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On deleting vertices to make a graph of positive genus planar
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Abstract. This paper contains a proof that an n—-vertex graph of

genus g > 0 contains a set of 0(J/gn) vertices whose removal leaves

a planar graph.

1. Introduction

Many results for graphs of known or bounded genus g > 0O have
been derived from related results for planar graphs. Sometimes
planar results have pointed the way for graphs embedded on other
surface;; examples include embedding and isomorphism testing
[7,8,12], and Kuratowski’s theorem and the recent finiteness
result of a forbidden subgraph characterization fof every surface
[14] . Sometimes planar rgsults are actually centfal to the
extended result; for example the separator theorem for graphs of

bounded genus [9] relies on the planar separator theorem [11].
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Thus one approach to problems on graphs of ﬁositive genus is to
reduce the graphs to planar ones, to use planar results and
techniques, and to extend these results to the original graphs.

| In this paper we consider the problem of finding a small set
of vertices whose removal from am n—-vertex graph of genus g
leaves a planar graph. The results of [1] show that gJ2n = 0(gJ/n)
vertices can always be removed from a graph on a surface of genus
g to leave a planar graph. In [9] this result was improved to
0(Jgn log g), and it was conmjectured that 0(Jgn) vertices are
sufficient. In this paper we prove theﬁlatter conjecture. Similar
results have been announced by H. N. Djidjev [3,6]; our work

extends some ideas of [3] where a partial proof for finding a

0(Jgn) "planarizing” set is given.

Theorem 1. If G is an n-vertex graph embedded on a surface of
genus g > 0, then there is a set of at most
26 Jgn - 13/n/g = 0(JSgn)

vertices whose removal leaves a planar graph.

Most of the steps of this proof are constructive, and in a
subsequent paper we will show how to implement these ideas as an
algorithm that finds this set of vertices in an embedded graph.
The algorithm runs in time linear in the number of edges of the
graph.

The result of Theorem 1 is best possible up to constants
since it is known that embedded graphs satisfy the following
separator theorems and that up to constants these results are

best possible.



Theorem 2. (Lipton and Tarjan [11]; Djidjev [4]) If G is a planar
graph with n vertices, then there is a set of 0(Vn) vertices

whose removal leaves no component with more than 2n/3 vertices.

Theorem 3. (Djidjev [5]; Gilbert, Hutchinson and Tarjan [9]) If G
is a graph of genus g > 0 with n vertices, then there is a set of

0(J/gn) vertices whose removal leaves no component with more than

2n/3 vertices.

If there were a set of vertices in a graph of positive genus
whose removal left a planar graph and whose order was smaller
than 0(Jgn), then by removing these vertices and using the planar
separator theorem one wou}d'have a smaller order separator for
graphs of positive genus. This argument also shows that Theorems
1 and 2 imply Theorem 3; the algorithmic implementations are
similarly related. However the proof of Theorem 1 and related
algorithm are more intricate and involve constants larger than
those in [9].

In section 2 we p?esent background for this work, the graph
theory lemmas and order arithmetic needed for the proof of

Theorem 1, which is presented in section 3.

2. Background in topological gra theory and order arithmetic

We use the terminology of [2] and {15). The main definitions
follow. A graph is said to embed on a surface of genus g > 0 if it
can be drawn on the sphere with g handles, denoted S(g), so that
no two edges cross. The genus of a graph G is the least integ?r g
for which G embeds on S(g). A face of an embedding of G on S(g)
is a connected componment of S(g)\G and is called a 2-cell if it

is contractible. An embedding is called a 2—cell embedding if



every face is a 2-cell and a triangulation if every face is
bounded by three edges. An example of a triangulation of the
torus (g=1) is shown in Figure la. These embedding terms can
also be defined in a strictly combinatorial way. Indeed, they
must be so defined for the algorithmic implementation.

A set of vertices whose removal from a graph G leaves a
planar graph is called a planarizing set for G. An important
planarizing set is a set of vertices whose induced subgraph
leaves all other vertices in regions that are 2-cells.

Embedded graphs on nonplanar surfaces can contain three
fundamental types of simple cycles. A cycle is called

contractible if it can be continuously deformed on the surface

into a point; otherwise it is called noncontractible. A simple
noncontractible cycle may be either a separating cycle or a
nonseparating cycle according as it does or does not divide the
surface into two disjoint pieces. Figure 2 shows all three types.
of cycles in a graph on the double torus. The Euler—Poincaré
Formula will be used to distinguish among these type of cycles; it

is also crucial for other parts of the proof.

Eunler—Poincaré Formula. If G has a 2—-cell embedding on S(g),

g>0, then n—¢+ f=2-2g where n, e and f are, respectively, the

number of vertices, edges and faces of the embedded graph.

The number, 2 —2g, is known as the Euler characteristic of S(g).
The proof of Theorem 1 will be by induction on g. First we
look for a short, O(J;7;_, noncontractible cycle in the embedded
graph, and if such # cycle is present we can remove it and
proceed by induction on graphs of smaller genus. If the graph

contains no short noncontractible cycle, then we find a spanning
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Figure 2.

forest of small radius and with few components. By a forest of
radius r -we mean that every vertex is joined to a root by a path
with at most r edges. The next lemma is a generalization of a

result in [9] on spanning trees of embedded graphs.

Lemma 4. Suppose the n—vertex graph G has a 2—-cell embedding on
S(g), g >0, and suppose G has a spanning forest F of radius r

with d > 1 components. Then G contains a planarizing set of at

most 4gr + (d-1)(2r+1) +1 vertices.

Proof: We call the edges of F and G\F forest and nonforest
edges, respectively. We begin by deleting nonforest edges from G
one by one until the remaining graph is embedded with exactly one
face; as shown in [9) this can be accomplished so that the final
face is a 2-cell. (An example is shown in Figure 1 with d =4,
r=2 and g =1.) Next we successively delete (momroot) vertices of
degree one and their incident edg; (necessarily a forest edge).
If G had originally e edges and f faces, we are left with a

subgraph G’ of G with n' vertices, e' edges and f’ faces where
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n’{n, e f'=1, and =n'-e'+1=2-2g.

Let F' F G’ be the remaining spanning forest of radius r'{r
with d’ { d components. Thus
e’ = n'-1+2g = (n'-d") +(2g+d'-1),
and the e’ edges of G' consist of (n’'-d’') forest edges and
(2g +d’'-1) nonforest edges.
'Now the spanning forest F' has d' roots, and each nonforest
edge of G' joins two vertices of F' at distance at most r' from a
root. Furthermore, by construction every vertex of G' lies on some
path from a nonforest edge to a root of F'. We estimate the number
of vertices of G'. First there are d' roots of F'. Then to every
nonforest edge w = [ul, u2} we associate the at most 2r' (nonroot)
vertices that lie on the path from uw, to a root, i=1, 2, Thus
n' ¢ d'+ (2g+d'-1)(2z")
¢ d+ (2g+d-1)(2r)
= 4gr+ (d-1)(2r+1) +1.
If these n' vertices of G' are removed, the remaining graph lies '

in the ome 2-cell face of G' and so is planar. |

When the graph contains no O(Jn/g) noncontractible cycle, we

proceed by finding a breadth first spanning tree of presumably
too large a radius and then break it into a spanning forest of

small radius, r = O(Jn/g , with few components, d = 0(g).

Lemma 5. If G is a connected graph with n vertices, then G has a

spanning forest of radius r with at most [a/(z+1) |1 components.

Proof: Let T be a spanning tree of G of radius s with root t; we

are done if s {r. Pick a léaf 2 of T at distance s from t, and

let x be the vertex at distance r from z along the path from z to

t. Remove from G the vertex x and all its ancestors; this



discarded part of é can be covered by one tree of radius r. The

remaining graph is connected with at most n-r-1 vertices and by
induction its vertices can be covered by at most [(a-z-1)/(z+1) ]
= [n/(r+1) ] -1 trees of radius at most r. Thus G can be covered

by at most [a/(z+1) ] trees of radius r. W

Corollary 6. [3] A graph G with n vertices and each connected
component having at least m vertices has a spanning forest of

radius r with at most | n/(r+l) +n/m] components.

Proof: Suppose G has k connected components with Ry,Dgse0.,Df
vertices each. Then n, + eee ¥ =1 and n ) km, By Lemma 5 each
component can be covered by at most rni/(r+1)1 trees and so G

can be covered by at most

k K
P Ta/e+7T ¢ )‘_1 (n;/(x+1)) +1)
1=

1=1
= 0
- z:+1+k
n n
= r+1 m N

The next two lemmas give detailed information on the growth

rate of the function f(g,n) =2Vgn - /n/g. This will be necessary

for our induction steps.

Lemma 7. For all g>1 and n> 0

2J/(g -1)n -Vn/(g -1) +Jn/g £ 2Vgn -/n/g.

Proof: Since

Vg -1/(2dg = 1) <1/ (2fg) <1/ (g + Vg - 1) = Sg-Jg -1,

it follows that

2Vn/g -Ja/(g -1) < 2Vgn - 2J/(g -1)n,

and the lemma follows. ||



Lemma 8. Let g, n, x, y and d be positive integers satisfying
0<g<n, 0¢d<{Jn/g, 0<x<g, and 0{y<n-d. Then

2Jxy - Jy/x +2J(g-x) (n-y-d) - J(a-y-d)/(g-x) +d £ 2J/gn - Jolg.

Proof: Multiplying the inequality by fx-, \/E and Jg—x_ , we must

show that ]
(2x-1) /33 - xg + (2g-2x-DJa-y-d/x /g + dfxfs -5
¢ (2g-1)Vadx /g - x. ' (1)
First we find the maximum value of the left hand side of (1)

as a function of d: let f(d) =(23-2x—1)Jn—y-dJ;JE+dJ;Jg—xJ—.

Then the maximum value of f(d) occurs when
= (a-y) - (g- -1 i
d=(n-y) - (g-x) +1 YrEIR At this value of d,
n-y-d = (g-x) —1+H8—1_T)-< (g-x) since (g—-x) is an integer. Thus
the left hand side of (1) is bounded by

(22-1)J3J/g - x Jg + (2g-2x-1) Jo-y-d Jxfg + dfx/eg-x Vg

(Vg -x [(2x-1) J3/g + (2g-2x-1) x5 + dJx /5] (2)
(Js-x [(2x-1) J3 /g + (2g-2x-1) Jx g
+((n-y) - (g-x) +1-1/(4(g-x))Jx /g1 _ (3)

Next we find the maximum value of (3) as a function of y:
let f(y) = (2x-1)Jyd3 + (n-y)JxJ/g. Then the maximum value of f(y)
occurs at y=x—1+4—]‘x-<x since x is an integer. Thus (2) is
bounded by

Je-x [(2x-1)Jxdg + (25-2x-1)Jx Vg + dJx V5]

(Je—x [(28-2)JxJg + JaJ/x]l (since d < Jn/g)

<JxJg-x [(2g-1)Yn]l (since g < n).

This last line is the desired right hand side of lime (1). |



3. The main result

We begin fy looking for a 0(Jn/g) noncontractible cycle.
Given any simple cycle C we perform the following operation and
analysis to determine whether C is contractible or not,
separating or not. We can imagine "cutting” the surface along c,
then "sewing” in two discs, keeping a copy of C on the boundary
.of each disc. Call the resulting graph G(C); it may no longer be a
triangulation.

Suppose one component Gl(C) of G(C) ﬁas n’ vertices, e’ edges
and f' faces. Set g' = ¥,(2-n'+e'-f'), the genus of the surface
~on which Gl(C) is embedded. If g’' = 0 or g, the cycle C was
contractible. If g’ = g-1 and G(C) is connected, then C was
noncontractible and noﬁseparating. G(C) is embedded on a surface
of genus g—-1, and a planarizing set for G(C) together with the
vertices of C forms a planarizing set for G. Finally if 0< g’ <g
and G(C) is not connected, then C was noncontractible and
separating. The component Gl(C) is embedded on a surface of genus
g’ and G(C)\GI(C) is embedded on a surface of genus g-g'. A
planarizing set for G will consist of a planarizing set for each

component of G(C) together with the vertices of C; see Figure 2.

Theorem 1. If G is an n-vertex graph embedded on a surface of

genus g > 0, then G has a planarizing set of size at most

26 Jgn - 13 Jn/g .

Proof: We may assume that G is a triangulation since adding
edges to triangulate each face can only increase the size of the
planarizing set. The proof is by induction on g. In [9] it was

shown that a graph has a planarizing set of at most



6Jgn‘logg-+6JE;—vertices. Thus we may assume that g > 2, for g {2
implies 6./gn log g +6 /gn <13 JE;-_S 26 Jgn - 13 /n/g for all
positive g and n.

We may also assume that Jn/g )(26-—%%0 =21.667, for

otherwise n ¢ (26-13'3-)Jgn {26 Jgn -13/n/g for g 23, and all n

vertices would form a planarizing set. Thus for future reference

we assume
1 < .046 J/nlg (4)
= .046i-~/gn ¢ .015Jgn for g23. (5)

We begin by finding a breadth first spanning tree T with

levels LO’ Ll,...,L where Li consists of all vertices at distance

T
i from the root t and where r is the radius of T. Let 'Lil denote
the number of vertices in L;, and set F; C L, equal to those
vertices of Li adjacent to a vertex of Li+1; we call F, the
frontjer of L;. We also define the level of an edge {u,v} (or of

a triangle {a,b,c}) to be the maximum level of a vertex im the

edge (or triangle).

Lemma 9. For 0 i<(r, Fi induces a subgraph that comnsists of

edge—disjoint cycles.

Sketch of proof: If Fi indauaces a subgraph of edge—disjoint
cycles, then the modulo two sum of all edges of triangles at
level i+ 1 with the edges of the cycies of Fi is clearly an
edge-disjoint union of cycles and can be shown to equal Fi+1‘

(A similar result can be found in [13].) ||

We mote however that this decomposition into cycles may not be

unique.



Suppose the graph G cont;ins a noncontractible cycle C of
length at most 13~/;732 because this parameter arises so often we
define K =13 JETEZ ¥e perform the surface cutting construction
described at the beginning of this section, but in addition we
delete the two copies of C and all incident edges and we
triangunlate the resulting, nontriangular faces. Suppose C is
nonseparating and noncontractible. By induction the remaining
graph has a planarizing set P of size at most
_26JTE:T7;--13~/;7TEZTT_. Then P \UC forms a planarizing set for G
and by Lemma 7 has siz; at most 26\fE;:-13qG;ar. Suppose C is
separating and noncontractible. Then the remaining graph consists
of two graphs, say GI(C) and GZ(C) with y and n-y-1cCl vertices,
respectively and of genus x and g - x, respectively where 0 (x<g.

By induction Gl(C) has a planarizing set P1 of size at most

26 Jxy - 13 J/y/x , and G,(C) has a planarizing set P, of size at

most 26qu—x)(n-y—d)-13J73-y-d)/(g—x) . Then P; U PZ\V)C forms
a planarizing set for G and by Lemma 8 (with lcl =da) is of size
at most 26\/_3-;-13\/;/7.

Otherwise every noncontractible cycle in G is larger than K.
For i = 1,2,...,1 let Si be the region of the surface formed from
all triangles and their boundaries with labels at ;ost i; cyéles
of F, form the boundary between S, and S(g)\s§,. Ve set
Sg = Fg = {t}. Suppose we cut the surface S(g) along the cycles
of Fi’ leaving a graph embedded on Si with vy vertices, e, edges
and f, faces. Then the Euler characteristic of Si is given by

Ei =v;-e;t fi‘

Si is a subset of the sphere if and oaly if E; = 2. See Figure 3.



Figure 3.

Let q be the least integer such that either Fq+1 contains a
noncontractible cycle oz Eq+1 ¢ 2. Figure 3 contains an example in
which Fg+1 contains noncontractible cycles. Let p { q-be the
largest integer such that |Lp|‘$K; thus Fp contains only
contractible cycles. Note that ome cycle of FP' call it cp,
separatés the surface into a contractible region containing the
root t and the noncontractible region. Finally let s be the
greatest integer such that Es—l < g, but Es =g. Thus the region
S(g)\Sg is a subset of the sphere and contains all vertices on
levels s+1 and higher.

If s>p+l, then |L,]1 YK for p<i<s by the definition of p
and since Lq+1"“’Ls—1 all contain noncontractible cycles of

length greater than K. Let G be the graph obtained from G by

Prs
contracting all vertices on levels LO’ Ll""‘Lp—l to a new root
t* and by deleting all vertices on levels L. .4, ..., L. If Gp,s

has radius at most SJVn/g, then by Lemma 4 and line (5), Gp.s has

a planarizing set P of size at most



4-5;JE7?+1 (21.667Vgn < 26gn -13vn/g
for g > 2. Note that since LOLJ... L)Lp_l is embedded in a
contractible region as is Ls+1LJ ...(,JLI, then P forms a
planarizing set for G as well as for Gp,s‘

If the radius is larger than 5Jn/g, we divide Gp g UP into b

"bands” of radius r'=[Vn/g | where b= [ (s-p)/z'1. For

i=1,...,b-1 we let

Bi = Lp+(i_1)r;+1u ...ULp+iI,. and
Bb = Lp+(b_1)r'+1u e e 0 ULSI.
Let |Bi| = n; and for i=1,...,b let Li‘ be the smallest level

in Bi' Then lLi‘l,sni/r'. For future reference we set

t=1[2/n/g 1 and note that

n4y 2 Kr! since all levels have size 2 K
> 6tzx! since 6t {12/n/g +6 <K by (4). (6)

Consider a frontier Fi‘ Q;qu; by Lemma 9 it consists of
edge—-disjoint cycles. Each component of'Fi‘ that contains fewer
than K vertices contains only contractible qycles; for each such
contractible cycle Ci we delete all vertices in its
(contractible) interior. We redefine F,* to be F,*\C;. (In other
words the vertices of Ci are no longer considered to be in the
frontier.) We have thrown away only a part of the graph that lies
in a contractible region. Every componment of (the remaining) Fi‘
has at least K vertices, and by Corollary 6 these components can
eagh be covered by at most Lni/(t+1)-+ni/KJ trees of radius af

most t. For i=2,...,b-1, let these components be covered by
trees T, T2,...,Tu.

Instead of using F,*, we use FP‘; L, and treat it in a

slightly different way. Recall that [F | (IL | <K, and that F,



contains a distinguished contractible cycle, cp. We delete all

other cycles of FP and their contractible interiors. We cover °p

with at most rcp/(2t+1)1 < F13Vn/g/(4Jn/g) ] =4 trees of radius
t (i.e., by paths of 2t edges). Call these trees P;, ..., P_.

From these pieces we construct the desired spanning forest F

of (the remainder of) Gp s

. First we cover Cp? Fz*.F3‘...., and
Fb—l‘ with the trees Pl""’Pw'Tl""’Tu' Then we use the portion
of the original tree T that extends from °p up to and including
vertices in L,* \ F,* (but not including F,*), for i = 2 to b-2
from Fi* up to and inclndipg Li+1‘ \Fi+1" and from Fb-l‘ up
through Ls. F is a spanning forest of the remaining graph since a
vertex in the level above Lp or Li‘ is eithe; contained in a
short‘contractible cycle and so is deleted or is adjacent only to
vertices in cp or in (the remainingi Fi‘. Each portion from the
original tree T involves at most 2r’ levels and so the resulting
trees in F have radius at most t+2r’' ¢ 4J;7E-+3 £ 4.138J;75-by
(4).

Next we count the number of components of F. On levels L2‘

and up we have at most

b-1 b-1

L (L sl/t+ 1L *1/E) g.[z (n;/te’ +0;/1'K)
1= 1=

I~

n/tr’+a/c’K-n,/tr'-n /'K
{ a/tr'+n/'K-7 from (6).

The cycle ¢ is covered by at most 4 trees of radius t and so in

p

total F contains at most d =n/tr’'+ n/r'’K -3 components and

(d-1) < n/tr’'+n/r'K. By Lemma 4, G has a planarizing set of

pP,s

size at most



4gr + (d-1)(2r+1) +1 < 4g(t+2r’') + (n/tr’ + n/r'K)(2t +4r'+1) +1

< 4g(4.138/n/g) +(n/(2(n/g)) +n/(13(n/g)))(8/n/g +7) +1

¢ 16.55Jgm + ((1/2)g + (1/13)g)(8.32Vn/g) +1 by (4) -

{ 16.55Jgn + 4.8 Jgn + .015 /gn by (5)
= 21.365J gn < 21.667J/gn
{ 26Jgn -13n/g for g 2 3.

Thus F forms the desired planarizing set for Gp s and for 6. Il

4., Conclusjon. -

In [1] a stronger result was obtained, namely that in every
triangulation of a surface of genus g with n vertices there is a
nonseparating noncontractible cycle of length at most J2n. Ve
conjecture that if g {( n there is always a O(J;7E3 noncontractible
cycle. This would imply Theorem 1: removing such a cycle and
applying the conjecture repeatedly to graphs of smaller genus

would produce a O(Jgn) planarizing set. In [10] the following is

established.

Theorem. If G is a triangulation of a surface of genus g with n
vertices, then
a) if g { n, there is a 0(Jn/g 1og g) noncontractible cycle, and

b) if g > n, there is a 0(log g) = O(logn) noncontractible cycle.

In a subsequent paper we shall provide O(e)-time algorithms
to find the pianarizing set of Theorem 1 and the noncontractible

cycle of the latter theorem.
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