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Tarjan has given an algorithm for deciding isomorphism

of two groups of order n (given as multiplication tables) which

runs in O(n(1092n4'0(1)

)} steps where n is the order of the

groups. Tarjan uses the fact that a group of n is generated by

log n elements. In this paper, we show that Tarjan's technique

generalizes to isomorphism of quasigroups, latin squares, Steiner

systems, and many graphs generated from these combinatorial

objects.

Introduction

One of the original papers on algorithms for
graph isomorphism is by Corneil and Gotlieb [4]}.
In this paper they indicate that a possible compu-
tationally difficult subproblem of the graph
isomorphism problem is when the graphs are
strongly regular. Since this paper, Corneil and
Mathon have gathered together a collection of
strongly regular graphs which many researchers
[4,8) have used as canonically difficult graphs
for isomorphism testing.

A graph is said to be strongly regular SR

if there exist three constants kK, A, U such that
(1) k is the valence of each vertex, (2) A is
the number of vertices common to each pair of
adjacent vertices, and (3) Y is the number of
vertices common to each pair of nonadjacent
vertices. The parameter set for a strongly

regular graph is often denoted by (n,K,A,u)
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where n is the number of vertices.

One important method for generating SR graphs
is to take a combinatorial structure and construct
a graph associated with it. Essentially, in this
paper we shall consider two combinatorial struc-
tures, latin squares and Steiner £rip1e systems,
and their associated SR graphs called latin square
graphs and Steiner triple system graphs. These
graphs will have a certain parameter set. Any SR
graph which has the same parameter set as a latin
square graph will be called a pseudo-latin square
graph; similarly for Steiner triple systems. 1In
fact, these pseudo-latin square graphs and pseudo-
Steiner graphs are the particular graphs used to
experimentally analyze the possible worst case
behavior of isomorphism algorithms.

In this paper, we shall show in particular
that latin square and Steiner triple system graphs

“+
logzn O(l)) steps and show,

can be decided in O(n
theoretically at least, that pseudo-latin square
and pseudo-Steiner triple system graphs are also
decidable in this time, using some results of
Bruck and others [1,2,3].

; logn
In Section 1 we introduce the n el

technique,
and show how to apply it to generalizations of
groups and finally to latin square graphs. 1In

Section 2 we discuss the implications of Bruck's
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work [3] on the relation between pseudo-latin
square graphs and latin squre graphs. Finally,
we give extensions of these techniques to

Steiner systems.

Section 1

A group throughout this paper is a Caley
table. If G is a group of order n and we pick
some linear ordering of G we can then view G as a
binary function on {1,...,n} and the Caley table
as a nxn matrix consisting of integers between 1
and n. In fact, this table is a latin square
(every number between 1 and n appears exactly once
in every row and in every column). On the other
hand, latin squares can be viewed as binary func-
tions; whereas functions whose multiplication
tables are latin squares are called quasigroups.

Giving the definition once more, we have:

A group is a binary operation * satisfying 1) and

2).

1) a) Jx(a*b = x)
b) I x({a*x = b)
c) Ilx(x*a = b)

2) (a*b)*c = a*(b*c)

A gquasigroup is a binary operation satisfying 1),

and a quasigroup viewed as a table or a trinary
relation is a latin square.

For groups or functions it is clear what we
mean by isomorphism, namely, G is isomorphic to
G' if there exists a 1-1 onto function g from G to
G' such that g(x*y) = g{(x)*'g(y). If we view G
and G' as trinary relations < , , > and <, , >'
respectively, then we get <x,y,z>eG implies
<g(x),gly),g(z)>'€G'. Thus, viewing latin
squares as quasigroups we say L and L' are iso-
morphic if there exists a permutation o such
that if we simultaneously interchange rows,
columns, and values in L we get L'. But this
definition is quite restrictive. We know that
even independently permuting rows, columns, and
values preserves the latin square properties.
Thus, we say two latin squares are isotopic if we
can get from one to the other by independently

permuting rows, columns, and values; see [l].

Definition: Two latin squares L and L' are said

to be isotopic if there exist pesrmutations (a,B,Y)

such that <x,y,z>¢€ L implies <a(x),B(y),y(z)>'eL",

which is denoted by L = L'.

We say that two latin squares L and L' are conju-
gate if there exists a permutation &S such that

<x),%X2,X3> €L implies <xa >'eL'.

(1) “Fa2) “Fauts)
Finally, L and L' are main class isotopic, denoted
by L = ML', if we car get from L to L' by a con-
jugation and an isotopic map.

Tarjan [9] observed that since groups of order
n are generated by a set of elements of size at
most log n, group isomorphism can be done in

logzn-+0(l)) steps. Throughout the rest of this

O(n
paper we shall assume that all locjs are base 2.
Lipton, Snyder, and Zalcstein [7], independently of
Tarjan, showed a stronger result; namely, group
isomorphism can be solved in 0(1ogzn) space. The
O(logzn) result sczems to be dependent on the fact
that groups are associative while the o(nloqr1+ O(l))

result generalizes to quasigroups:

Theorem l: Quasigroup isomorphism can be solved in

logn + 0(1)) steps.

O(n
Proof: Property la) says the binary operation is

a well-defined function. Now, 1lb) and lc) give

two other well-defined functions associated with a
quasigroup. We shall say that a set of elements
generates the quasigroup if their closure under
these three functions is the whole quasigroup.
Thus, using this definition, we prove a generaliza-
tion of the observation about the size of the mini-

mal generator set.

Lemma l: A quasigroup is generated by a set con-

taining at most logn elements.

Proof: To prove the lemma we need only prove that

if H is a proper subquasigroup of G then

|l > 2|H|. Pick beG-H. Consider the elements

H*b. Now, all the products are distinct, for if

h*b = h'*b where h,h'€ H then h = h' by property

lc). Secondly, H*b is disjoint from H for if

h = h'*b when h,h'€ H then be H by property lb).

This contradicts the fact that bg H. Thus,

H*b € G-H and |E*b| = |H| which proves the lemma.
To finish the proof of Theorem 1 we give a

short description of the algorithm with two

- 52 -



quasigroups, G and G', as input:
1) Find a set of generators for G, containing

l,...,am.

at most logn elements, say a
2) For each set of m elements in G', say,
{b,

by ai-*bi, 1 <i<mis a well-defined iso-

,...,bm} check to see if the map induced

morphism of G onto G'.
3) If a set of m elements of G' is found in
2) accept; otherwise reject.
Now consider isotopic latin squares. Using
isotopic maps we can always put the latin square
in a "normal” form; namely, the first row and first
This normal

column are the sequence 1,2,...,n.

form is not unique. In fact, it is not unique up
to isomorphism, but is almost unique up to iso-
morphism. Suppose that L and L' are two isotopic
latin squares in normal form and (a,8,Y) is the

isotopic map from L to L'. Given a permutation a,

1) pe the transposition (1,a1(1)). Now the

let o

sk : (1) (1) .
decomposition of @ into (on Y@ ~7) splits a
. 1
into a( ) which may move 1 while aa(l) leaves 1
fixed. The following result simply says that up

to choosing who gets to be the identity L and L'

are isomorphic.

Lemma 2: Given two latin squares L and L' in nor-

mal form which are isotopic by the permutations

<a,B,Y> then <a(l),8(l),Y(l)>(L) is isomorphic
to L'.
Proof: Now, <u(l),6(l),Y(l)>(L)= L" is still iso-

topic to L' by <o’ =0.'(1(l) IB' = B.B(l) '.Y' = .Y.,Y(l)>

and L" is in normal form. We shall show that in
Suppose that y'(V) = W. ¥Y'

Thus, B'

fact a' = ' = y'.
has changed the V in column V to a W.
must move column V to column W to insure that the
latin square is in normal form. Similarly, o'
must move row V to row W. Therefore a' = f' = y'

and the lemma is proved.

Theorem 2: Isotopy of latin squares is decidable

logn + O(1)

in O(n ) time.

Proof: The algorithm, on input L and L', arbitrar-
ily puts L' in normal form and then for each of
the n2 possible candidates for the identity it puts
L in normal form. Now the algorithm checks if any

2 .
of these n” normal forms of L are in fact iso-

’

morphic to L'.
Since there are only six ways to conjugate
latin squares, we get that main class isotopy is

in time O(nlogn+ 0(1))‘

Corollary: Main class isotopy of latin squares is
decidable in O(nlOgn+ O(l)) time.

A Second Proof of Theorem 2: At this point we

would like tp make a distinction between the pro-
cedure to pick an element from a set and the pro-
cedure to guess an element in a set. To pick shall
mean to arbitrarily choose some element, while to
guess shall mean to try all possible elements.
Going back to the definition of isotopic latin
squares, recall that we needed 3 surjective func-
tions, say o,B,Y. We shall construct them by
allowing a,B,Y to be partial one-to-one functions
which preserve the trinary relations defined by the
latin squares. Let the latin squares be L and L'

with trinary relations < , , > and < , , >' respec-

tively.
Initially,
a) pick a,b,eL (possibly the same element),
b) guess a',b', L' (possibly the same element),
{(a,a"}, 8 = {(b,b")}, and v = ¢.

Given

c) let a =

Let Dom(a) denote the domain of a.
aeDom(a) and be Dom(B) we can either extend the
Dom(y) by (a*b,a(a)' B(b)) [where - is the appro-
priate binary function of the three functions
defined by L and similarly for «']) or find that our
guesses must be inconsistent. We shall say that
a,R,y are closed under L if domaine a,8,y are con-

sistent with and closed under the above binary

operations.

claim: If a,B,y are closed under L and nontrivial,
then |Dom(a)| = |Dom(B)| = |Dom(y)|.
Proof: By symmetry we need only show that

IDom(8) | < |pom(Y)|. Pick a in Dom(a), then

a*Dom(B) < Dom(Y). Now all the products in a*Dom (B)
are distinct, therefore |Dom(B)] j_la'Dom(B)|.

our inductive procedure is the following:

1) Close «,8,y under L.

2) If L = Dom(a) then L = L'.
3) Otherwise pick a€ L -Dom{a) and

guess a'e L' - Range(Q).
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4) set & toa U {(a,a')} return to 1).
By similar argums=nt to those used in the first
proof, every pass through the inductive procedure
doubles the domains of o, B and Y. Thus we get

logn + O(l)) steps.

an algorithm which runs in O(n
A ratural graph associated with a latin square
is called a latin square graph which is defined as

follows:

Definition: Given a latin square (LS), say L(Rij),
of size n, then the latin square graph associated
with L, say G(L), has n2 nodes gij' 1<i, j<n;
and the nodes gij and gkl are connected if one of

the following holds:

1) i=k
2) j =2
3) lij = lkl

Latin square graphs consist of 3n n-cliques
(n row cliques, n column cliques, and n value
cliques). Two n-cliques are disjoint iff they are
either different row, different column, or dif-
ferent value cliques.

Thus we get the following result:

Lemma 3: If L and L' are latin squares, and G(L)
and G(L') are latin square graphs, then L is main
class isotopic to L' iff G(L) is isomorphic to

G(L').

If we now give an efficient method of re-
trieving the latin square from the latin square

logn + O(l)) algorithm

graph we will have an O(n
for latin square graph isomorphism; namely,
retrieve the two latin squares and check the two

latin squares for main class isotopy.

Lemma 4: In O(n3) steps we can retrieve the
latin square from the latin square graph where

n is the dimension of the latin square.

Proof: Let G be a latin square graph on n2 nodes.
To construct a latin square we shall associate
each node of G with an element in an nX n matrix
A(aij) and also assign a value to the nodes or

elements.
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Algorithm:
1) Pick two connected nodes, say xl and x2.
2) Find the n nodes common to x1 and x2. Now ,

n-2 of the nodes are connected to each

other, say x ,xn. Let y2 be one of the

37

nodes that is not connected to x3,...,xn.

3) Associate alj with xj, and set a

lj= J.

1 <j<n.

4) Find the clique associated with Xy and Yy
say {xl,yz,...,yn}. There is a unigue
matching between the xi's and the yi's.

5) Order the yi's such that X is connected
to Yie for 2 < i < n.

6) Associate a., with y_. and set a_, = j,

jl ] j17 >
2<3j<n.

7) For each of the remaining (n-l)2 nodes of
G, do the following, where w is a remaining
node:

a) If w is connected to xi then w is con-
nected to a unique Yi and a unigue xj,
2<i, j<n. Seta,, tol.

= > ij

b) If w is not connected to X . then there
exist unique integers k, i, and j such
that w is connected to Yy xk, Yo and
y.. Set a,. to k.

] 13

Using Lemma 4 we get the following theorem.

Theorem 3: Latin square graph isomorphism is

logn + 0O(1)

decidable in O(n ) steps.

Section 2

By our construction, it is not hard to see
that an LS graph is an SR graph with parameters
(n2,3(n—l),n,6). An SR graph with parameters
(n2,3(n-1),n,6), for some n, is called a Eseudo—
latin square graph (pseudo-LS).

In his monumental paper [3], Bruck proves that
large pseudo-LSGs are in fact LSGs. In particular,
he shows that for n > 23, a pseudo-LSG is an LSG.

Using his result, we get the following theorem:

Theorem 4: Isomorphism of pseudo-LS graphs can be

nlogr1+ o(1)

decided in O ) steps.

Proof: By Lemma 4 we can in polynomial time con-

struct the latin square from a latin square graph.



Thus, in polynomial time we can decide if a given
graph is an LS graph. Hence, our algorithm will
simply test if the graphs are LS graphs, and if
they both are, it will use the o(n 097 "0}y 4

gorithm for deciding isomorphism. Otherwise, it
will use some naive algorithm which will possibly
run for exponential time. By Bruck's result, we

know that for n > 23 the algorithm will never

encounter pseudo-LS graphs which are not LS graphs.

Thus, the algorithm runs in the limit for the

appropriate amount of time.

Even though the theorm is theoretically and
practically significant, it is not very satisfying
for at least one reason. A graph with (23)2
vertices is a very large graph, and no known
heuristic can fill in this gap. But it should be
pointed out that Bruck's result is only an upper
bound on the existence of strictly pseudo-graphs,
and since very few strictly pseudo-LS graphs are
known, it is quite possible that Bruck's result
could be strengthened.

Maximal cliques of an LS-graph can be viewed

as lines and the vertices are the points. These

objects are then called partial geometries or nets.

We shall, following Bruck, use the term nets.

Note that these nets have 3 parallel classes, one

formed by the rows, one by the columns and one by

From

the values. Such objects are called 3-nets.

[1] a net N of order n and degree k satisfies the
following:

1) Each line of N contains exactly n distinct

points, whexe n > 1,

2) Each point of N lies on exactly k distinct

lines, where k > 1,

3) N has exactly kn distinct lines. These

fall into k parallel classes of n lines

each. Distinct lines of the same parallel

class have no common points. Two lines of

different classes have exac tly one common
point.

4) N has exactly n2 distinct points.

By a counting argument k < n+1 and if k =

n+1

then the k-net is called an affine plane of order n.

We shall say two nets are isomorphic if there

is a surjective map over the polnts which preserve

lines. Note that this is equivalent to saying

that there exists a surjective map from lines to
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lines which preserves the intersections of lines.
Using these definitions we get the following

result.

Theorem 5: Isomorphism of k-nets is decidable in

logn + 0(1)

time O(n ) steps.

Proof: For k = 0,1,2 the pair (k,n) determines
the net uniquely. Thus deciding isomorphism is
trivial in these cases and we shall assume that
n+1l > k > 3. Suppose the input is two k-nets
N,N'. We simply pick 3 parallel classes from N
and guess 3 parallel classes from N'. These

parallel classes determine two 3-nets which we can

logn + 0(1)) steps

check for isomorphism in O(n
If these 3-nets are isomorphic the procedure will
in fact return all such isomorphisms from points
of N to points of N'. Thus we need only check if
any of these maps are isomorphisms preserving all
lines of N. The 3 guesses only increase the work
by O(k3) times as many steps and since k < n+1

we have proved the theorem.

The last theorem seems unsatisfactory since
the information given by the extra parallel classes
was not used advantageously by the procedure. In
fact, the procedure was hindered by them. A more
efficient approach might be to begin by guessing
3 parallel classes but if succeeding guesses
determine other parallel classes then use this
information to enhance the domain of the inter-
mediate partial functions. Adding these idea§ to
the last thecorem, we can substantially improve the
running time in the special case when the net is

in fact an affine plane.

Isomorphism of affine planes can be
loglogn + 0O(1)

Theorem 6:
decided in O(n ) steps.
Proof: Suppose that the input is two affine

planes N and N' which.we can assume are of order n.
We define a procedure which inductively constructs
three partial functions o,B,y where a is from
points to points and B is from lines to lines and
Yy is from parallel classes to parallel classes.
Initially the domain of B is
nonparallel lines in N and their image is deter-

mined by guessing 3 nonparallel lines in N'.

determinad by picking 3



Let L be one of the parallel classes in N
which is chosen during the initial step. We shall
say (a,B,y) are closed if they are closed under
the following rules.
1) Two points in Dom{a) determine a line in
Dom(3) ,

2) A line in Dom(Z2) determines a parallel
class in Dom{y) ,

3) Two nonparallel lines in Dom(f) determine
a point in Dom(a),

4) A point in Dom(a) and a parallel class in
Dom(y) determine a line in Dom(8).

Note that if (a,8,y) are closed and satisfy
the initial condition then the Dom{a) and Dom(B)
form, in a natural way, an affine plane.

So our inductive step in the algorithm, given
(@ ,B,y) closed and an initial parallel class L,
is simply to pick a line in L=-Dom{B), guess a
line in vy (L) - Range(B) and use these choices to
extend B. Finally we close (a,B8,Y).

To show that this procedure runs in the stated
amount of time we need only show that the domain
of B is squared in size for every guess which is
made. Note that each guess is made from a set of
size at most n. In fact, we need only show that
the Dom(B), restricted to L, is squared at each
step.

Suppose that (a,B,Y) are closed, satisfying
the initial condition, £ is the element of
L-Dom(B) picked at the inductive step, and
L-Dom(B) = Lo,...,Lk are the equivalence classes
of parallel lines in Dom(B). Let ZLi denote
points determined by £ and lines in Li for

1 < i<k (condition 3).

Claim: The points lLl,...,lLk_l are distinct

"new" points.

The points are all new for otherwise the
points would determine £ by 4). Suppose that
x = Lh = 2h' where he Li and h'e Lj where 1 < i,
j £k-1. Now i #j since h cannot be parallel
to h'. So h and h' determine x and therefore by

(3,4) & is in Lo'

Since (a,B) form an affine plane the cardi-
nality of each Li for 0 < i < k-1 are squal and

in fact their cardinality is k. So we have
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generated k{(k - 1) "new" points.

Claim: Each "new" point determines a distinct

line in L .

new
k

Suppose Lh determines h' which is in Lk then
the point 2h' is in Dom(x) and finally this point
determines L. This contradicts the fact that 2
is not in Dom(B) .

So, if L' is the L, after closing L, with

k k k
respect to %, then the cardinality of L} is equal

to the square of the cardinality of Lk.k Since all
the Li, 0 < i<k, have the same cardinality, we
have also squared the cardinality of Lo. Thus
Theorem 6 follows.

A projective plane is simply an extension of
an affine plane N which is gotten by "adding" a
new point to N for each parallel class. This
point is added to every line in the parallel class
and all new points form a new line. And, an
affine plane can be gotten from a projective plane
by removing a line and all points on it.

Using this fact about the relationship between

affine planes and projective planes we get:

Corollary: Isomorphism of projective planes are
decidable in 0(nl°glogn+ O(l)) steps.

Proof: Given two projective planes of order n,
say N and N', pick a line from N and remove it to
get some affine plane i. Now, guess a line in N'
and remove it, getting N'. Using Theorem 6 we can
construct all isomorphisms from N to N' in
loglogn + O(1)

O(n ) steps. Using this isomorphism

we can decide isomorphism of n and n'.

Following the definition of a latin square

graph we define a k-net graph.

Definition: Given a k-net N of order n, where

k < n, then the net~graph associated with N is a
2 . - .

graph on n° vertices, one for every point in N,

and where two vertices are connected if they

determine a line in N.

We list a few facts and definitions from [3]

about k-net graphs.

1) A k-net graph of order n is an SR graph



with parameters (n2, k(n-1), n-2+(k-1}(k-2),
k(k-1).

2) Every net graph determines a unique net.

3) An SR graph with parameters as in 1) is
called a pseudo-k-net-graph.

One of the fundamental theorems in [2] is:

Theorem 7 Bruck: If G is a pseudo-net-graph of

order n and degree k such that n > p(k-1l) and k > 1,
then G is a k-net graph, where '

(x) =lx4+ x3+ 2+-3—x
p 2  vZx o
The following is a table of tabulated values

of pk-1):

p(k-1) 4 23 8l 214 470

Theorem 8: If G is a k-net graph of order n and
2 R : .
n > (k-1)", then in a polynomial in n we can re-

construct the k-net associated with G.

Proof: To prove the result, we need only show
that in polynomial time we can, given two adjacent
points, reconstruct the line containing them.

Let x,y be two adjacent vertices of a k-net
graph G of order n. Let H be the subgraph induced
by vertices common to both x and y including x
and y. Now, H still contains the maximum clique
containing x and y and the vertices in this
clique have valence > n-1. There are (k-1)(k~2)
elements of H not in this clique. Each of these
nonclique elements are connected to k-1 elements
in the clique and therefore have valence at most
k-1+ (k-1)(k=-2) - 1= (k-l)2 - 1. So we can
by simple valence considerations distinguish the

clique elements.

Using the last two results we get the follow-

ing Theorem.

Theorem 9: For fixed k pseudo-net graph iso-

logn+ 0O(1)

morphism is decidable in time O(n ) steps.
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Proof: Since we are only proving an 0O result

we can assume that the order of the graphs n is

> p(k-1). So by Theorem 7 the graphs are in fact
k-net graphs. Since n > (k--l)2 we can, using
Theorem 8, reconstruct the k-net. &and finally,

by Theorem 5, we can check the k-net for iso-

logn + O(1)

morphism in time O(n ) steps.

Section 3:

In this section, we will apply the techniques
developed in Sections 1 and 2 to Steiner systems.

A Steiner system (V,S) with parameters
(t,<,v) is a partial geometry of points V and
lines § (or equivalently a regular hypergraph)
satisfying the following conditions:

1) there are v points, i.e., |V] = v;

2) lines contain exactly kK points;

3) T distinct points determine exactly one

line.

A Steiner triple system is when T = 2 and
K = 3. We shall say two Steiner systems are iso-
morphic if there exists a surjective function
from points to points which preserves lines.
Finally, given a Steiner system (V,S) with para-
meters (T,K,V), we construct a graph, called the
Steiner graph G = (X,E) where:

1) X =5,

2) E

L}

{{s;,s,}|s; /s, €5 and s, ns,| = x-1}.

Using notations from above, we get:

Theorem 10: Steiner triple systems are decidable

loga+ 0(1)) steps.

in O(n
Proof: This follows easily by the techniques

presented in Section 1.

The Steiner graph is in fact an SR graph and
any graphs with the same parameter set are called
pseudo-Steiner system graphs.

In [2] Bose shows that Bruck's techniques
could be applied in a very general setting. In
particular Bose proved that a pseudo-STS graph
with strictly greater than 67 vertices must be an
STS graph.

Using Bose's result we get:



Theorem 11: Isomorphism of pseudo-STS graphs is

decidable in O(nlogn + o)

) steps.
Proof: We need only show that STS are polynomial
time reconstructable from STS-graphs. Again the

reconstruct follows by simple valence considera-

tions.
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