
From: CONCURRENT COMPUTATIONS

and Stuart C.
Edited by Stuart K. Bradley W.

Publishing

Chapter 9

Optimal Tree Contraction in the

EREW Model

Gary L. Miller
Shang-Hua Teng

Abstract

A deterministic parallel algorithm for parallel tree contraction is presented in this
paper. The algorithm takes T time and uses (P processors,

where n the number of vertices in a tree using an Exclusive Read and Exclusive
Write (EREW) Parallel Random Access Machine (PRAM). This algorithm improves

the results of Miller and who use the CRCW randomized PRAM
model to get the same complexity and processor count. The algorithm is optimal

in the sense that the product P is equal to the input size and gives an
time algorithm when log Since the algorithm requires space, which
is the input size, it is optimal in space as well. Techniques for prudent parallel

tree contraction are also discussed, as well as implementation techniques for
connection machines.

work was supported in by National Science Foundation grant DCR-8514961.
University of SouthernCalifornia, Angeles, CA

139

140 L CONTRACTION

9.1

In this paper we exhibit an optimal deterministic Exclusive Read and Exclusive

Write (EREW) Parallel Random Access Machine (PRAM) algorithm for parallel

tree contraction for trees using time and (P processors.

For example, we can dynamically evaluate an arithmetic expression of size n over
the operations of addition and multiplication using the above time and processor

bounds. In particular, suppose that the arithmetic expression is given as a tree of

pointers where each vertex is either a leaf with a particular value or an internal

vertex whose value is either the sum or product of its children’s values. These

time and processor bounds also apply to arithmetic expressions given as a tree, as

previously described. One can reduce an expression given as a string to one given

in terms of a pointer by using the results ofBar-On and Vishkin There are
many other applications of our parallel programming technique for problems that

possess an underlying tree structure, such as the expression evaluation problem

[MR]. The goal of this paper is to improve this paradigm so that the time

processor algorithm can easily and efficiently be constructed for a wide

variety of problems.

Our algorithm has two stages. The first stage uses a new reduction technique called

Bounded (Unbounded) Reduction. A bounded (unbounded) degree tree of size n
reduced to one of size in time, using processors on an EREW PRAM.
The second stage uses a technique called Isolation to contract a tree of size P to its

root in P) time, using P processors on an EREW PRAM.

The constants are small since techniques notorious for introducing large constants,

such as expander graphs and the more general workload balancing techniques of

Miller and are not used. Instead, only one simple load bal-

ance is needed to support our procedure, UNBOUNDED-REDUCTION.
technique for list ranking, when used to carry out the Compress operation, per-

forms many unnecessary function compositions In Section 9.6.4 we show
that these techniques provide a solution for prudently compressing chains . In

Section 9.3 we discuss how to implement these procedures on a fixed connection

machine, which minimizes the size of constants.

Miller and give a deterministic Concurrent Read and Concurrent

Write (CRCW) PRAM algorithm for tree contraction, using time and

processors, and an 0-sided randomized version (CRCW) of the algorithm using

log n processors. By attaching a complete binary tree to each path of the original
tree to guide the application of Compress, Dekel et al. present a tree

contraction algorithm on an EREW PRAM in time using n processors.

But their methods and proofs are complicated and difficult to follow. This paper, on

the other hand, presents a parallel-tree contraction algorithm for an EREW PRAM,
which reduces the processor count to log n and simplifies their algorithm.

,

9.2. BASIC GRAPH THEORETIC RESULTS 141

This paper consists of six sections. Section 9.2 contains basic graph theoretic results
and definitions that are needed in Section 9.4 to reduce the problem of size n to
one of size where is the number of processors. In Section 9.3 we discuss the

relationship between the List-Ranking problem and the problem.
In Section 9.4 we show how our reduction of a tree of size n to one of size
can be performed with only one List-Ranking. Section 9.5 reviews the work of Miller

and that is used in Section 9.6. Section 9.5 also includes definitions of
Rake and Compress, the two basic tree contraction operations, presented by Miller
and In Section 9.6, the isolation technique is used to implement
parallel tree contraction on a deterministic EREW PRAM in n) time by using

log n processors. In that section, we demonstrate that the isolation technique
can be use for prudent parallel tree contraction,

9.2 Basic Graph Theoretic Results

The main graph theoretic notions needed in this paper are defined in this section.
We also present a simple, yet important, structural theorem for trees which is used
to reduce a tree of size n to one of size

We begin with some basic definitions. Throughout this paper a tree, T
is defined as a directed graph, in which every vertex except the root points to its

unique parent. The weight of a vertex in T is the number of vertices in the
rooted at denoted by If n equals the number of vertices in T, the

weight of the root r is n.

In this section we also consider the decomposition of a tree T into by
partitioning the tree at its vertices, which partitions the edges of T in a natural way.

(subgraphs) are then formed out of each set of edges by reintroducing the
end-point vertices. These subgraphs are known as bridges. The standard formal
definition of a bridge will be presented next.

Let be a subset of V in a graph, G Two edges, e and e' of G, are
C-equivalent if there exists a path e to e' which avoids the vertices C. The
induced graphs, formed from the equivalent classes of the C-equivalent edges, are
called the bridges of C. A bridge is trivial if it consists of a single edge. The
attachments of a bridge B are the vertices of B in C.

Let m be any integer such that 1< m n. One could think of m = where
is the number of processors; but the fact that is not used in this section.
A vertex is m-critical if it belongs to the following set of vertices of T:.

{v V for all children v' of v}.
m m

142 CHAPTER 9. OPTIMAL TREE CONTRACTION

1

Figure 9.1: The Decomposition of a into its 5-Bridges.

The m-bridges are those bridges of in where is the set of rn-critical vertices

of T. Note that an attachment of an rn-bridge B is either the root of B or one

of its leaves. In Figure 9.1 we give a tree and its decomposition into its 5-bridges.

The vertices represented by boxes are the 5-critical vertices, and the numbers next

to these vertices are their weights. Next, we show that B can have at most one

attachment which is not its root.

Lemma 9.2.1 If B is an m-bridge of a tree T, then B can have at most one

attachment, a leaf of B.

Proof: The proof is by contradiction. We assume that B is an m-bridge of a tree

T, and v and are two leaves of B that are also m-critical. We prove that this

is impossible. Let w be the lowest common ancestor of v and in T. Since B is

connected, w must be a vertex of and cannot be m-critical, because if that were
true, then both v and v' would not belong to B. On the other hand, w must be
m-critical since w has at least two children of weight m.

From Lemma 2.1 one can see that there are three types of m-bridges: (1) a leaf

bridge which is attached by its root; (2) an edge bridge which is attached by its root

and one leaf; and (3) a top bridge, containing the root of T, which exists only when

the root is not m-critical. Except for the top bridge, the root of each m-bridge has

a unique child. The edge from this child to its root is called the leading edge of
the bridge.

Lemma 9.2.2 The number of vertices of an m-bridge is at most m + 1.

Proof: Consider the three types of m-bridges: leaf, edge, and top. If B is a leaf
bridge then its root is the first and only vertex in B with weight m. Since

9.2. BASIC GRAPH THEORETIC RESULTS 143

rn > 1, there must exist a unique vertex w in B which is the only child of Thus,

B consists of the subtree rooted at plus Since the weight of w is less than

the number of vertices of B is at most rn. If B is a leaf rn-bridge with rn-critical

root and rn-critical leaf then will have a unique child w in R. Therefore, the

number of vertices in B is - + 2. - < rn since w is not

rn-critical. Thus, the number of vertices in B rn + 1. The case for a top bridge

follows by similar arguments.

Although it is desirable to have few rn-bridges that is not the case
here. This fact can be seen in the example of an unbounded degree tree of height
1where rn < n and every edge is an m-bridge. However, the number of rn-critical

vertices is not large.

Lemma 9.2.3 The number of rn-critical nodes in a tree of size n is at most

1 for n rn.

Proof: Let be the number of nodes in a minimum size tree with k rn-critical

nodes. The lemma is equivalent to the statement:

(-)rn for k 1.
2

(9.2.1)

Inequality 9.2.1 is proven by induction on k. If is rn-critical, then its weight must
be at least rn. This proves 9.2.1 for k 1. Suppose that 9.2.1 is true for k 1

and smaller values of We prove 9.2.1 for k +1. Suppose that T is a minimum

size tree with k + 1 rn-critical nodes. The root of must be rn-critical for it to
be of minimal size, because we discard all of the tree above the first rn-critical

node (the root bridge) without affecting the number of critical nodes. Assuming
is rn-critical, there are two possible cases for the children of root (1) has two

or more children, . . . , and each of their contains an rn-critical node;

or (2) has exactly one child whose subtree contains an rn-critical node.

We first consider Case 1. Let be the number of vertices, and the number of

critical nodes in the subtree of for 1 i t . Since T is of minimum size, . . .,
must be the only children of Thus, k + 1 = and Using
these two inequalities and the inductive we get the following chain of
inequalities:

t

This proves Case 1.

In Case 2 the subtree rooted at contains a unique maximal node w which is

rn-critical, and the subtree of w contains k rn-critical nodes. Thus, the induction

144 CHAPTER 9. OPTIMAL CONTRACTION

hypothesis shows that . Since is an integral multiple of
greater than

The of a tree, T with root is a tree, (V', such that the
vertices are the rn-critical vertices of T union Two vertices, v and in V',
are connected by an edge in if there is an rn-bridge in T which contains both v

and v'. Note that every edge in corresponds to a unique rn-bridge in T, which

is either an edge bridge or the top bridge. Thus by Lemma 9.2.3, T' is a tree with
at most vertices. In the next section we show how to reduce a tree to its

m-contraction, where = n/P in + log time.

9.3 List-Ranking Versus

There are two problems which are very similar, but their complexity is quite dif-
ferent. The first is the List-Ranking problem, where one is given a linked list of
length n packed into consecutive memory locations. The goal is to compute for
each pointer its distance from the beginning of the list. The second problem is
All-Prefix-Sums,where we are given a semi-group (S, and a string of elements,

. . . s,. We may request that the n elements be loaded into memory in
convenient order. The solution is to replace each element with = .
It is easy to see how to generalize the List-Ranking problem to include the All-
Prefix-Sums problem by storing in the pointer and requiring all to be
computed. All known algorithms for List-Ranking solve this generalized problem
for semi-groups at no extra cost. Thus, we could view any All-Prefix-Sumsproblem
as a List-Ranking problem; but this may increase the running time.

It can be shown that an All-Prefix-Sums problem can be computed in 6log n time
on a binary N-cube parallel computer where N n. On the other hand, the
results for List-Ranking use the PRAM model. The problem was first introduced
by Wyllie He gave an n) time n processor algorithm for an EREW
PRAM.This result has been improved upon by many authors. Miller and

give the first time, optimal number of processors algorithm for
this problem. Their algorithm uses randomization and requires the CRCW model.
Cole and Vishkin give the first time deterministic EREW algo-
rithm, using an optimal number of processors. Both of these algorithms involve very

constants. Miller and Anderson give a simple deterministic EREW al-
gorithm and an even simpler, randomized EREW time, optimal algorithm
for Lirt-Rank ing.

the List-Ranking problem can be performed in time on an EREW

9.3. LIST-RANKING VERSUS 145

PRAM using n processors, it translates into an n) algorithm on a

binary N-cube, N Therefore, if the ultimate purpose of a paral-
lel algorithm is to run it on a fixed connection machine, then we should minimize
the number of List-Rankings we perform; and, whenever possible, replace the List-

Ranking procedure with the All-Prefix-Sums procedure. and Upfal
show that once the numbering is known, then the values can be loaded into consec-
utive memory locations in n) time by using a randomized algorithm. Readers

who are interested in the subject should see the improved results of

We shall present our code that, whenever possible, we can perform the All-
Prefix-Sums problem on strings stored in consecutive memory locations. Thus,
the user implements these sums on a fixed connection machine, he can implement
them only in time. We shall refer to All-Prefix-Sums as all prefix sums
over consecutive memory locations.

Tarjan and Vishkin define the notion of a Euler tree tour of an ordered tree.
Recall that we have defined a tree as a directed graph consisting of directed edges
from child to parent. Let be the tree where we have added in the edges.
A Euler tree tour is the path in from root to root which traverses the edges
around the outside of T' in a clockwise fashion, when is drawn in the plane in
an order preserving way.

Figure 9.2 shows how to compute the weights of all nodes in a tree, in parallel, using
the Euler tree tour. This algorithm for computing weights has been derived from
Tarjan and Vishkin

It is an interesting open question whether parallel tree contraction can be per-
formed with only one List-Fbnking or not. In the next section we show that the

of a tree of size n can be constructed with only one List-Ranking of
the Euler tree tour.

. Procedure

1. Number every tree edge 1,and its reverse 0.

2. Compute the All-Prefix-Sums of the Euler tree tour.

3. Compute the weight of each vertex as the between the prefix sums
when we first visited and when we last visited w .

Figure 9.2: Computing the Weights.

146 CHAPTER 9. OPTIMAL TREE CONTRACTION

9.4 Reduction From Size n to Size

In this section we show how to contract a tree of size n to one of size in

time using processors, for logn. If we set = then this gives us

a reduction of a problem of size n to one of size P. In Section 9.6 we show how to
contract a tree of size to a point. In that section we consider the special case of
when tree T is of bounded degree. In Subsection 9.4.2 the general case of when the

tree may be of unbounded degree is discussed.

.

Let us assume that a tree is given as a set of pointers from each child to its parent

and that the tree is ordered, so that the children of a vertex are ordered from left

to right. Further, assume that each parent has a consecutive block of memory cells,

one for each child, so that each child can write its value, when known, into its

location. This last assumption permits us to use the All-Prefix-Sums procedure to

compute the associative functions of each set of siblings. This assumption is used

to determine the rn-critical sets.

9.4.1 The Bounded Degree Case

From Section 9.2, we learned that there are at most rn-critical vertices. Since

we assume in this section that the tree is of bounded degree d, there can be at most

of the rn-bridges common to and below an rn-critical vertex of We also know
that each rn-bridge has a size of at most + 1. To perform the reduction, we
need only find the m-bridges and efficiently assign them to processors in order to

evaluate them. A processor, assigned to each m-critical vertex, computes the value

(function) of the rn-bridges below it. A processor is also assigned to each existing

root bridge, and computes the function for each root bridge. This algorithm is given

in procedural form in Figure 9.3.

We discuss in more detail how to implement the steps in Procedure BOUNDED-
REDUCTION. We start with Step 2 in which the Euler tree tour of T is loaded

into consecutive memory locations. (This step is described in Section 9.3.) This
representation is used in all steps except Step 4. Step 3 is also described in Sec-
tion 9.3. To compute the rn-critical vertices (Step 4), we copy the weight of each

vertex back to the original representation. There, we compute the maximum value

of each set of siblings by using the All-Prefix-Sums procedure on this representation

in the natural way. The maximum value is then returned to the right-most sibling.

Note that the maximum value could have been returned to all siblings, which would
have allowed all vertices to determine if their parents were m-critical with no extra
message passing. The right-most sibling could then determine whether its parent is

an m-critical vertex or not. To enumerate the rn-critical vertices, we can use either
representation of the tree.

9.4. REDUCTION FROM SIZE N T O SIZE 147

Procedure B O UNDED-.RED T)

1. set

2. Compute a List-Itanking of the Euler tree tour c

the edge into memory location i.

T. Use these values to map

3. Using the All-Prefix-Sums procedure, compute the weight of every vertex in

T.

4. Using the All-Prefix-Sums procedure over the original representation, deter-

mine the rn-critical vertices in T.

5. Using the All-Prefix-Sums procedure, assign a processor to each rn-critical

vertex and one to the root.

6. Require each processor assigned in Step 5 to compute the value of the leaf

bridges below it and the unary function for the edge or top bridges below it.

7. Return the rn-contraction of and store the Euler tree tour in consecutive

memory locations.

Figure 9.3: A Procedure that Contracts a Bounded Degree Tree of Size n to One of

Size

In Step 6 we note that each leaf of the rn-bridge is stored in at most consecutive

memory locations: there is one memory location for each edge or its reverse.

On the other hand, the edge and root rn-bridges consist of two consecutive runs of

memory locations with a total size of If we are implementing this algorithm on

a fixed connection machine, then the memory cells of each rn-bridge are contained

in the memory of a constant number of processors. In Step 7 we note that the Euler
tree tour of the rn-contraction of can be constructed without using List Ranking.

9.4.2 The Unbounded Degree Case

In this subsection we show how to compute the rn-contraction of an unbounded

degree tree. In the unbounded case the number of leaf rn-bridges may be much

larger than the number of processors. On the other hand, the number of bridges

that are either a top bridge or an edge bridge is bounded by the number of
critical vertices, which, in turn, is bounded by In the unbounded degree

case, a processor may be required to evaluate many small leaf bridges, since there

may be a large number of them. The procedure, UNBOUNDED-REDUCTION,

given in Figure 9.4.

Steps 1 4are identical to those used in the BOUNDED-REDUCTION procedure.

Steps 5 and 6 assign a processor to a collection of leaf bridges. Step 5 is a straight-
forward, All-Prefix-Sums calculation. Note that all leaf bridges in an interval, -

148 CHAPTER 9. OPTIMAL TREE CONTRACTION

Procedure UNBOUNDED-REDUCTION(T)

1.

2.

3.

4.

5.

6.

7.

a.

9.

set m

Compute a List-Ranking of the Euler tree tour of T and map the edge into

memory location i .

Using the All-Prefix-Sums procedure, compute the weight of every vertex in
T.

Using the All-Prefix-Sums procedure over the original representation, deter-

mine the m-critical vertices in T.

Assign to each leading edge of a leaf bridge a value equal to the weight of its

bridge. To all other edges, a value of zero. Compute All-Prefix-Sums

of value; let be the sum up to e.

Assign processor i to all leaf bridges with leading edge e so that (i - l)m

< im.

Using the All-Prefix-Sums procedure, assign a new processor to each edge or
root m-bridge.

Require each processor assigned in Step 7 to compute the value (unary func-

tion) of the leaf bridge (edge or root) for its assigned bridge.

Return the m-contraction of and store the Euler tree tour in consecutive
memory locations.

Figure 9.4: A Procedure that Contracts an Arbitrary Tree of Size n to One of Size

are stored in consecutive memory locations. Therefore, we need assign a
processor only to the first leaf bridge in each interval. After Step 5, the first
edge of each interval knows that it is the first leading edge. Therefore, we can do

one more All-Prefix-Sums calculation to enumerate the leading edges that are the
first ones in their interval. Using this information, we can then assign the processors

per Step 6. Note, in Step 8, that each processor must evaluate at most 2m vertices.

Another way of assigning processors to bridges is to compute the weight of all m-

bridges and use Step 6 to assign processors to all bridges-not just leaf bridges.

The weight of a leaf bridge is the between its bottom attachment and

its top attachment; and in the Euler tree tour, there are attachments between
the bottom attachment and the top attachment for a leaf bridge. Therefore, we
can compute the weights of all leaf bridges by using one All-Prefix-Sums procedure.
Similarly, we can compute the top bridge weight. This approach may give us a

better implementation in practice.

3

9.6. ISOLATION AND DETERMINISTIC EREW TREE CONTRACTION 149

9.5 Rake and Compress Operations

In this section, we review the Rake and Compress operations that Miller and

use for their parallel tree contraction algorithm. Let Rake be the

operation which removes all leaves a tree T. Let a chain be a maximal sequence

of vertices, in T, such that is the only child of for 1 < and
has exactly one child. Let Compress be the operation that replaces each chain

of length by one of length One possible approach to replacing a chain of

length by one of length is to identify with for odd and 1 < k.

Let Contract be the simultaneous application of Rake and Compress to the entire
tree. Miller and Reif show that the Contract operation need be

executed only n) times to reduce to its mot. They prove the following

theorem.

Theorem 9.5.1 After executions of are performed, a tree of n

vertices is reduced to its mot.

In this section, we present the important definitions, used in the proof of Theo-

rem 9.5.1, that are needed later on in this paper.

Let be the leaves of T, be the vertices of T with only one child, and

be those vertices of T with two or more children. Next, partition the set into

and according to whether its child is in or respectively.

Similarly, partition the vertices into and according to whether

the grandchild is in or respectively. Let = U U U U

V -

Miller and Reif show that Rake reduces the size of Ra by at least a factor

of 1/5 in each application, while Compress reduces the size of by a factor of
1/2 in each application. We use similar techniques in this paper.

9.6 Isolation and Deterministic EREW Contraction

, In Section 9.4 we showed that if we find an EREW parallel tree contraction algo-

rithm which takes time and uses n processors, then we get an

time, log n processor, EREW PRAM algorithm for parallel tree contraction.
Thus, we may restrict our attention to processor In this section, a

technique called isolation is presented and used to implement parallel tree contrac-

tion on an EREW PRAM without increasing time and processor count. We

present a method for prudent tree contraction which is important in more general
tree problems (for example, see Miller and Teng

150 CHAPTER 9. OPTIMAL TREE CONTRACTION

begin

while V do

In Parallel, for all V - do

if is a leaf, mark its parent and remove it;

isolate all the chains of the tree;

Compress each chain in isolation;
If a chain is a single vertex then unisolate it.

(Isolation)

(LocalCompress)

(Integration)
end

Figure 9.5: Isolate and Compress for Deterministic Parallel Tree Contraction when

P n.

.

It is important to understand why the deterministic parallel tree contraction, pre-

sented by Miller and does not work on the EREW model. The
problem arises at the parent of a chain (a node in with a child in is called
the parent of a chain). Using the pointer-jumping algorithm of Wyllie

we encounter the problem that, over time, many nodes may eventually point to
this parent. Now, if becomes a node in then all these nodes must determine

the parent of and point to it, which seems to require a concurrent read. We cir-
cumvent this problem by isolating the chain until it is Compressed to a point. At

that point, we then let it participate in another chain. (See Isolate and Compress
presented in Subsection 9.6.1.)

Theorem 9.6.1 (Main Theorem) contraction can be performed, determin-

istically, an tame P processors on an EREW PRAM f o r all P

log n.

9.6.1 Isolation and Local Compress

Figure 9.5 displays a high level description of our deterministic algorithm for parallel
tree contraction on an EREW PRAM which uses time and n processors

which we call Isolate and Compress.

The difference between the contraction phase used in this algorithm and the dy-

namic contraction phase presented by Miller and is that the
Compress operation here is replaced by two operations: Isolation and Local Com-

press. Each Local Compress operation applies one conventional Compress operation
to an isolated chain during each contraction phase.

9.6.1 After each Isolate and Compress decreases by a factor of at

9.6. ISOLATION AND DETERMINISTIC EREW TREE CONTRACTION 151

Proof: By the way the steps Isolation and Integration are implemented, each

isolated chain has a length of at least 2. Moreover, no two consecutive nodes are

singletons. Thus, a chain consists of an alternating sequence of an isolated chain

and a singleton. We view a chain as a set of pairs where each pair consists of an

isolated chain and a singleton. Each pair is decreased in size by at least a factor of

The worst case is a pair containing an isolated chain of size 3.

,

.
Since step removes 1/5 of and steps Isolation through Intergration removes

1/4 of Corn, together they must remove 1/5 of the vertices. This gives the following
theorem.

Theorem 9.6.2 A tree of n is reduced t o its root after one applies Isolate
and Compress times.

The next two sections present a more detailed implementation of Isolate and Com-

press.

9.6.2 Implementation Techniques

In this subsection, we present one method of implementing the generic contraction

phase on an EREW model in time, using n processors. Another imple-
mentation method is presented in the next subsection. The complexity of these

two implementation methods differsonly by a constant factor. However, they have

different scopes of application.

We view each vertex, which is not a leaf, a function to be computed where

the children supply the arguments. For each vertex v with children, . . . we

will set aside locations, .. . in common memory. Initially, each is empty or

unmarked. When the value of is known, we assign it to and denote it by mark
Let denote the number of unmarked Then, initially, the

number of children of We need one further notation: Let vertex be the

vertex associated with the sole parent of with storage location All vertices
shall be tagged with one of four possibilities: G, M, R, or 8. Vertices with a

nonempty tag belong to an isolated chain. When a chain is first isolated, the root

is tagged R, the tail is tagged G, and the vertices between the root and the tail are

tagged M. A vertex is free if 1 and 8; otherwise, v is not
free.

To determine whether or not a child is free, we assign each vertex a new variable

that is read only by the parent. To determine if a parent is free, we require that

each vertex keep a copy of this variable for each child. Initially, all copies indicate

that the vertex is not free. When the parent vertex becomes it need only

change the copy of the variable associated with the remaining child, since there are

no other children that can read the other variables.

152 CHAPTER 9. OPTIMAL TREE CONTRACTION

Procedure ISOLA TE-COMPRESS

case equals

0)
1) case equals

In parallel, for all V - { r } ,do

Mark and delete

if child is not free and parent is free then G

if parent is not free and child is then

if parent is free and child is free then t M

G) if = R then

M) if = then R

esac

esac

od

.

Figure 9.6: The First Implementation of the ISOLATE- COMPRESS Procedure.

9.6.3 The Expansion Phase

If we use procedure ISOLATE- COMPRESS to, say, evaluate an arithmetic expres-

sion it will not return the value of all subexpression. There is one a one-to-one

correspondence between subexpression and of the expression tree. For

many application it is necessary to compute the value of all subexpressions. This is

usually done by running the contraction phase “backwards” which is called parallel

tree expansion, see To insure that the expansion phase only uses exclusive
reads we must be a little careful, since many nodes may need the value of the same
node in order to compute its value. Thus one solution requires each node to main-
tain a queue of pointers. We store one pointer at node for each node w

which needs the value of to determine its value. A solution using only a constant

amount of space per node can be achieved by several methods.

One easy to describe method can be obtained by reversing the pointers in each

isolated chain and compressing these chain based one the reverse pointers. In this

case, the original root is now the tail and is tagged G while the original tail is now

the root and is tagged R. Otherwise, we run Procedure ISOLATE-COMPRESS
as in Figure 9.6. Each time we apply the procedure we will increment a counter
which we think of as the time. When a node obtains a R tag (except the’ new

root node of the chain) it records the time (the value of the counter) using variable

and the node with tag R that it is now pointing. In the expansion phase node
determines the value of node at time with the clock running

9.6. ISOLATION AND DETERMINISTIC EREW TREE CONTRACTION 153

One can also perform the expansion phase without reversing the pointers in an
isolated chain by simulating the above method directly on the forward
pointers. In this case, during the contraction phase if a node is pointing to a node
w and values have been assigned to the variables and or the tag of is G
then node sets equal to the value of the counter and to w . This method is
basically the same as the first method. The expansion is the same as in the first
method.

.

9.6.4 Prudent Parallel Tree Contraction

One disadvantage of the Local Compress procedure is that, during each Compression
stage, one useless chain is produced out of each chain. For generic tree contraction

this disadvantage appears harmless; but for more general tree problems, such as
those involved in evaluating min-max-plus-times-division trees where the cost to
represent the function on each edge doubles with each functional composition, a

factor of n is added to the number of processors used, and a factor of logn is added
to the running time

The Compress procedure, where no useless chain is produced, is called prudent

Compress. Using prudent Compress, as much as a factor of may be saved in the
number of processors used in certain applications (see Miller and Teng for
further details).

Our idea is very simple: first, isolate each chain; second, use
Ranking algorithm to rank the vertices in the chain; and third, use this ranking
of the vertices in the chain to determine the order in which pairs of vertices are
identified. The procedure is written assuming that the parallel tree contraction is
run asynchronously: a block of processors and memory are assigned the task

of evaluating subprocedure which is then performed independently of the rest of
the processors and memory. It is unnecessary to write the procedure this way, but
it is easier to follow. The Compress part of the procedure is written; the Rake part
remains the same.

Procedure PRUDENT- COMPRESS

8

1)Form isolated chains from free vertices.
2) In parallel, for all isolated chains, in do

COLLAPSE(C) .

is a procedure which computes the ranks of all nodes in an iso-

lated chain and uses this information to Compress the chain in such a way that

REFERENCES 155

time, then a natural modification of parallel tree contraction, called Asynchronous
Parallel Contraction, contracts the tree in n) time. These techniques
work with the Isolation techniques for Compress.

The second way of performing the Rake operation for trees of unbounded degree
is to identify consecutive pairs of leaf siblings as we did when we used Compress
for parent-child pairs [MR]. A run of leaves is a maximal sequence of leaves,

ordered the left-most child follows the right-most child). The operation, Rake
Restricted to Runs,replaces each run of length k by one of length for

2; and, any run of length 1is removed completely. We also remove both leaves

when they are the only siblings.

.. . , which are consecutive siblings. We assume that the siblings are cyclically

,

Theorem 9.6.4 Pamllel Contraction, where Rake is restricted to runs and
Compress uses Isolation, reduces a tree of size n t o its root in applications.

Proof: The proof is a straight forward calculation based upon techniques presented
by Miller and

References

Richard Anderson and Gary L. Miller. Optimal Parallel Algorithms for

List Ranking. Technical Report , USC, Los Angeles, 1987.

I. Bar-On and U. Vishkin. Optimal parallel generation of a computation
tree form. on Programming Languages and Systems,

April 1985.

R. Cole and U. Vishkin. Approximate and exact parallel scheduling with
applications to list, tree, and graph problems. In 27th Annual Symposium
on Foundations of Computer Science, pages IEEE, Toronto, Oct
1986.

Richard Cole and Uzi Vishkin. Deterministic coin tossing with applica-
tions to optimal list ranking. Information and Control, 70(1986.

Eliezer Dekel, Simeon Ntafos, and Peng.
Techniques and Code Opimization,pages 205-216. Volume 227 of Lecture
Notes in Computer Science, Springer-Verlag, 1986.

156 CHAPTER 9. OPTIMAL TREE CONTRACTION

Anna Karlin and Eli Upfal. Parallel efficient implementation
of shared memory. In Proceedings of the 18th Annual Symposium

on Theory of Computing, pages 160-168,ACM, Berkeley, May 1986.

Gary L.Miller and John H. Reif.Parallel tree contraction part 2: further
applications. SIAM J. Comput. submitted.

Gary L. Miller and John H. Reif. Parallel tree contraction and its
plications. In 26th Symposium on Foundations of Computer Science, ,
pages IEEE, Portland, Oregon, 1985.

a

Gary L.Miller and John H. Reif. Parallel Contraction Part 1: Fun-

damentals. Volume 5 , JAI Press,1987. to appear.

Gary L. Miller and Shang-Hua Teng. Systematic methods for tree based
parallel algorithm development. In Second International Conference on
Supercomputing, pages Santa Clara, May 1987.

A. How to emulate shared memory. In Annual Symposium

on Foundations of Computer Science, pages 185-194,IEEE,
Oct 1987.

R. E. Tarjan and U. An efficient parallel biconnectivity algo-

rithm. SIAM J. Cornput., November 1985.

J. C. Wyllie. The Complexity of Parallel Computation. Technical Re-
port TR 79-387, Department of Computer Science, University,
Ithaca, New York, 1979.

