserve the cyclic orientation of the nodes which are in necklaces that are
mapped to the origin.)
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FIG. 4. A level-necklace gn'd for the 32-node shuffle-exchange graph.

Once tmslsdone,theemhange edges can be inserted in the horizontal tracks
andtheshnﬁeedwmb;mertedmthevemcalmks (To be precise, some of
theshuﬂieedge&aboqupypartofahonzontaltrackatthetoporbottomofthe
layout.) By Proposition 1, the num umber of vertical tracks occupied by the necklaces is
at most 2N/log N + O(N i %), Since there are precisely N/2 exchange edges, at most
N/2+2 horizontal meks m‘eontamed in the layout. Thus the total area of the layout

n uffie:éxchakige’F phnsatmostN’/logN+O(Nm) As an.example,
we have displayed i i Fig. 5 a layout of the 32-node shuﬂle-exchange graph produced
from the level-necklace gnd inFig. 4.

4b.. Anjmproved oW [Il;g"2 N)-area Iayout. Iti is possxble to improve the layout
described in §4a by reducing the nnmber of honzontal tracks needed to embed the

necklaces
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exchange edges. This can be done by reordering the. necklaces from left to right so
as to increase the average number of exchange edges which can be inserted on each
horizontal track. For example, the ordering of the necklasss shown in Fig. 6 results
in far fewer horizontal tracks being used than did the ordering of necklaces shown in
Fig. 5. A e T

@ D D ® @ ap apan

— . A ST
1 ead taig, 2ad 22 is | .4‘
2 J._.-_.. 3 ;-‘.-— csnpsasn -.-Jhs
8 " s 51T e
4 W] T
levels 5 { 1 13
- A 1 - ]
0 1 8 8 L] 3t
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7 b T 6 1o
~N L_J b bt b b ¢ B
FIG, 6. Animproved layout for the 32-node shuffle-exchange graph.

Although we do not know how to best order the. neckisees in general, we have
found several orderings which yield O(N?/log** N)-ared Jayouts for the N-node
shuffie-exchange graph. For instance, we will show in what; follows that such a layout
decreasing weight. (The weight of a necklace-is simply. defined t0.be the weight of
any of its nodes.) As an.example, the layout displeyed int Fig. 648 of this form. (This
observation has also-boen made by:Steinberg and Bodeh-in{SR#1) . Lo

- In order to-bound the number of horizontal tracks.nesde¢il-eoinsert the exchange
edges, we will show that the maximum overlap of exchange sdges on each.level is at
most the number: of nodes-of size h.={(k—1)/2] on that level. Since the maximum
overlap of excharige edges.on each level is an upper boupd on the nuniber of horizontal
tracks needed to insert the exchange edges on that level, we: can-thus conclude that
the total number of horizontal tracks needed to insert all of the exchange edges is at
most

B, <B.,; = (2/m)"*N/log'’* N + O(N/log** N) where N =2".
Thus the resulting layout will have area at most
22/7)*N?/log*’* N + O(N*/log*> N).

Although it is clear the maximum twtal overlap (over all levels) of exchange edges
is at most By, this is not sufficient to prove the result since any layout must also
preserve the top-to-bottom partial order induced by the necklace structure on the
exchange edges. It is only within individual levels that the top-to-bottom ordering of
exchange edges is arbitrary. (As we noted earlier, some minor precautions are necessary
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for the level corresponding to the real line.) It is not immediately clear, however, why
the maximum overlap on ‘éach level is at most the number of nodes of size h =k/2
on that level. In what follows; we establish this result by bréaking up each level into
sublevels (for which the analysis is easier) and showing that the maximum overlap on
each sublevel is at most the number of nodes of size h on that sublevel. The analysis
requires some additional notation.

Consider a node of the form a—; - - - @10 for which either ax_; =0 or a; =0 or
both for each i =k. We will refer to such a node as a basis node. A node bi_1 - - bo
is said to be generated by the basis node a1 - - * do if

1) by_; = ax—; and b; = a; whenever a,—; # @ for1si=k—1,and

2) by_;=b; whenever ax_;= a =0forisisk-1.

For example, 10000 generates 10001, 11100 and 11101 but not 11111.

It is not difficult to show that if u generates v, then both u and v are on the same
level of the complex plane diagram. For example, letu = a1 - * * @o andv =bx-1 " - bo
and observe that '

p©)—p ()= (bt —ar-1)85 " ++ - 4 (b1— 31)8x + (Bo—a0)

='Cgi18:_l 4+ o +¢18x +Co,

where cx_; =c; for each i, 1 Si =k —1. Since 5%~ is the complex conjugate of 853 for
1=i=<k—1, we can conclude that.p(v)—p(u) is a real number and thus that u and
v are in the same level of the complex plane dia; .

It is also easy to show that each node of the shuffie-exchange graph is generated
by a unique basis node. In particular, the node which generates bi_1°* * bo can be
found by

1) setting bo=0-and.Gf k is even) setting bi/2=0, and '

2) setting b; = b= 0for each i:such that (originally) b; = bi—i =1.

Since excharige edges link nodes which have the same basis node, we can conclude
from the preceding arguments that it is possible to partition each level of the complex
plane diagram into. sublevels so that the nodes in each sublevel-are precisely the nodes
generated by some basis node. We will now show that the maximum overlap on each
sublevel is at most the humber of nodes of weight & on that sublevel.

Since the neeklnoces have been arranged from left to right in order of nondecreasing

weight, the overlap of exchange edges between two nodes of weight s in any sublevel
is at most O(maxg,g,,’éB?.-'):w?here B* is the number of nodes in that sublevel with
weight s. In the followiiig:proposition, ‘we compute B¥ and shiow that its maximum
for any sublevel: otcurs at’s = h. ' 0

Proposiyion2: Buack basis node of weight r generates B?* nodes of weight s, where

1) B¥*=C(h—r,i)fors=r+2i andish-r, and

2) B* =C(h—r.i)fors=r+2i+1 andish-r
when k is odd, and '

1) B¥*=C(h-r+1,i) fors =r+2iandish-r+1,and

2) B* =2Ch-r,i)fors=r+2i+1 andi=h-r
when k is even. S ‘

Proof. When k is odd, there are precisely h —r pairs a; = ax—; = 0 in a basis node
of weight . Ini order to generate a string of weight s =r +2i when k is odd, we must
set bo=0 and sét ¢ 'of the'h —r pairs so that b, =by_; = 1. There are C(h—r, i) such
strings. To generate a string of weight s =r +2i + 1 when k is odd, we must set bo=1
and choose i of the i —r pairs so that b; =b._;=1. As before, there are C(h—r, i)
such strings. '

Y "V,
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When k is even, there is also the degenerate pair ax/; =0. To generate a string
of weight s=r+2i when k is even, we must choose i of the h—r+1 pairs so that
b= b;.—; =1 (this count includes the “pair” bo= b/, =1). There are C(h—r+1, i) such
strings. To generate a string of weight s=r+2i+1 when k is even, we must set
either bo=1 and bk/z =0o0rbo=0 and buz =1, and choose i of the. h.—r palrs so that
b; = be—; =1 (j # k/2). There-are 2C(h —r, i) such strings. O . RN

Given Proposition 2, it is easily checked that the:maximum value of B¥ for any
sublevel (independent of the value of r) occurs when s = h. Thus the sum (over all
sublevels) of the maximum overlap at each sublevel is at most the number of nodes
of weigjlt h=|(k—1)/2] in the entire graph. This is at most C(k,k/2)~
/m)"%(2%/k'"*). Thus the total area of the layout is no more than

2(2/17)1/2N2/l0g3/2 N+O(N2/logs/2 N),
as claimed. E

4c. Additional O(N*/log** N)-area Iayouts. By varying the order of the neck-
Jaces in the level-necklace grid, it is possible to produce a variety of layouts for the
shuffle-exchange graph which require at most O(N 2/log*’? N)) area. The complex
plane diagram itself suggests one such otdering. For example,:.consider an arrangement
of the necklaces from left to right in order of nondecreasing radius. (The radius of a
necklace is defined to be the distance of its nodes from the origin in the complex
plane diagram.) Such a layout corresponds to a folding of the complex plane diagram
along its imaginary axis followed by a straightening of the necklaces. In what follows,
we will show that, like a layout by necklace weight, a layout by necklace radius has
area O(N*/log”* N). S .

Because the layout by radius is so closely related to the complex plane diagram,
our -analysis. will center-on the complex plane - diagram; itself As before, ‘we will
partition the levels-into sublevels and find-an upper bound on-the maximum overlap
of exchange edges on each sublevel separately. The number 'of horizontal -tracks
needed to.insert the exchange edges will then be “at: most the:sume-of these upper
bounds. We will show that this sum is at most O(Nflog?N). "™ =+

Notice that the maximum overlap of exchange edges-on'a sublevel of the level-
necklace grid is at most twice the maximum overlap on that sublevel in the complex
plane diagram. (The factor of two is introduced by the “folding"” of the diagram along
its imaginary axis. Although straightening the necklaces might affect the maximum
total overlap of exchange edges, it does not affect the overlap within a sublevel.)

Within a sublevel, an exchange edge can be identified by the real part of its
midpoint. For example, the real  part of the midpoint of exchange edge
(bi—y* * - 510, bx—1 - - - b11)is _ 1 '

by_y cos [2m(k —1)/k]+ - - +by cos [2m/k]+3.

If a is a basis node of a sublevel, then a generates the other nodes in that sublevel
by substitution of the appropriate pairs of ones. For instance, we may set b, =b._; =1,
if a; = G- =0. Let

T, ={1 §]§h|a, =Qk-j =0}
denote those indices 1=i =h where a pair of 1-bits may be substituted for a pair of

0-bits. (As before, h-=|(k —1)/2] but for convenience, we shall henceforth assume
that k is odd.) Notice that if b is generated by a, then the real part of the midpoint
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of the exchange edge incident to b is
ieT, i£T,
Y " 2b, cos 2wifk)+ Y cos @mifk)+3.
1sish

We now introduce a random variable Z,, which has as its image, all of the real
parts of the midpoints of edges in the sublevel generated by a. Since b; = by—; can be
cither 0 or 1 when i€ T, let'B; be a random variable representing this choice. In
particular, : :

‘ 'B;=0 with probability3, and
B,=1 with probability 3.
Then

teT, i£T,
Z,= Y. 2cos (2mi/k)B+ Y cos(21ri/k)+%
1sish

beT, '
=% 2 008 2w/ k}B,~D.

Since the qugas have unit vlength in the complex plane diagram, two
edges overlap if and anly if their midpoints are within unit distance of each other.
Thus the number of edges which overiap at position x on the sublevel generated by
anodea_ﬁsgivenbfytheformma ,

’ 2™ Prob[x-isZ.Sx+3)
where |T,| denotes the cardinality of T,. (We caution the reader that the notation [x|
is also used to:denote the abselute value of x.) :

Although the distibution function of Z, is-difficult to analyze directly, it does
behave like a normaldistribution: This is because Z, is the sum of independent random
variables. which- have mean 0 and variance o> =cos’ (2mi/k). The Berry-Esseen
theorem states precinely how far Z, can vary from a normal distribution. (For a proof
of this theorem see [F71}.) o .

BERRY-EsseenTHEOREM: Let X1, Xa, * < , X.: be independent random varidbles
such that E(X)=0, B(X?)=a7, and B(X:3|)=pifor 1=i=m. Set si=gi 4 +om
and r=p1+: - +pu-In addition, iet F denote the cuin lative disiribution function of
the sum (X1+- - +Xu)/s. Then forall x, -

T Fm-ew) s6r/s’
where @ is the standcrd normal cumulative distribution function.
In the case of a sublevel generated by a node a, we have
X, =2 cos (2mi/k)(B ~YforieT,

s2="F" cos? @milk),

ieT,
r.= ¥ |cos® Qmi/k)|.

Applying the Berry-Esseen theorem, we can thus conclude that
Prob[x -3<Z,=x +1]=Prob[(x —}/se =Za/sa =x +3/s4]
< ®[(x +1)/sa]- BL(x —D)/sa1+12r/52.
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Because the standard .normal density function is symmetric and unimodal, we can
conclude that the maximum of Prob [x ~1= 7, =x +1} occurs at x =0 and is at most
O(1/s. +raf53). -~ _ ' '
“In the following proposition, we find bounds for the values of r, and s,.
PROPOSITION 3. For any basis node a '

re='¥ loos® Quifk)|s|T.l,

22T cos® @ity 2 OGLL /K.

Proof. The bound on , is easy to compute since |cos’ (2mi/k)| = 1. The calculation
of s, is a bit more tedious. In order to obtain a lower bound, cos’ (2mi/k) must.be
made as small as possible. The smallest values occur when T, contgins indices i which
are as close-to (k —1)/4 as possible. In this case, we can,approximat . cos” (2arifk)
with the value c (/2 —2i/k)?, for some constant c. Diregt compytation reveals that
the sum of these squares is atleast TP/KD. O . .,

Since |T.| <k for all 4, we can conclude-from the:preceding that the maximum

overlap of exchange edges on a sublevel generated by a.is at most
o™ AT,

'Noting that there are predsely,C(hJ )2,'-'-" sublevelsgeupmtedbya node tOf ‘which
|T,|=j and summing, we can conclude that the.total number of horizontal tracks
needed to insert all of the exchange edgesisatmost.. . = ...~ 4

: lil Ch, N2 0K =_Q[k3,2'? 121 C(h,j) /1711] v

It is nof dnfﬁcult to check that the dominant te;'mQL in the preeedmg sum occur
when j=h/2+0(h'?log k). In this region, j =©(k) and thus the sum is bounded
above by

o[2 £ Clh ] =00 /k") = OWlog* N),
j= ’ .

thus comgleting the proof that‘ a fayout by necklace radius takes at most
O(N*/1og”’” N) area.

8, Remarks. It is worth remarking that the O(N'*/log>> N)-area layouts for the
shuffle-exchange graph described in § 4 actually require (N*/log*? N) area and thus
our analysis of these, layouts cannot be improved by more than a constant factor. In
each case, the lower bound on area can be derived from the fact that the maximum
total overlap of exchange edges in the layouts is at least 2(N/log'/? N). (Remember
that although the maximum fotal overlap of exchange edges is not an upper bound on
the number of horizontal tracks needed to insert the exchange edges, it is a lower
bound.)

The ((N/log'/? N') lower bound on maximum overlap is easily established for

the. layout -according to- necklace weight since O(N/log!/* N) exchange edges link

nodes of weight k/2 to nodes of weight k/2 + 1. The lower bound on maximum overlap
is somewhat more difficult to prove for the layout according to necklace radius. The
first step in the proof is to show that at least N/2 exchange edges are contained within
a square of side length ck'/? centered at the origin of the complex plane diagram
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(where c is a constant). (This can be done by using the techniques developed in § 4c).
Next consider the sum (over i) of the total overlaps at points corresponding to
radii of i/2 for 1 =i = ck'/% Because the complex plane diagram is radially symmetric,
it is possible to show that at least Q(N) exchange edges are counted in this sum. Thus
the overlap at one of these points must be at least Q(N/kY?) =Q(N/log"? N), as
claimed.

Since Thompson [T80] has shown that any layout for the N-node shuffie-exchange
graph must have area at least Q(N?/log? N), we know that at least (}(N/log N)
horizontal tracks are needed to insert the exchange edges for any ordering of necklaces
in the level-necklace grid. However, there is no ordering of the necklaces known for
which the exchange edges can be inserted using less than o(N/log'/? N) horizontal
tracks. ‘This suggests an interesting open question since it would be nice to find an
O(N*/log’ N)-aréa layout based on ‘the complex plane diagram. (Although an
asymptotically optimal OWN 3/Jog> N)-area layout for the shuffie-exchange graph has
recently beenfokind by Kieitman, Leighton, Lepley and Miller [KLLM8 1); it is rather

Although we do not know of necklace orderings for which the exchange edges can
be insertéd esingléss tHair 6(N/log'’*> N) horizontal tracks, we do'know of orderirigs for
which the maximwﬁswwwpateicmngeeaga is at most O(N log log N/log N).
For example, an ordering of the neckalces by minimum value has a maximum total
overlap of 6(! log log N/log N). (The minimum value of a necklace is simply the
minimum of the values of the nodes contained in the necklace.) '

" Interes@ingly, an-ahalysis of the minimum (over all orderings) of the maximum
total overlap for small values of N indicates that there may always be an ordering
for which the maximum total overlap is at most O(N/log N), the least possible. In
fact, for 3sNE7, this"Mminimum maximum overlap is precisely |2*~2)/k]. A
summary of the minimum maximum overlap data for small values of N is included
inTable 1. - - 8 : :

TABLE 1
Maximum overlap of best known orderings

maximum overlap of
k- N best known ordering optimal?
3 8 2 yes
4 16 3 yes
.. 5 32 , 6 yes
6 64 10 . yes
7 128 18 yes
8 256 33 yes
9 . 512 62 ?
10 ~ 1024 115 ?
1. . 2048 214 .7
12 4096 388 ?
13 8192 754 ?

In addition to varying the order of the necklaces, improvements in the layout
may also be made by rearranging the level assignments of the exchange edges. For
example, ‘the: layout of the 32-node shuffie-exchange graph shown in Fig. 7 was
constructed in this way. (The careful reader will notice that we have also manipulated
the necklaces somewhat in order to produce this layout.) For a more detailed discussion
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of the manner in which exchange edges can be reassigned, we refer the reader to
[LM81]. (Such layouts have also been used in conjunction with the Blue Chip Project
at Purdue [S81].)

F1G. 7. An improved layout for the 32-node shuffle-exchange graph.
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