
PARALLEL TREE CONTRACTION'

PART I: FUNDAMENTALS

Gary Miller and John H.

ABSTRACT

This paper introduces parallel tree contraction: a new bottom-up
technique for constructing parallel algorithms on trees. Contraction
can be used to solve a wide variety of problems. Two examples
included in this article are expression evaluation and subexpression
elimination. In this paper we show these applications only require

time and processors on a randomized
PRAM or processors on a deterministic PRAM. In the process
of finding these efficient algorithms we find efficient parallel
algorithms for several other problems including generating random
permutation in parallel and randomized techniques for work load
balancing on

We have found other application of parallel tree contraction
including testing isomorphism of trees, canonical forms for trees,

in Volume 5. 47-72.

by
of my form reserved.

ISBN:

47

48 GARY L. MILLER and JOHN H.

constructing planar embeddings, and testing isomorphism of planar
graphs. These applications appear in a companion paper

1. INTRODUCTION

1.1. Top-Down vs Bottom-Up Tree Algorithms

Trees play a fundamental role in many computations, both for
sequential as well as parallel problems. The classic paradigm applied
to generate parallel algorithms in the presence of trees has been

divide-conquer; finding a vertex which is a separator, and
recursively solving the two subproblems. A now classic example is
Brent’s work on parallel evaluation of arithmetic expressions [B].
This “top-down” approach has severalcomplications, one of which
is finding the separators that must separate the tree into com-
ponents with size of the original size. We define dynamic
expression evaluation as the task of evaluating the expression with
no free preprocessing. If we apply Brent’s method, finding the
separators seem to add a factor of logn to the running time.

We give a “bottom-up” algorithm to handle trees. That is,
all modifications to the tree are done locally. This “bottom-up”
approach, which we call CONTRACT, has two major advan-
tages over the “top-down” approach: (1) The control structure

is straightforward and easier to implement facilitating new

algorithms using fewer processors and less time. (2) Problems for
which it was too difficult or too complicated to find polylog parallel

algorithms are now easy.We believe our lastingcontribution will be
CONTRACT. It has already been applied to finding small separ-
ators for planar graphs in parallel as well as numerous appli-
cations appearing in the companion paper

1.2. The PRAM Model

We shall use the PRAM model of a parallel processing device (see
A PRAM consistsof a collection of processors. Each processor

is a random access machine that can read and write in a common
random access memory. In unit time these processors are allowed
concurrent reads and concurrent writes (CRCW), as well as arith-
metic operations on integers of magnitude upper bounded by
There are two natural implementations of concurrent writes. (1) If

.

Parallel Tree Contraction 49

two or more processors attempt to write in a given location of
common memory then one of the processors will succeed. The

performance of the algorithm should not depend on which processor
succeeds. (2) In the second model concurrent writes in a given

location cause detectable noise to be stored in that location. Unless
otherwise stated we shall assume the first model for concurrent
writes. But all of our algorithms also work with the same perfor-
mance in the second model.

Many of our algorithms use randomization. That is, each
processor has access to an independent random number of mag-
nitude < n per step. A (1-sided) randomized algorithm A is said to
accept a language in time using processors if the
following conditions hold: (1) on all inputs w of length n, A uses at
most time and processors independent of the random
bits; (2) if A rejects w then (3) if A accepts w then with
probability of error at most we can conclude that Note
that we have chosen for our error bound instead of the common
value It generally seems to increase the running time by a factor
of logn to achieve the error bound from an algorithm with error
bound On the other hand, given an algorithm with error
bounded by if we increase the running time by a constant factor
of a we can achieve the tighter error bound We say an

algorithm is 0-sided randomized if it is always correct when it
terminates and the probability of termination is at least 1 -
We often denote 0-sided and 1-sided by subscripts of 0 and 1
respectively (see

All our PRAM algorithms will only use a polynomial number

of processors. We shall take considerable effort to minimize the
number of processors used.

1.3. Expression Evaluation and Our Results

Arithmetic expression evaluation is a good robust problem exhi-

biting our techniques. An arithmetic expression is a tree where the
leaves have values from some domain and each internal vertex has
two children and a label from { +, x , We assume that these
binary operations can be performed in constant time. As we shall
see in the companion paper, these techniques are very general but

most of the ideas will be well illustrated in the case of expression

evaluation.

.

50 GARY L. MILLER and JOHN H.

We exhibit a deterministicPRAM algorithm for dynamic expres-

sion evaluation using time and processors and a

0-sided randomized version of this algorithm using only n)
processors. We then extend these algorithms to evaluate all sub-

expressions using the same time and number of processors. In

comparison Brent [B] showed that expressions of size n could be
transformed into straight-line code of depth n). Dynamic
transformation of code in parallel by Brent’s method seems to

require time.
We also give an algorithm that uses the same resource bounds as

the expression case for computing the value of all subexpressions.
This result is a natural generalization of parallel prefix evaluation
[F,LF, Up to constant factors we use no more time or processors.
The list-ranking problem (see is also a special case. Thus, we
have given an n) time optimal algorithm for list-ranking.This
is the first known n) time and n processor algorithm for

the problem.

1.4. Organization of This Paper

The body of the paper consists of 6 sections. In Section 2 we
define two abstract operations on trees, RAKE and COMPRESS.
We show that only simultaneous applications of these
operations are needed to reduce a tree to a point. In Section 3 we
give both deterministic as well as randomized implementations of
RAKE and COMPRESS both of these implementations reduce a
tree to a point in time using processors. In Section 4
we show how to implement these operations on a randomized
PRAM such that any tree is reduced to a point in time
using an optimal number of processors. We call this implemen-
tation dynamic tree contraction. In Section 4 we also describe
how to generate a random permutation in time using
only processors and how to remove a constant proportion
of the zeros from a random string in (log time using only

(logn) processors. These operations give a general technique
for minimizing the number of processors used. We call this general
technique processor work load balancing. In Sections 5 we apply
dynamic tree contraction to expression evaluation, subexpression
evaluation and related tree problems. In Section 6 we show that a
natural modification of parallel tree contraction, which we call
asynchronousparallel tree contraction, works in n) time even

Parallel Tree Contraction 5 1

if the cost of raking k siblings is k) time. In Section we give
a partial analysis of the random variable MATE that arises in the

parallel tree contraction algorithms.

2. THE RAKE AND COMPRESS OPERATIONS

Let T = be a rooted tree with vertices and root We
describe two simple parallel operations on T such that at most

applications are needed to reduce T to a single vertex.
Let RAKE be the operation that removes all leaves from T. It is

easy to see that RAKE may need to be applied a linear number of

times to a highly unbalanced tree to reduce T to a single vertex. We

can circumvent this problem by adding one more operation.
We say a sequence of vertices ,.. . , is a chain if is the

only child of for 1 i k, and has exactly one child and that
child is not a leaf. The chain is said to have length k. In one parallel
step, we compress a chain by identifying with for i odd and
1 Thus, the chain .. . is replaced with a chain

.. . , Let be the operation on that
“compresses” all maximal chains of in one step. Note that a
maximal chain of length one is not affected by COMPRESS.

Let CONTRACT be the simultaneous application of RAKE and
COMPRESS to the entire tree. We next show that the CONTRACT
operation needs only be executed times to reduce T to its
root.

THEOREM 2.1. After applications of CONTRACT to a
tree on n vertices it is reduced to its root.

Proof. We partition the vertices of into two sets Ra and
such that will decrease by a factor of 4/5 after an execu-

tion of RAKE and will decrease by a factor of 1/2 after
COMPRESS.

Let be the leaves of T, be the vertices with only one child,
and let be those vertices with two or more children. We further
partition the set into ,and according to whether the
child is in and respectively. Similarly we partition the
vertices into GC,, ,and corresponding to whether the
grandchild is in and respectively. Let = u

u u GC, and Corn = V -Ra.

52 GARY MILLER and JOHN H.

To see that the size of Ra decreases by a factor of 1/5 after each
RAKE we show that The inequality followsby observ-

ing the following inequalities:

Note that all vertices in except those of belong to a chain.
Thus, every vertex of Corn belongs to some maximal chain. If
v,,. . . , are the vertices of a maximal chain then either
or GC,. In either case ,..., are the only elements in

the chain belonging to Corn. Thus, the number of elements in a

maximal chain of Corn decreases by at least a factor of 1/2 after

COMPRESS.

The type of argument used in the proof of Theorem 2.1 will be

used in the analysis of several other algorithms which are based on

CONTRACT. Given a tree T = let = Ra and
= Corn as defined in the above proof.

There are many useful applications of parallel tree contraction

and expansion. For each given application, we associate a certain
procedure with each RAKE and COMPRESS operation that we
assume can be computed in parallel quickly. Typically the vertices
of the tree Twill contain labels storing information relevant to the
given application. The RAKE and COMPRESS operations will

modify these labels, as well as the tree itself. To apply parallel tree

contraction to a problemseemsto require findinga general for
implementing and storing the composition of unary functions.

As a simple examplewe consider the case when T is an expression
tree over +, x the RAKE corresponds to the operation of
(1) evaluating a vertex if all of its children have been evaluated or
(2) partially evaluating a vertex if some of its children have been
evaluated. The cost of applying RAKE to an expression tree is the
cost of evaluating a vertex. If a vertex has been partially evaluated
except for one child then the value of the vertex is a
say, + b where Xis a variable of the remaining child, and a and
b are scalars over some semiring. Thus a chain is a sequence of
vertices each of which is a linear function of its child. In this
application, COMPRESS is simply composition of linear
functions. Thus, in this example the only nontrivial observation is

the fact that linear functions in one argument are closed under

composition and each linear function can be represented by two
scalars.

Parallel Tree Contraction 53

This gives a simple proof that (after preprocessing) expressions
can be evaluated in time using processors on a
PRAM. On the other hand, the naive dynamic implementation of
COMPRESS requires n) time since we first will determine the

parity of each vertex on a chain by pointer jumping,

up), then combine consecutively the odd and even vertices
in constant time. In the next section we implement both a deter-

ministic and a randomized variant of COMPRESS that can be
performed in constant time.

3. DYNAMIC TREE CONTRACTION
(DETERMINISTICAND RANDOMIZED)

In this section we describe in more detail two implementations
of COMPRESS. The first is deterministic while the second is
a randomized algorithm (see Section 3.2). The deterministic
algorithm seems to need processors to achieve time.
We will show in Section 4 how to improve the randomized

algorithm to use only processors and time. In
this section we assume that the trees are of bounded degree. The
analysis of parallel tree contraction on trees of unbounded degree
is in Section 6.

3.1. Deterministic Tree Contraction

Let be a rooted tree with vertex set of size n = and root
We view each vertex, which is not a leaf, as a function to be

computed where the children supply the arguments. For each vertex
v with children . . . we will set aside k locations .. .
common memory. Initially each is empty or unmarked. When the
value of is known we will assign it to :this will be simply denoted
by mark . Let Arg (v)denote the number of unmarked Thus,
initially = k, the number of children of v. We need one
further notation: Let vertex be the vertex associated with the
sole parent of v with storage location Figure 1 contains a
single phase of procedure dynamic contraction.

The procedure must detect when equals 0 or 1. If the
number of arguments per vertex is bounded this can be tested in

constant time using the processor assigned to vertex v. In the case
when the number of arguments is unbounded we can assign a

54 GARY L. MILLER and JOHN H.

Figure 1. A dynamic contraction phase.

Procedure Dynamic Tree Contraction:

In Parallel for V - do

1) If = 0 then mark and delete

2) If = 1 then

od

processor to each argument still using at most processors

since the total number of arguments is n - 1. These processors
assigned to the arguments of v can test whether = 0 by

having each processor Q without an argument perform a con-
current write of its index into some memory location of v.

0 if and only if some index is written into this memory
location. To further test if 1, we have each processor
with no argument read and if the value is not the index of then

again writes its index in Thus, Arg (v) 1 if the value of

changes on the second write. In Section 6 we show that procedures
that takes at most k) to test Arg (v)equal 0 or 1 will still give
an overall running time of where k is the number of
arguments of v.

The procedure implements the RAKE in the straightforward
way, while the operation COMPRESS is implemented by pointer
jumping. In line (2) of the procedure each vertex in a chain adjusts
its pointer P,which was initially pointing at its parent, to point at

its grandparent.

More intuition for the procedure dynamic contraction can be
gained by seeing it applied to expression evaluation over { +,
If = 0 then v “knows” its value and passes it on to its

parent. We can test if = 0 or = 1 in constant time
using concurrent reads and writes. If v and are functions of
one remaining argument we will view them as linear functions of
their argument. We store these functions in common memory
indexed by the corresponding vertex. Thus v reads the linear func-
tions of composes it with its own function, and adjusts its
pointer to {vertex [P(v)]}.It follows that this correctly computes
the value of the expression. We next analyze the number of appli-
cations of dynamic contraction.

THEOREM 3.1. The number of applications of dynamic tree con-

traction needed to reduce a tree of n vertices to its root is bounded
above by the numberfor CONTRACT.

Parallel Tree Contraction 55

Proof. Observe that every maximal chain, after dynamic tree
contraction, decomposes into two chains, one essential chain corre-
sponding to COMPRESS and an unnecessary chain that is out of

phase. This second chain has a leaf that is unevaluated. For the

purpose of analysis we can discard the second chain from the

analysis since it will never be evaluated. Thus, a single phase of
dynamic tree contraction is just CONTRACT, after discarding the
unevaluatable chains. It is important to point out that dynamic tree
contraction is slightly faster than CONTRACT since it does not

test if the only child of a vertex is a leaf or not. Thus, some pointer
jumping occurs in dynamic tree contraction that does not occur
in CONTRACT. We used the more conservative contract in

CONTRACT since we felt that for many applications a vertex with
an only child will use the time at this stage to evaluate itself rather

than pointer jumping.

Note that many vertices are not evaluated, that is, for many
vertices v the value is never set to 0 during any stage of
dynamic tree contraction. We will define a new procedure dynamic

tree expansion that will allow the evaluation of all vertices, each
vertex will eventually have all its arguments after completion of the
procedure. We modify dynamic tree contraction so that each vertex
keeps a push-down store Store, of all the previous values of
Here we add line (0) at the start of the block inside the do and od
of dynamic tree contraction.

0) Push on Store, value

We now apply dynamic tree contraction until the root has all
its arguments. Next we apply procedure dynamic tree expansion
given in Figure 2 until all vertices have all their arguments.

We must show that after successive applications of dynamic tree
expansion all vertices have their arguments. As in the proof of
Theorem 3.1 we can discard those chains that have a leaf that will
not be evaluated. The proof is by induction on the trees with only

Figure 2.

Procedure Dynamic Tree Expansion:

In Parallel for all V -

1) t

2) if = 0 then mark

A dynamic expansion phase.

od

56 GARY L. MILLER and JOHN H.

essential chains, as defined in the proof of the previous theorem,
starting from the trivial tree consisting of a singleton vertex and

finishing with the original tree say, = ,..., = T. Now

every vertex in is either a leaf in which case we know its value
or this vertex is missing one argument that is the value of a vertex
in In the latter case this value will be supplied in one application
of dynamic tree expansion. This gives the following theorem.

THEOREM 3.2. At most applications of dynamic tree

contraction and applications dynamic tree expansion are
needed to mark all the vertices.

3.2. Randomized Tree Contraction and Expansion

We next describe a randomized version of CONTRACT. This

algorithm has the disadvantage that it needs access to many random
numbers but it has the advantages that (1) in many cases, it will only

use about half as many function evaluations and (2) it can be modi-
fied into an algorithm that up to constant factors uses an optimal
number n) of processors and still runs in time n). We
describe the algorithm in procedure (see Figure 3).

The rest of this section contains a probablistic analysis of the
procedure randomized contract. We believe that good analysis of
this procedure with attention to constants is important. We first
show that roughly 1/5of the vertices are deleted with probability at
least We use this bounded to show that randomized contract
will reduce a tree to a single vertex in time with high
probability. For the processor efficient randomized contraction
algorithms presented in Section 4.4 we need that randomized con-
traction deletes a constant proportion of the vertices with high

Figure 3. A RANDOMIZED CONTRACT phase.

Procedure RANDOMIZED CONTRACT:

In Parallel for all - {r}which have not been deleted do
1)If = 0 then mark and delete

2) If = 1 then Randomly assign M to

3) If = and = M then do

a)Push on value

c) delete

od

od

Parallel Tree Contraction 57

probability for n large. Thus, we show that randomized contract
deletes at least vertices with probability of failure at most

Note that if we are not concerned about constants then the second
analysis would suffice for both applications.

The analysis will follow arguments similar to those used in the

proof of Theorem 2.1. Here we partition the vertex set into

and as defined in that proof. Again by
similar argument step of RANDOMIZED CONTRACT will
delete at least 1/5 of the vertices in Rake (V) . Steps (2) and (3) of
randomized CONTRACT are called Randomized Pointer Jumping.

The expected number of vertices of Compress that are deleted
in step is where m = We cannot directly
conclude that the median is also Recall, that the of a
random variable is the maximum real number such that
Prob [X We can lower bound the median using the
expected number and the variance of the number of vertices deleted.
Since the number of deleted vertices in each maximal chain is

mutually independent, the number of deleted vertices is the sum of
independent random variables, one for each maximal chain. Let
C , ,. . ., be a list of maximal chains in T where is a chain of
length + 1 . Thus, of the vertices of are members of the set

Let the number of deleted vertices in the chain
after one application of RANDOMIZED CONTRACT be the
random variable MATE,,,,.If m = Compress then the random
variable that is the number of deleted vertices in one phase will be

= + + MATE,, where k is the number of maximal

chains. Thus, the expected value of Xis = By Lemma
7.1 the variance for one chain is + Thus, the variance for

is + = + The variance is maximized

when each = 1. In this case the variance is =

The Chebyshev’s inequality gives the following estimate for the
median of (see [L], p. 244).

LEMMA 3.3. -

Thus In our case this gives
- Therefore for sufficiently large m, m 150,
After some simple computer calculations we conjec-

ture that for m 15 (see Section 7).

THEOREM 3.4. RANDOMIZED CONTRACT deletes at least

- 150 vertices with probability at least

58 G A R Y L. MILLER and JOHN H.

Proof. Let T be the tree input to randomized contraction and
m = Thus, -m = Rake We know that at

least - vertices in are deleted in every phase. We
know from the last lemma that for m 150 at least of the

vertices in Compress (V) are also deleted with probability

Thus, - 150 of the vertices in are deleted with
probability Therefore the total deleted is at least - +

- 150 = - 150.
Let be the number of successes in independent trials with

probabilityp of success on each trial. We shall need one major fact
about the binomial random variable - the probability of being
more than any fixed constant factor from the expected value is
exponentially small. This fact was observed by (see
[JK]). These bounds are commonly known as Chernoff bounds [C].

We shall use the following simply stated bounds

THEOREM 3.5. For any with 0

Prob -

Prob +
and

We use these bounds to show:

THEOREM 3.6. After + 150 applications of RAN-
DOMIZED CONTRACT a tree of vertices will be reduced to a

single vertex with probability of failure at most

Proof. We show that after k = applications of
RANDOMIZED CONTRACT a tree of size is reduced to a tree
of size 150. Since randomized contract always removes at least the
leaves of a tree the tree of size 150 will take at most 150more steps.
We say a given application of randomized contract is a success if it
deletes - 150 vertices from a tree of size and a failure other-
wise. If after k applications the tree has not been reduced to one of
size 150 then we must have had less than successes. In
Lemma 3.4 we showed that probability of success was at least 1/2
independent of the tree. Thus the probability that the tree has more
than 150 vertices after k application is bounded by

wherep = We use the first inequality from Theorem
3.5 to bound this probability. We set = k , = andp = 1/2

Parallel Tree Contraction 59

and check that L(l - The last inequality is a
straightforward calculation. Thus the probability of failure after k
applications is at most To get a probability of error at most

we must just see that That is k but
k.

We next show that RANDOMIZED CONTRACT will delete at
least vertices with only vanishingly small probability of failure.

3.7. One phase of RANDOMZZED CONTRACTfor

any 180 will delete at least vertices with a probability of
failure less than

Proof. Let be the number of vertices in a tree and m be the
number of vertices in Compress (T). If m then -m

vertices are in and therefore at least =

of them are deleted by RAKE. In this case of the vertices

are deleted by RAKE alone without considering vertices deleted by
COMPRESS. Thus, we may assume that It will suffice
to show that of the vertices in Compress (T) are deleted by
RANDOMIZED CONTRACT with small probability of failure.
Let Z Compress be a maximum subset of vertices such that no
vertex in Z is a parent of another vertex in Z, Z is a maximal
independent set. Now each vertex in Z is deleted independentlywith
probability Since the induced graph on is a
forest, the number of vertices in Thus, the number of
vertices deleted is bounded below by the binomial random variable

where p = The probability of failure is bounded by

where = Using the Chernoff bounds from Theorem 3.5 this
probability at most

Using the hypothesis that m and = 3/4 we get the above
probability

For we have that

60 GARY L. MILLER and JOHN H.

4. AN OPTIMAL RANDOMIZED TREE
EVALUATION ALGORITHM

4.1. Improving the Processor Count by Load Balancing

In this section we show how to implement RANDOMIZED

CONTRACT on a tree T with n vertices so that T is reduced to its
root in n) time using n) processors. We will contract
T to a tree of size n at which point we will have a tree small
enough so there is a processor for every vertex of T’and can use one

the deterministic algorithm from the last section. The important
difference in the reduction is that we will be operating on an array

of vertices using only processors as opposed to one processor

for each pointer value. We consider pointers to be either dead or

alive. If all pointers of the array are alive and we havep processors
then we simply assign intervals of pointer values of size to a
single processor.

If the live pointers are interspersed with dead pointers then the time
required for some particular processor to finish its tasks may be
much longer than the expected or average time. We give a method
of balancing the work load using randomization. We consider the
processors to be numbered consecutively. In general if A is an

algorithm originally specified using p processors but only are
available we will assume that A is implemented by assigning each
distinct interval of virtual processors to one actual processor.

Note that by Theorem 3.7 after each phase of randomized con-
tract with very high probability at least of the processors are
assigned to dead pointers. Thus, after (logn)] phases we will
have only active processors. One can assign active tasks to an
initial sequenceof processorsby computing all prefix sumsas follows.

Let . . . be a sequence of zeros and ones where = 1 if
processor i is active and = 0 otherwise, and = . We
now assign the task of processor i to processor It is well known,
see

LEMMA 4.1. All sums of a string of length can be com-
puted in n) time using processors.

This motivates a simple randomized tree evaluation algorithm

using O(n log (log n) processors and n) time (see
Figure 4).

Parallel Tree Contraction 61

Figure 4. A Randomized tree evaluation (simple form).

Procedure Randomized Evaluation (Simple form):

1) 1;
2) While k do

T Randomized

3) Using all prefix sums calculation assign the active

tasks to an initial sequence of processors;

4) While 1 do T RANDOMIZED

(using p processors) (*)

To see that it works in time we use Theorem 3.7. Note

that for some constant and large enough n, step (2) will reduce
to a tree on vertices with probability of failure Now
each execution of (*) will take (logn)] time. Thus, step
(2) requires time. By Lemma 4.1 step (3) takes only

time. By the first remark and large enough we have
Thus, step (4) will only take time with prob-

ability of failure
Thus, the simple form of randomized tree evaluation reduces the

processor count to O[n log (log n], by only “load balancing”
once. To remove the last factor we will load balance
between each application of The goal will be to partially
balance the load as opposed to performing the balancing exactly.
We do the partial first randomly permuting the tasks
and next partially balancing the almost random string of tasks.

4.2. Generating a Random Permutation

In this section we give a processor efficient algorithm to generate
random permutations. Another algorithm appears in In
particular we show:

THEOREM 4.2. There exists a randomized PRAM algorithm
that generates random permutations n cells using time,

n) processors, andprobability is at most

The idea behind the algorithm is extremely simple. We shall
randomly assign the n cells among 2n cells. We call the assigned
position an accommodation.Next we remove the unused cells using
prefix calculations as described in the previous section. To get the
original assignment of the n cells into 2n we will require each of the

n processors to be responsible for findingaccommodations for

62 GARY L. MILLER and JOHN H.

cells. Each processor starts at the beginning of its list of cells
and chooses a random accommodation. The processor will find an
accommodation for the cell with probability at least Thus, the

expected completion time for each processor is at most 2 logn. We

allow each processor trials. If after this many trials, it has

not found accommodations for all its cells the process as a whole

is aborted using the concurrent write ability.

LEMMA 4.3. Theprobability that the above procedure aborts is at

most 1

Proof. Let Y be a random variable corresponding to the
number of accommodations found after t = 12(trials.
Since each trial finds an accommodation with probability at least
1/2 the random variable Y is bounded from above by a binomial
random variable X withp = 1 on t trials. That is Prob (Y x)

(X x) for all x.

Here we use the Chernoff bound:

Prob (X -

Setting = p = and = we get

Thus, the probability of failure for any given processor is at most
Therefore, failure probability as a whole is at most

4.3. Removing a Constant Proportion of Zeros

from a Random Sting

Let = .. . s,, be a random binary string where each is an
independent random variable that takes the value one with prob-
ability p and zero with probability q = 1 We view as a
sequence of live and dead cells where the ith cell is alive if = 1
and dead if = 0. One can remove all dead cells by computing all
partial sums.

Thus, all dead cells can be removed in time using
processors. We need a faster algorithm that uses only

(logn)) time and (logn)) processors. But we require

Parallel Tree Contraction 63

only that the algorithm remove a constant proportion of the dead

cells in a random string.

We shall say that an algorithm on an input string of length n
discardsk zeros if it maps the nonzero elements in a one-to-one way

into a new string of length at most n - k.

THEOREM 4.4. There exists a PRAM algorithm DISCARD
ZEROS using (logn)) time and (logn)) processors

that,for at least 1- of the random strings of length discards
at least zeros, p = 1- and n large.

Proof. We partition n into intervals of size m = plus
one last interval of size m. We fix as a function of later in the
proof. Each interval will be given k = + - conse-

cutive storage locations in which to store its live cells. We assign
(logn)] processors to each interval. In m) time, using

the classical prefix sums algorithm, these processors place the live
cells in their interval. If any interval has more live cells than storage
locations then the process as a whole is aborted using concurrent
write. The algorithm has thus failed on this input.

We first check that if the algorithm terminates then it has in fact
it has discarded zeros. The total space used for storing the

ones is + - 1J, which is less than or equal to

For n (p + this sum is less than + Thus, we
have discarded zeros.

Before we show that the algorithm fails only on a vanish-
ingly small fraction of the strings we analyze the number of pro-
cessorsand the time uses. Sincce there are intervals each using

(logn)) processors the total number of processors used in
(logn)). Since each interval can be packed in parallel, the

total time (besides computing the parameters m and k)will just be
the cost of computing all the prefix sums for a string of length m,

which is m) = (log
The procedure fails on some interval if the number of zeros in

that interval is less than It will to show that the

probability of than zeros in an interval is small.

64 GARY L. MILLER and JOHN H.

Note that + 1 = (1 - for = - and for
large 0. To analyze the probability of failure we use Chernoff
bounds from Theorem 3.5. Let be a binomial random variable
with parameters We have the following bound on the prob-

ability of failure for some interval:

Prob -

Using our values of and and setting = we get

The last inequality follows for 2. Now the probability of failure
on any interval is upper bounded by = Since

2 we get that failure occurs less than of the time.

THEOREM 4.5. There exists a PRAM algorithm using (logn))

time and processors that for at least 1 - of the
strings with b zeros discards at least min zeros.

Proof. To prove the theorem we use the algorithm from the
proof of the previous theorem with p = (n - The analysis of
failure for the previous theorem reduces to Chernoff bounds for
tails of a binomial random variable with parameters m, p . In this
case the random variable is hypergeometric with parameters n, m,
- b. Hoeffding Theorem 4, has shown that the moments of

a hypergeometric are always bound by the moments of a binomial
with the same expected value. Thus, the Chernoff bounds in
Theorem 3.5 can be applied directly to hypergeometric distri-
butions. Thus the arguments used in the proof of Theorem 4.4
apply directly to this case giving an error bound of

4.4. Randomized Tree Evaluation Using n) Processors

We are now ready to describe our optimal randomized tree
evaluation algorithm. The procedure is presented in Figure 5.
Routine (a)generates for each i an upper bound on the size of the
work space at the ith stage of routine (c). The routine (b)generates
in parallel all the permutations that will be needed in routine (c).

We generate all the permutations at once to ensure time.

Tree Contraction 65

Figure 5. An optimal randomized tree evaluation algorithm.

Procedure Randomized Tree Evaluation:

Set t t 31/32;k t T;

While do

In Parallel Generate random permutations ..,

While k do

of sizes .., respectively

1) t RANDOMIZED using processors;

2) Permute the pointers of using

3) Apply DISCARD ZEROS to the list of pointers

4) k t

Randomized

returning at most pointers;

While 1 do

(using a distinct processor at each vertex)

Routine (c) step (1) for each k contracts to generating at
least dead pointers. After randomly permuting the pointers,
step step (3) discards at least dead pointers. When routine
(d) is implemented, T will be stored in an array of pointers of size
at most n). Since no routine will be implemented more than

times we need only make sure that the probability of
aborting at each step is logn for some constant c. These

bounds follow from the preceding theorems and the fact that the
error can be decreased to by simply running an algorithm
twice.

We discuss each of the four routines: (a), (b), (c), and (d) .
Routine (a) is deterministic and thus always works. Routine (b)
generates all n) permutations needed by the algorithm. The
important fact to note is that the sum of their sizes is Thus,
we can generate each in logn time using at most
processors (see Theorem 4.2) all with probability of failure at most

Therefore routine (b)uses n) time and n processors.
The analysis of routine (c) is slightly more complicated. By
Theorem 3.7 RANDOMIZED CONTRACT will fail with prob-

ability at most for sufficiently large n. By Theorem 4.5
DISCARD ZEROS will fail with probability at most also.
Step (1) will take logn) time using processors. Since

is approximately the time taken by (1) is geometrically

decreasing in k . Therefore the total time used by (1) over all values

of k is This same analysis also applies to (2). Using

66 G A R Y L. MILLER and JOHN H.

Theorem 4.5, the procedure DISCARD ZEROS can be speeded only
by using more processors to a minimum time (logn)). Thus,
we must check that logn But Thus,
for n large step (3) also uses total time at most Finally
routine (d) will complete in time by Theorem 3.6 with
failure probability at most Thus, it follows that RANDOM-
IZED TREE EVALUATION will fail with probability at most

Using the parallel tree expansion ideas in Theorem 3.2 we get:

THEOREM 4.6. There exists a 0-sided randomized algorithm

that marks all vertices of a tree in time using
processors.

For deterministic dynamic tree expansion, we had enough
processors so that all the trees . ., computed during dynamic
tree contraction can be stored on the processors local memory using

a pushdown store. Here we have fewer processors so we shall simply
store the tree in common memory with back pointers from vertices
in tree to corresponding vertices in + .Sincethe size of the trees
is decreasing geometrically the total storage is at most linear.

5. APPLICATIONS OF DYNAMIC TREE CONTRACTION

5.1. Arithmetic Expression Evaluation

Let be a tree with vertex set and root We assume each leaf
is initially assigned a value and each internal vertex v, with
children ,. . ., has a label ,..., that assumed to be

of the form . . , where (+, -, x , A bottom-up
approach for expression evaluation is to substitute) into

,..., for each child that is a leaf, and then delete
This method however requires time in the worse case. The
results of Brent imply we can do expression evaluation in
time if we can preprocess the expression however time
seems to be required if the expression is to be evaluated dynamically

on line).

THEOREM 5. I . Dynamic arithmetic expression evaluation can be
done in n) time using processors deterministically and
only n) processors using a 0-sided randomized procedure.

Parallel Tree Contraction 67

Proof. We shall assume that the number of arguments at a
vertex is at most 2. If not we assume that in time we can
convert it into such a tree. As in Brent we shall perform only one
division at the end.

The values stored or manipulated will be sums, products, and
differences of the initial leaf values The value returned will be

a ratio of these elements. The operations { +, -,x , will have

their usual interpretations, + c/d = (ad + The
other main item we need is a way to represent elements from a class
of many functions that is closed under composition. Here we will
use ratios of linear functions of the form, (ax + + d) . We
must verify that they are closed under composition:

+ + d) + b‘

+ + d) + +

5.2. Arithmetic Subexpression Evaluation

By running procedure randomized tree evaluation “backward”
(Figure 5) as we did in the deterministic case (Figure 3) we get:

THEOREM 5.2. AN subexpressions can be computed in the time and
processor bounds in Theorem 5.1.

A special case of computing all subexpressions is the linked-list
ranking problem. Here we have a linked-list and we would like to
compute the position in the list of all elements (see

COROLLARY 5.3. General a linked-list size n, the position
each element in the list can be computed with a 0-sided randomized
algorithm in n) time using n) processors.

6. PARALLEL TREE CONTRACTION FOR TREES
OF UNBOUNDED DEGREE

Up until now we have assumed that the RAKE operation could
be performed in unit time. For many applications this is not the
case. As we shall see in the companion paper the RAKE
operation for certain applications may be considerably more com-
plicated than just deletion. As an example, we may need to sort

68

the labels assigned to the leaves

“ranked.” Here, the parallel time

GARY L. MILLER and

of a vertex before

JOHN H.

they can be
of raking the leaves of a vertex

with k children is If we require the algorithm in this
example to finish a CONTRACT completely before it is allowed

to start the next CONTRACT then it is not hard to construct
examples where the total cost to reduce a tree to its root will be the
cost for RAKE times the logarithm of the size. As an example of

where the Rake operation is not constant time in Part 2 of this
paper we consider the problem of finding canonical labels for trees;
here the RAKE operation consists of sorting the labels of all
siblings before the leaves are removed (see for details). It is
well-known how to sort in time. Thus, the naive analysis
of this algorithm would be that it runs for time. We will
improve the running time by a factor of logn below.

We modify parallel tree contraction so that for those parts of the
tree where CONTRACT has already finished we implement a new
round of CONTRACT, CONTRACT is run asynchronously.
We shall assume that the time used to remove the leaves of a given

vertex is only a function of the number of leaves at that vertex. We
should point out that the synchronous and asynchronous versions
of CONTRACT may return very different answers. In the case of

computing canonical forms for trees by sorting leaves both the
synchronous and asynchronous algorithms are correct. The asyn-
chronous version will be faster.

Asynchronous Parallel Tree Contraction (APTC) can be described
graph theoretically by viewing it as operating on trees with special

leaves that we call phantom leaves. The algorithm APTC is run in
stages. Initially the tree has no phantom leaves. We apply the
procedureCONTRACT to T obtaining the tree T’.If a given vertex

had k 2 children that are leaves excluding any phantom
leaves then we add a new phantom child w to v T‘.Further, if the
time required for APTC to delete these k children of v is then the
phantom vertex w will persist for t stages at which time it simply

disappears. Note that a given vertex may have several phantom
children and a vertex with a phantom child is not a leaf. The time
to execute APTC is the number of stages it takes to reduce the tree
to its root and all phantom leaves to disappear.

6.1. If the cost to RAKE a vertex with k children is

bounded by k) then asynchronous tree contraction requires only
n) time.

Parallel Tree Contraction 69

Proof. Suppose the time to RAKE a vertex with k children is
bounded by clogk for k 2 and RAKE for a single child can be
performed in unit time. We shall analyze the time used by asyn-

chronous parallel tree contraction by assigning weights to the
vertices of the tree such that at any stage of the algorithm the weight

of the tree reflects the progress made so far.

A weighted tree is a tree with weights assigned to the vertices. The
weight of a tree is the sum of the weights of the vertices in the tree.
In this application all vertices will have weight one except phantom
leaves, which may have arbitrary real weights 1 . Thus, initially,

the weight of the tree is the size of the tree.
We describe in more detail how weights are assigned to phantom

leaves. Suppose the time required to rake the k nonphantom leaves
of a vertex v There is a subtle point that is worth pointing
out. Namely, if the time to rake a vertex with k leaves varies from
vertex to vertex this may dramatically affect the way the tree
contracts. Our analysis depends only on an upper estimate for the
time to rake a vertex. We pick which is a function of k,such that

= 1 0. Hence 1 for all k 2. The constant
will be the rate at which the phantom leaf decays. We set the

weight of the new phantom leaf w of v to After each successive
stage we will decrease the weight on w by a factor of until the
weight equals one. In the next stage we will simply delete the
phantom leaf w.Thus, the phantom leaf w will exist forf (k) stages

at which time it will be deleted. Note that the weight of a phantom
vertex is always 1.

As in the proof of Theorem 2.1 we partition the vertices of
into two sets, Ra and Corn. We claim that the weight of Corn

decreases by a factor of 1/2 at each stage while the weight of Ra
decreases by a factor of at least (4 + at each stage, where

= k Note that different phantom leaves
decay at different rates. We have picked to be the slowest such
rate. The fact that Corn decreases by 1/2 follows by noting that the
vertices in Corn are processed the same as in CONTRACT and their
weights are all one. We next consider the case of Ra, Ra =

u u u GC, where is the set of leaves and phantom
leaves. Since the weight on any vertex in is at least one and the
weight of any vertex not in is 1 we see that that weight of is
at least 1/5 of the weight of Ra. On the other hand the weight of
decreases by at least at each stage. Thus, the weight of Ra
decreases by at least a factor of 4/5 + at each stage.

.

70 GARY L. MILLER and JOHN H.

This shows that the number of stages is bounded by logn base
+ For a particular case of interest when clog k for

some constant and k 2 we see that is bounded away from 1
for all n. This proves the theorem.

7. THE RANDOM VARIABLE MATE

Let be the space of all binary strings of length n + for n 1.
Let MATE, be a random variable defined on where MATE,,
equals the number of 01 patterns in a string from Intuitively, 0
is a female and 1 is a male.

LEMMA 7.1. The random variable MATE, has expected value

and variance (n

Proof. Let .. . be a random binary string. Since the expected
value of MATE, substring is 1/4 and there are n such sub-

strings the expectation for s, ...s,, must be Here we used the
fact that expectations sum.

To compute the variance we consider a slightly different random
variable with the same probability distribution. Let be the
binomial random variable on binary stringsof length withp =

We define a random variable with p = 1/2 over the space of all

zero-one strings of length n + 1 as follows:

. . .

.. .

if = 0

if = 1.
. t ,) =

To see that X is simply a change of variables of MATE, consider

the mapping from ...s, to . . . t, defined by and induc-
tively = 0 iff = .One can see that this mapping is surjective
and . . . = . . . Thus, the expected value of X
is and we need only compute the second moment of X ,

= 1/2 + = k)
k odd

+ 1/2 = k)
k even

n

= 1/4 = k) + = k)][k = O k odd

Parallel Tree 71

The first term in the sum is just 1/4 of the second moment of
which is + By a straightforward examination of Pascal’s
Triangle the second term equals since the sum consists of every
other term in a row of Pascal’s triangle, which is equal to the sum

of the row above it. Thus, = + n + Therefore the

= - = (n+
By similar arguments we get the following bound on MATE,:

LEMMA 7.2. Qx Prob x) Prob (MATE,, x)

Prob J x).

One of the referees has noted that Lemma 7.1 follows by a rather
straightforward induction based on covariances. We feel that our
proof while slightly longer is instructive since it shows that the
random variable MA is very closely related to a simple binomial
random variable. We conjecture that the random variable MATE =

MATE,, + + MATE,, where n = + + has all its
moments bounded by the moments of for = If the conjec-
ture is true the analysis of many of the theorems could be simplified

and the constant improved. We hope that this section is of some

help in settling this conjecture.

ACKNOWLEDGEMENTS

This work was supported in part by National Science Foundation Grant

DCS-85-14961 and Air Force Office of Scientific Research AFOSR-82-

0326 (to G.L.M.) and office of Naval Research Contracct
0647 and National Science Foundation Grant 1 (toJ.H.R.).

NOTES

1 . Preliminary version of this paper appeared in Miller and

REFERENCES

[AV] D. Angluin and L. G .Valiant, Fast probabilistic algorithms for hamiltonian

paths and matchings, J . Computer System Sci. (1 8): 155-193 (1979).

I . Bar-On and U. Vishkin, Optimal parallel generation of a computation tree

form, ACM Trans. Programming Languages Systems 348-357 (April

1985).
[B] R. P. Brent, The parallel evaluation of general arithmetic expressions, J . Assoc.

Computing Mach. 2 201-208 (April 1974).

72 GARY L. MILLER and JOHN H.

[C]H. Chernoff,A measure of asymptotic efficiency for tests of a hypothesis based

on the sum of observations. Ann. Math. Statistics 23, 1952.

[F]Faith E. Fich, New bounds for parallel prefix circuits, in Proceedings of the 15th

Annual ACM Symposium on Theory of Computing, pp. 100-109, ACM,

Boston, MA, April 1983.

W. Hoeffding, Probability inequalities for sums of bounded random variables,

Amer. Statistical Assoc. J. 13-30 (March 1963).
[JK]N. J. Johnson and S. Discrete Distributions. Houghton-Mifflin, Boston,

MA, 1969.

[LF] Richard E. Ladner and Michael J. Fisher, Parallel prefix computation, J.

Assoc. Computing Mach. 831-838 (October 1980).
[L] M. Probability Theory, Vol. 1, 4th ed., Springer, Berlin, 1977.

Gary L. Miller, Finding small simple cycle separators for 2-connected planar

graphs, J. Computer System 265-279 (June 1986).

Gary L. Miller and John H. Reif, Parallel tree contraction and its applica-
tions. In 26th Symposium on Foundations of Computer Science, pp.

IEEE, Portland, Oregon,

Gary L. Miller and John H. Reif, Parallel tree contraction. Part 2: Further

applications, SIAM J. Computing, submitted.
John H. Reif, On the power of probabilistic choice in synchronous parallel

computations, SIAM J. Computing 13(1): 46-56 (1984).

John R. Reif, An optimal parallel algorithm for integer sorting, in 26th

Annual Symposium on Foundations of Computer Science, pp. 496-504, ACM,
1985.

Y. Shiloach and U. Viskin, An parallel connectivity algorithm. J.

Algorithms 3: 57-67 (1982).

[U] J. Uspensky, Introduction to Mathematical Probability, 1 ed., McGraw-Hill,
New York, 1937.

U. Vishkin, Randomized speed-ups in parallel computation, in Proceedings of
the 16th Annual ACM Symposium on Theory of Computing, pp. 230-239,
ACM Washington D.C., April 1984.

