P |

LT R e

L b T

PARALLEL TREE CONTRACTION AND ITS APPLICATION

Gary L. Miller!
Department of Computer Science
University of Southern California

Los Angeles, CA 90089-0782

1. Introduction o

Trees play 3 fundamental role in many computations,
both for sequential as well as parallel problems. The
classic paradigm applied to generate parallel algorithms in
the presence of trees has been » divide-conquer®; finding a
*1/3 - 2/3" separator and recursively solving the two
subproblems. A now classic example is Brent's work on
parallel evaluation of arithmetic expressions {5].. This
s{op-down® approach has several complications, one of
which is finding the separators. We define dynamic
expression evaluation as the task of evaluating the
expression with no free preprocess'mg, 1f we apply Brent's
method, finding the separators seems to add a factor of
log n to the running time.

We give a *bhottom-up*® algorithm to handle trees.
That is, all modifications to the tree are done locally.
This *bottom-up*® approach which we call CONTRACT
has two major advantages over the *top-down® approach:
(1) the control structure is straight forward and easier to
implement facilitating Dnew algorithms using fewer
processors and less time. (2) problems for which it was
too difficult or too complicated to find polylog parallel
algorithms are now easy. We believe our lasting
contribution will be CONTRACT. It has already been
applied to finding small separators for planar graphs in
parallel {15}. o _)

" We shall use the P-RAM model of 2 parallel processing
device see (21 A P-RAM consists of 2. collection
processors. Each processor is a random access machine
where it can read and write in a common random access
memory. In unit time they are allowed concurrent reads
and concurrent writes (CRCW), as well as arithmetic
operations on integers of magnitude 20 (1), There are two
natural implementations of concurrent reads. . (1) if two
or more processors attempt to write in a given location of
common memory then one of the processor will succeed.
The preformance of the algorithm should not depend on

-

IThis work was supported in part by ‘National Science Foundation .

grast N‘i?-'(_'?-80-07756 and Air Force Office of Scientific Research
AF OSR-82-0326 ’ .

2This work was supported by Office of Naval Research Contract
N000l4-80-C-0647 and National. Science Foundation grant
DCR-85-03251 ' -

BRSNS LT HA N) 1985 IEEE

John H. Reif?
Aiken Computation Lab.
Harvard University
Cambridge, MA 02138

which processor succeeds. (2) In the second model
concurrent reads in 3 given location cause detectable noise
to be stored in that Jocation. Unless otherwise stated we
shall assume the first model for concurrent reads. But,
most of our algorithms work with the same performance
in the second model.

Many of our algorithms use randomization. That is,
each processor has access to an independent random
number of magnitude < ne per step. A (L-sided)
randomized algorithm A is said to accept 2 language L in
T\n) time using P(n) processors if the following conditions
hold: (1) on all inputs w of length n A uses at most T(n)
time and P{n) processors independent of the random bits;
@il A accepts w then w€L else A s correct with
probability of error > 1-1/n. Note that we have chosen
1/n for our error bound instead of the common value 1/2.
It seems to increase the running time by 2 factor of logn
to achieve the error bound 1/n from an algorithm with
error bound 1/2. On the other hand, to achieve the
tighter error bound 1/n® only increases the runping time
by a factor of a. We say an algorithm is 0-sided
randomized if it is alway correct when it terminates and
the probability of termination is 2 1-1/n. We often
denote O-sided and 1l-sided by subscripts of 0 and 1
respectively, see 7).

All our P-RAM algorithms will only use a polynomial
number of processors. We shall take considerable effort
to minimize the number of processors used. Most of these
results can also be expressed in terms of circuits with
“simultaneous depth O (logn)o (1) and 2O size. We
leave the discussion of circuit size to the final paper.

The Main Results of This Paper

1. We exhibit a deterministic P-RAM algorithm for
dynamic expression evaluation using O {log n) time and
O (n) processors and a O-sided randomized version of
this algorithm using only O (n/log n) processors.

2. We extend the algorithms in 1. to evaluate all
subexpressions using the same time and number of
processors.

3. We exhibit a 0-sided randomized algorithm for testing
isomorphism of trees, subtrees, and subexpressions
using O (log n) time and O (n/logn) processors. We

478

R

e T A

*
r

Bde

st ks
Py ot g b W

RS

S

Pt g Y e e

also exhibit a deterministic O (logn) time algorithm

using O(nzlog n) processors for canonical forms of
trees.

4. We show that the tree of 3-connected components (as
defined by Hopcroft & Tarjan [9]) is constructible in
O (log n) time on a P-RAM. -

5. We construct an O (Iog2n) time P-RAM algorithm that
"~ computes explicit planar embedding of planar graphs
even if the graphs are not 3-connected.

" 6. We construct an O (Iogan) time P-RAM algorithm that
computes a canonical form for planar graphs.

Previous Work

We compare each of these new results with previous
work. '

1. Brent [5] showed that expressions of size n could be
rewritten in straight-line code of depth O (log n).
Natural dynamic implementations of this work in

parallel seem to require O (Iogzn) time.

2. Our result is a natural generalization of parallel prefix
evaluation [7, 24]. Up to constant factors we use no
more time or processors.

3. Ruzzo [20] shows that isomorphism of trees of degree at
most log n could be done in O (log n) time. No polylog
parallel algorithm was known for tree isomorphism of
unbounded degree. :

4 Ja’Ja’ and Simon [11] give an O (logn) P-RAM

algorithm for finding maximal subsets of vertices which

_ are pairwise 3-connected, but they do not address the

problem of finding the tree of 3-connected components.

In particular, they do mot construct embeddings of
general planar graphs.

5. Ja'Ja’ and. Simon [11] give an O (log’n) P-RAM
algorithm for constructing embeddings of 3-connected
-graphs but only test, in principal, if a general graph is
- planar.

6. No previous polylog parallel algorithm for testing
isomorphism of planar grapbs existed.

The body of the paper consists of 6 sections. This
section states the main results of this paper and compares
these new results with previous work. In section 2 we
define two abstract operations on trees, RAKE and
COMPRESS. We show that only O (log n) simultaneous
applications variance of these operations are needed to
reduce a tree to a point. In section 3 we show how to
implement these operations on a randomized P-RAM in
unit time using an optimal! number of processors. We call
this implementation Dynamic Tree Contraction. In
sections 4, 5-and 6 we apply Dynamic Tree Contraction ta

479

expression evaluation, and tree isomorphism, and

canonical forms for trees and planar graphs.

2. The RAKE and COMPRESS Operations

Let T=(V,E) be a rooted tree with n nodes and root r.
We describe two simple parallel operations on T such that
at most O (log n) applications are needed to reduce T to a
single node. . ’

Let RAKE be the operation of removing all leaves from
T. It is easy to see that RAKE may need to be applied a
linear number of times to a highly unbalanced tree to
reduce T to a single node. We can circumvent this
problem by adding one more operation.

We say a sequence of nodes v,,...,v, is 8 chain if v, is
the only child of v, for 1 < i<k, and v, has exactly one
child and that child is not a leaf. In one parallel step, we
compress a chain by identifying v; with v, for i odd and
1 < i < k. Note that if we represent T as an expression,
then it is easy to find each maximal chain and its vertices
in O (log n) time using O (n) processors. Let COMPRESS
be the operation on T which contracts all maximal chains
of T in one step. Note that maximal chains of length one
are not effected by COMPRESS.

Let CONTRACT be the simultaneous application of
RAKE and COMPRESS to the entire tree. We next show
that the CONTRACT operation need only be executed
O (log n) times to reduce T to its root.

Theorem 1: After [logsﬂn] executions of
CONTRACT to a tree on n vertices it is reduced to its
root.

Proof. We partition the vertices of T into two sets Ra
and Com such that |Ra| will decrease by a factor of 4/5
after an execution of RAKE and Com will decrease by a
factor of 1/2 after COMPRESS.

Let V,, be the leaves of T, V] be the vertices with only
one child and let V, be those vertices with 2 or more
children. We further partition the set V) into Cy Cpr and
c, according to whether the child is in V{;, Vi and V,
respectively. Similarly partition the vertices C, into GC,,
GC,, and GC, according to whether the grandchild is in
Vo Vi and v, respectively. Let
}i’a=V0UV2UCoUCQUG'C0 and Com=V—Ra.

To see that Ra decreases by a 1/5 after each RAKE we
show that |Ra] < 5|Vyl. The inequality follows by noting
that [Vl <1Vl Gl S 1Vl 1GCol < IVl
IC} S V5.

Note that every vertex in V| except those of C, belong
to a chain. Thus every vertex of Com belongs to some
maximal chain. If Vl"'"Vk are the vertices of a maximal
chain then either VkGC2 or VkEGCO' In either case
Vl,...,Vk_1 are the only elements in the chain belonging to
Com. Thus, the number of elements in a maximal chain

of Com decreases by at least a factor of 1/2 after
COMPRESS. o

and

e
g .

—— -
last’

SR sedarsce o 2

me e o
et o

g A m AT
gl ¥

et s 3t

o
i o

The type of argument used in the proof of theorem 1
will be used in the analysis of several other algorithms
which are based on CONTRACT. Given a tree T=(V,E)
let Rake(V)=Ra and Compress(V)=Com as defined in the
above proof. ' :

There are many useful applications of parallel tree
contraction and expansion. For each given application, we
associate a certain procedure with each RAKE and
COMPRESS operation which we assume can be computed
in parallel quickly. (Typically the vertices of the tree T
will contain labels storing information relevant to the
given application. The RAKE and COMPRESS
operations will modify these labels, as well as the tree
itself.) A

As a simple example in the case when T is an
expression tree over {-,4} the RAKE corresponds to the
operation of 1) evaluating a node if all of its children have
been evaluated or 2) partially evaluating a node if some of
its children have been evaluated. The cost of applying
RAKE to an expression tree is the cost of evaluating a
pode. If a node has been partially evaluated except for
one child then the value of the node is a linear function of
the child, say, aX+b where X is a variable. Thus a chain
is a sequence of nodes each of which is a linear function of
its child. In this application, COMPRESS is simply
pairwise composition of linear functions.

This gives a simple proof that (after preprocessing)
expressions can be evaluated in time O (logn) and O (n)
processors on a P-RAM. On the other hand, the paive
dynamic implementation of COMPRESS requires
O (log n) time since we first will determine the parity of
each node on a chain by pointer jumping, ie., (doubling-
up), then combine consecutively the odd and even nodes
pairwise in constant time. In the next section we
implement randomized variant of COMPRESS which can
be performed in constant time.

3. Dynamic Tree Contraction (Deterministic

and Randomized)

3.1. Deterministic Tree Contraction

In this section we describe in more detail two
implementations of COMPRESS. The first is deterministic
while the second is a randomized algorithm which is given

. in subsection . The deterministic algorithm seems to need

0(n) processors to achieve 0O(log n) time. We will show in
section 4 how to improve the randomized algorithm to
only use 0(n/log n) processors and O{log n) time. In this
section we assume that the trees are of bounded degree.
The analysis of trees of unbounded degree is in section .
Let T be a rooted tree with node set V of size n=|V]
and root r € V. We view each node, which is not a leaf, as
a function to be computed where the children supply the
arguments. For each node v with children v,..v, we will

set aside k locations I,..1, in common memory. Initially
each [; is empty or unmarked. When the value of V,is

known we will assign it to l: this will be simply denoted
by mark I. Let Arg{v) denote the number of unmarked
I.. Thus, initially Arg(v)=Fk the number of children of v.

t

We need one further notation; let node(P{v})) be the node
associated with storage location F(v). Figure 3-1 contaios
a Dynamic Contraction Phase.

_Procedure Dynamic Tree Contraction
In Parallel forallv€ V—{r}deo
1) If Arg(v)=0 then mark P{v) and delete v
2) If Arg(v)=Arg(node(F(v))=1 then
F(v) — Pnode(P{2)
od
Figure 3-1: A Dynamic Contraction Phase

The procedure implements the RAKE in the straight
forward way; while the operation COMPRESS is
implemented by pointer jumping. In line 2) of the
procedure each node in a chain adjusts its pointer P
which was initially pointing at its parent, to point at its
grandparent. '

More intuition for the procedure Dynamic Contraction
can be gained by seeing it applied to expression
evaluation over {X,+}. If Arg(v)=0 is applied then v
»knows® its value and passes it on to its parent. We can
test if Arg(v)=0 or Arg(v)=1 in constant time using
concurrent reads and writes. If v and P(v) are functions
of one remaining argument we will view them as linear
functions of their argument. We store these functions in
common memory indexed by the corresponding vertex.
Thus v reads the linear function of P(v), composes it with
its own function, and adjusts its pointer to P(node(P(v))).
It follows that this correctly computes the value of the
expression. We next analyze the number of applications of
Dynamic Contraction used.

Theorem 2: The number of applications of Dynamic
Tree Contraction needed to reduce a tree of n nodes to its
root is identical to the number for CONTRACT.

Proof: Observe that every maximal chain, after
dynamic tree contraction, decomposes into two chains,
one essential chain corresponding to COMPRESS and an
unnecessary chain that is out of phase. This second chain
has a leaf that is unevaluated. For purpose of analysis we
can discard the second chain for the analysis since it will
never be evaluated. Thus a single phase of dynamic tree
contraction is just CONTRACT, after discarding the
unevaluatable chains.)

Note that many nodes are not evaluated, that is, for
many v Arg{v) is pever set to 0 during any stage of
Dynamic Tree Contraction. We will define a new
procedure Dynamic Tree Expansion which will allow the
evaluation of all nodes, ie., each node will eventually
have all its arguments after completion of the procedure.
We modify Dynamic Tree Contraction so that each node
keeps a push-down store Store,, which is initially empty of

all the previous values of Pv). Here we add line 0) at the
start of the block inside the do and od of Dypamic Tree

A

et i b bl A s

Contraction: - :
0) Push on Store,, value RAV).

We now apply Dypamic Tree Contraction until the
root r has all its arguments. Next we apply procedure
Dynamic Tree Expansion given in Figure 3-2 until all
nodes have all their arguments. .

Procedure Dynamic Tree Expansion
In Parallel for al) veg V—-{r}do

- 1) AV) +~ Pop|(Store)
© 9) if Arg(v)=0 then mark Av).
od ‘

" Figure 3-2: A Dynamic Expansion Phase

We inust show that after successive applications of
Dynamic Tree Expansion all nodes have their arguments.
As in the proof of Theorem 2 we can discard those chains
that have a leaf which will not be evaluated. The proof is
by induction on the trees with only essential chains, as
defined in the proof of the previous theorem, starting
from the singleton r and finishing with the original tree T,
say, {r}=Tl,...,Tk=T. Now every node in T; is either a
leal in which case we know its value or it is missing one
argument which is the value of 3 node in T, In the later
case this value will be supplied in one application of
Dynamic Tree Expansion. This gives the following
theorem.

n] spplications of
dynamic tree contraction and “095/4 n] applications of
dynamic tree expansion are needed to mark all nodes.

Theorem 3: In at most “095/4

3.2. Randomized Tree Contraction and Expansion

We next describe 2 randomized version of
CONTRACT. This algorithm has the disadvantage that it
needs access to many random numbers but it has the
advantages that 1) in many cases, it will only use about
half as many function evaluations and 2) it can be
modified into an algorithm which up to constant factors
uses an optimal number 0(n/log n) of processors and still
funs in time 0{log n).

The analysis will follow arguments similar to those
used in the proof of Theorem 1. Here we partition the
vertex set V into Rake(V) and Compress(V) as defined in
that ‘proof. Agsain by similar arguments step 1) of
RANDOMIZED CONTRACT will delete at least a 1/5 of
the nodes in Rake(V). Steps 2) and 3) of randomized

" CONTRACT we call Randomized Pointer Jumping. The
expected number of nodes of Compress(V) which are
deleted in step 3c) is m/4 where m=|Compress(V)|. We

" cannot directly conclude that the median is also mf4. We
can lower bound the median using the expected number
and the variance of the pumber of nodes deleted. Since
the number of deleted nodes in each maximal chain is
mutually independent, the number of deleted nodes is the

_sum of independent random variables, one for each

maximal chain. Let Cl,....Ck be s list of maximal chains

481

"m<l we argue as follows.

. Procedure RANDOMIZED CONTRACT
In P‘arallel for all v € V—{r} which bave not been
deleted do
1) If Arg{v)=0 then mark F{v) and delete v;
2) I Arg(v)=1 then
randomly assign Mor F to Sex(v). '
3) It Arg{v)=F and Arg(node(P{v)))=M#then do
a) Push on Store, value Plv); .
b) Flv) — Finode(Plo));
¢) delete node(F{v)).
- od
od

Figure 3-3: A RANDOMIZED CONTRACT P.hasé

in 7 where C;is 2 chain of length m+1 Thus, m; of the
nodes of C; belongs to Compress(V). Let the pumber of

deleted nodes after one application of RANDOMIZED
CONTRACT be the random variable MATE_ . It
1

=|Comprcss(Vj| then the random variable which is the
number of deleted nodes in one phase will be

X=MATEm.+...+MATEmk where k is the number of
) 1 o .
maximal chains. Thus, the expected value of X is~

E(X)=m/4. By Lemma 30 the variance for one chain is
(m+2)/18. Thus, the variance - for X i

T, (m+2)/16=(m42K)/16. The is
maximized when each m=1. In this case the variance is
Var{X)=3m/16.
following estimate for the
page 244).

Lemma 4: [u(X)-E(X)| £ vavar(X)
Thus p(X) 2 E(X)—V2Var(E).

In our case this gives p(X) 2 m/4—V3m/8.

Therefore for sufficiently large m §(X) > m/5.

Theorem b: For any ¢>0 and sufficiently large n
RANDOMIZED CONTRACT deletes at least (1—¢Jn/5
vertices with probability at least 1/2. . _

Proof: Let T be the tree input .to Randomized
Contraction and m=|Compress(V)|. Thus,
n—m=|Rake(v)]. We know that at least (n—m)/5 vertices
in Rake(v) are deleted in every phase. We know by the
last lemma for m sulficiently large, say.l,-m/$ of the
vertices in Compress(V) are also deleted. In the case when

For n>ife we bave

(n~m)/5 2 (n=0)/5 2 (n—en)/5 2 (1—¢nf5. We have
shown that for n large and m small the vertices deleted
by RAKE will suffice to prove the theorem. B 8

We next show that RANDOMIZED CONTRACT will
delete at least (1—¢)n/8 nodes with only exponentially
small probability of failure for any ¢>0. Let S, be the
number of successes in n independent trials with
probability p of success on each trial. We shall peed one
major fact about the binomial random variable S . The

variance

The Chebichev inequality gives the
median of X, #(X), see ({14

18

.
)
N

b
\
al‘\

P

* ariews Prp- A

 Lon e e ————

probability of being more than any fixed constant from
the expected value is exponentially small. This fact was
observed by Uspensky (23], see [12]. These bounds are
commonly known as Chernoff bounds {8]. We shall use
the following simply stated bounds (3].

Theorem 6: For any 1>¢>0
2
ProblS, < [(1—e)npl] < ¢=¢ "P1% and,

Prob[S, 2 [(1+enpl] < c—‘z""/s.

We use these bounds to show: .

Theorem 7: One phase of RANDOMIZED
CONTRACT for any ¢>0 will delete at least (1—)n/8
nodes with the probability of failure less than e)
where ¢ is a positive constant only depending on ¢

Proof: Let n be the number of nodes in a tree T and
m the number of nodes in Compress(T). If m < 3n/8 then
n—m > 5n/8 nodes are in Rake(T) and therefore at least
1/5(5n/8)=n/8 of them are deleted by RAKE. In this
case n/8 of the podes are deleted by RAKE alone without
considering nodes deleted by COMPRESS. Thus, we may
assume that m>3n/8. 1t will suffice to -show that
(1—¢)m/8 of the podes in Compress(T) are deleted by
RANDOMIZED CONTRACT with small probability ‘of
failure. Let IC Compress(V) be 2 maximum subset of
nodes such that no node in I is a parent of another node
in I, i.e. Iis an independent set. Now each node in Iis
deleted independently with probability 1/4. Since the
induced graph on Compress(T) is 2 forest, the number of
nodes in |1} > [m/2]. Thus the number of nodes deleted is
bounded below by the binomial random variable S‘m /21
The probability that less than (1—¢)m/8 podes of
Compress(T) are deleted then using Chernoff bounds is:

< Prob(S[mm S (1—:)[m/2]1/4) . S e—ng,m/ﬂls

< —Em[2)16
Using the hypothesis that m > 3n/8 we get that the
above probability:

2, 107 ' :
<e* 3n/2 —o~cI where c=e23/2". : - .0

4. An Optimal Randomized Tree Evaluation
Algorithm

4.1. Improving the processor count by load
balancing) o
In this section Wwe show how to implement
RANDOMIZED CONTRACT on a tree T so that T is
reduced to its root in 0(log n) time using -0(n/log n)
processors. The important difference here is that we will
_ be operating on an array of n nodes using only ol(n)
processors as opposed to one processor for each pointer
value. We consider pointers to be either dead or alive. If
all pointérs of the array are alive and we -have p
processors then we simply assign intervals of pointer
values of size [n/p] to 2 single processor. g

If the live pointers are interspersed with dead pointers
then the time required for a processor to finish its tasks
may be much longer than the expected or average time.
We give a method of balancing the work load using
randomization. We consider the processors to be
numbered consecutively. In general if A is an algorithm
originally specified using p processors but only p' are
available we will assume that A is implemented by
assigning each-distinct interval of [p/PN virtual processors
to one actual processor.

Note that after each phase of randomized contract

_* with very high probability at least 1/8th of the processors

are assign to dead pointers, Theorem 9. Thus after 0(!! n)
phases, where Il n=log{log n) we will have only nflogn
“active processors. One can assign active tasks to an initial
sequence of processors by computing all prefix sums as
follows. .

Let 8,...8, be a sequence of zeros and ones where sl.—-:l

if processor i is active an 0 otherwise, and ak=2§=1 8
We now assign the task of processor i to processor a; Ttis
well known, see [24]: ,

. Lemma 8: All prefix sums of a string of length n can
be computed in 0(log n) time using 0(n/log n) processors.

This motivates 2 simple randomized tree evaluation
algorithm using 0(nll nflogn) processors and 0(log n)
time.

Procedure Randomized Tree Evaluation (Simple form)
1). Set p +— [nll n/log n), k+—1
2). While k < cltn) do

T — Randomized Contraction(T) *)
{using p processors)

od
-3). Using all prefix sums calculation assign the active
tasks to an initial sequence of processors.
4). While i>1do
T — RANDOMIZED _CONTRACT(T)
od

- Figure 4-1: A Randomized Tree Evaluation (simple
form)

To see that it works in O{log n) time we use Theorem 9.
Note that for some constant ¢ and large enough n that
step 1) will reduce T to a tree on [n/log n] nodes with
probability of failure < 1/n. Now each execution of (*)
.will take O(log n/il n) time. Thus step 1) requires 0{log n)
time. By lemma 8 step 2) only takes 0(log n) time. By the
first remark and large enough ¢ we have IT} < n/logn.
Thus step 3) will only take (log n) time with probability of
failure < 1/n.

Thus the simple form of randomized tree evaluation
reduces the processor count to O(nll nflog n), by only
*]Joad balancing® once. To remove the last i n factor we
will load balance between each application of (*). The
goal will be to partially balance the load as apposed to

482

:';’
|
i
!
:

’rs

an’

on

f.vn)

N

at
th
+)
n)
he

“of

o
y
ve
be
to

performing the balancing exactly. We do the partial
balancing by first randomly permuting the tasks and next
partially balancing the almost random string of tasks.

4.2. Generating a Random Permutation

In this section we give a processor efficient algorithm
to generate random permutations. An other algorithm
appears in this proceedings (19]. In particular we show:
- Theorem 9: There exist 2 randomized P—RAM
algorithm which generates random permutations of n cells
using O (logn) time, 0(n/logn) processors, and
probability of failure is at most 1/n.

The idea behind the algorithm is extremely simple. We
shall randomly assign the n cells to 2n cells, which we call

- accommodations. Next we remove the unused cells using

prefix calculations as described in the previous section. To
get the original assignment of the n cells in 27 cells each
of the n/logn processor will be responsible for finding
accommodations for log n cells. Each processor starts at
the beginning of its list of cells and chooses a random
accommodation. The processor will find an
accommodation for the cell with probability at least 1/2.

" Thus the expected completion time for each processor is

at most 2logn. We allow each processor 12[log n] trials.
If after this many trails, it has not found accommodations
for all its cells the process as a whole aborts using the
concurrent write ability.

Lemma 10: The probability that the above procedure
aborts is at most 1/n

Proof: Let Y be a random variable equal to the
number of accommodations found after t=12([logn])
trials. Since each trial finds an accommodation with
probability at least 1/2 the random variable Y is bounded
above by a binomial random variable X with p=1/2 on ¢
trials. ,

Here we use the Chernoff bound:

ProbX < [(1—dpt]) < e 2

Setting ¢=5/6, p=1/2, and t=12[log n] we get:
Prob(X < [log n]) < e—(25/12)[log n] < e Hoon < l/n2

Thus, the probability of failure for any given processor

*is at most 1/n”. Therefore, failure as a whole is at most

i/n. ‘ 3 0

4.3. Removing a Constant Proportion of Zeros
From a Random String

~ Let o=s,...3,; be a random binary string where each s;
is an independent random variable which takes the value
one with probability p and zero with probability g=1—p.
We view ¢ as a sequence of live and dead cells where the
ith cell is alive if =1 and dead if s;=0. One can
remove all dead cells by computing all partial sums.

Thus, all dead cells can be removed in O(logn) time
using 0(n/log n) processors. We need a faster algorithm
that uses only O(/l n) time and 0(n/ll n) processors. But

we only require that the algorithm remove 2 constant
proportion of the dead cells in a random string. '

We shall say that an algorithm on 2 input string o
discards k zeros if it reorders all but at least k zero
elements of ¢ into a contiguous string.

Theorem 11: There exist a P—RAM algorithm
DISCARD ZEROS using O(ll n) time and O(n/ll n)
processors which, for at least 1—1/n of the random strings
o of length n, discards at least qn/2 zeros, p fixed.

Proof: Set e=g/2p 2nd c=24p/q2. We partition n
into intervals of size m=[c(In n)] plus one last interval of
size <m. Each interval will be given
k=[(p+q/2)m]=[(l+c)mp'| consecutive storage locations
in which to store its live cells. We assign 0(m/ll m)
processors to each interval. Using O(logn) time these
processors place the live cells in its interval. If any
interval has more live cells than storage Jocations then the
process as a whole is aborted using concurrent write. The
algorithm has thus failed on this input.

Before we show that the algorithm only fails on 2
vanishingly small fraction of the strings we analyze the
number of processors and the time used. Since there are
[n/m] intervals each using 0(m/Il m) processors the total
pumber of processors used is O (n/ll n). Since each
interval can be packed in parallel the total time (besides
computing the parameters m and k) will just be the cost
of all prefix sums for a string of length m, which is
0(log m)=0(l! n).

To analyze the probability of failure we use Chernoff
bounds Lemma 6. Let X be a binomial random variable
with parameters m,p. We have the following inequality:

Prob(X > [(1+€e)mp]) < e"‘z"’pls

This is an estimate that we failed on some fixed
interval. Using our values of ¢ and m we get:

Prob(X > k) < 1/n?

Now the probability of failure on any interval is upper
bounded by (n/m)l/n2=l/mn. Since m > 2 we get that
failure ocours less than 1/n of the time. -0

Theorem 12: There exist a P-RAM algorithm using
o(ll n) time and 0(n/ll n) processors which for at least
1—1/n of the strings with b zeros discards at least b/2
Zeros.

Proof: To prove the theorem we use the algorithm
from the proof of the previous theorem with p=(n—b)/n.
The analysis of failure for the previous theorem reduces to
Chernoff bounds for tails of a binomial random variable
with parameters m,p. In this case the random variable is
hypergeometric with parameters n,m,n—b. Hoeffding

(8] has shown that the tails of a hypergeometric are
always bound by a binomial with the same expected
value. Thus Chernoff bounds can be applied directly in -
this case giving an error bound of 1/n. O

483

. S T
e Pt A B, ST i pn et

JUTRPNPUS

O ICOCIRIIN S

=0 o

rid M PPN o I i]

}
i
'
1

v oo e

4.4. Randomized Tree Evaluation using 0(n/log n)
Processors

We are now ready to describe our optimal randomized
tree evaluation algorithm. The procedure is presented in
Figure 4-2. Routine (a) generates for each 1 an upper
bound z; on the size of the work space at the ith stage of
routine (c). The routine (b) generates in parallel all the
permutations that will be needed in routine (c). We
generate all the permutations at once to insure O{log n)
time. Routine (c) step 1) for each k contracts T to Ty

generating at least a:k/lﬁ dead pointers. After. randomly

permuting the pointers, step 2), step 3) discards at least
1/32 of the dead pointers. When routine (d) is
implemented, T will be stored in an array of pointers of
size at most O(n/logn). Since no step will be
implemented more than 0(log n) times we need only make
sure that the probability of aborting at each step is
< 1/cnlogn for some constant c. These bounds follow
from the preceding theorems and the fact that the error
can be decreased to l/n2 by simply running an algoritbm
twice.

Using the expansion ideas in theorem 3 we get:

Theorem 13: There exists 0-sided randomized
algorithm which marks all nodes of a tree in O (log n)
time using O (n/log n) processors.

Procedure Randomized Tree Evaluation
§_ﬁzlo—n,aﬂ-31/32,k¢—- 1,i—1, T, T,
While z; > nflogn do (a)
1) 2y + [oz)]
2) i — i+l
In Parallel Generate random permutations e; (b)
thru o; of size z, thru z;
While k<i do (¢)
DT+ RandomizedContraction(T}),
using p processors.
2) Permute the poiaters of Ty, using apyy-
3) Apply DISCARD ZEROS to the list of pointers
T returning at most I, ., pointers.
4) k — k+1.
od
While [T}>1 do (d)
T+~ RandomizedContraction(T)
using a distinct processor at each pode.
od
Figure 4-2: An Optimal Randomized Tree Evaluation
Algorithm

5. Applications of Dynamic Tree Contraction:
Expression Evaluation
Let T be a tree with node set V and root r. We assume
each leaf is initially assigned a value C(v), and each
internal node v, with children u,....up has a label

L{v)[ul,...,uk] which is assumed to be of the form

484

8(u,,...,u;) Where 8 € {+,—,%X,+}. A bottom-up approach
for expression evaluation is to substitute L(ul.) into
Lv)u,...,uy] for each child u; which is a leaf, and then
delete v, This method however requires time 2(n) in the
worse case. The results of Brent imply we can do
expression = evaluation in O (log n) time if we can
preprocess the expression [5]; however log n)? time
seems to be required if the expression is to be evaluated
dynamically (i.e., on line).

Theorem 14: Dynamic expression evaluation can be
done in O (log n) time using O(n) processors
deterministically and only O (n/log n) processors using a
0O-sided randomized procedure.

Proof: We shall assume that the number of
arguments at a node is at most 2. If not we assume that
in O (log n) time we can convert it into such a tree. Asin
Brent we shall only perform one division at the end.

The values stored or manipulated will be sums,
products, and differences of the initial values C(v). The
value returned will be a ratio of these elements. The
operations {+,—X,~} -wil have their usual
interpretations e.g., a/b+c/d=(ad+bc)/bd. The main
other item we need is 2 way to represent elements from a
class of many functions which are closed under
composition. Here we will use ratios of linear functions of
the form, (az+b)/(cz+d). We must verify that they are
closed under composition:
o'(au+b)/(cu+d)+?’ a"u+b*

(autb)/(cutd)+d ctutd®

By running procedure Randomized Tree Evaluation

Figure 4-2 we get:

Theorem 15: All subexpressions can be computed in
the time and processor bounds in Theorem 14.

8. Isomorphism and Canonical Labels For
Trees

Let T,T' be two rooted trees with roots r and . We
say T is isomorphic to T’ if there exists a surjective map
from V{T) to VT') which preserves the parent relation.
On the other hand Canonical Label is a2 map L from trees
to strings such that T'is isomorphic to T' iff LD=LT").
Canonical Labels For All Subtrees of a tree Tis amap L
from V{T) to finite strings such that for all z,z' € T the
subtree rooted at z isomorphic to the subtree rooted at z'
iff {z)=L{z").

‘Canonical labels for all subtrees can be used for code
optimization. Here, one merges all nodes with common
labels producing an acyclic digraph. This process is called
common subexpression elimination. We first present a
randomized algorithm for tree isomorphism. The height
h(v) of a node v in a tree T is the maximum distance from
v to any of its leaves. That is, h(v)==0if v is a leaf and if
v’ has children eV then

h(v)=1+maz{h(v)]1 < i < k}. It is a straight forward

exercise to sec that the height of all nodes in a tree can be
computed in time O(log n) using O(n) processors
deterministically and 0(n/logn) processors by the
RANDOMIZED CONTRACT techniques from the first
part of the paper.

We canonically associate a multivariate polynomial
L{v) with each vertex v of the tree T. Let z,,z,,... be
distinct independent variables. For each leaf v set
Lv)=z,. For each internal node v of height h with

children v,,..,v, set L(U)=H?=i (z,—Lv,) using
induction on the height k. Thus L{r) of the root r is a
polynomial QT(::I,...',::h) of degree < n. We may view
Qrasa polynomial over a field F. Using the fact that
polynomial factorization is unique over F. We get:
- Lemma 18: The subtrees
isomorphic iff L{v)=L{v') over F.
To test if a polynomial Q(zl,...,zh) of degree < n is

rooted at wv,v' are

identically zero we use an old idea which goes back to at
least Edmonds. We simply evaluates the polynomial at a
point and check to see if the value is nonzero. We need
the following technical lemma.

Lemma 17: If A is a finite set such that |A] 2 n®h,
where a > 1, and @ is a random element of Ah, and Q is
not identically zero over F, then Prob[Q(d@)==0)] < 1/n®

Proof: By induction it is not hard to show [10} that
Prob|Q(d # 0)] > (lAl-n)h/|A|h. Substituting |A| > n®h
we get ProblQ(d) # 0] > (1-1/n%h)". Thus, Prob
[Q(@)=0] < 1/n”.

We describe the tree isomorphism algorithm in
procedure form, see Figure 6-1

The most natural way to analyze the procedure
Randomized, Tree Isomorphism is to assume that step 1)
is performed once each time the input size doubles. In
which case we may assume that the fields are given. On
the other hand, is easy to see how to find finite fields of
order n® (M) in (log n)° (1) time. We shall ignore the cost

here.

Procedure Randomierd1 Tree Isomorphism (1-sided).

1. Generate a finite field F of order > hn®.
2. For each node v of T or T/ assign the

polynomial I{v) to v as above.
3. Assign each z; 2 random value in F.
4. Evaluate Qr and Qp using one of the dynamic
expression evaluation algorithms and return w and /.
5. If w 74 w' then output "not isomorphic*®

else output *probably isomorphic®.

A l-sided Randomized Tree Isomorphism
Test

Figure 6-1:

485

Theorem 18: Randomized, Tree Isomorphism tests
tree nonisomorphism in O(logn) time using 0(n/log n)
processors with probability of being incorrect < 1/n%,
for any fixed a 2> 1.

We modify the algorithm into a 0-sided randomized
algorithm: one that never makes 2n error. This algorithm
will also find canonical labels for all the subtrees of the
input trees T and T'. Here we will use the fact that T is
isomorphic to T iff there exists a map L:VUV'— Labels
such that: .

1. Lr)=L(+) |

2. If v,v/ are leaves then L{v)=L(v)

3.If v has children v,,...,v; and ¢/ has children Ve

and {Lo,)- Lo =LY) AV)

then L{v)=L{v").

We use procedure Randomized, Tree Isomorphism to
get a map possibly satisflying conditions 1), 2), and 3).
Condition 1) is easy to check while condition 2) is always
satisfied. To check condition 3) we first sort the pairs
< L{v),[{w)> and the pairs <Lv),[{w/)> where w(v/) is
a child of o(v/), respectively, in VUV’ We now simply
check that the list are identical. Thus, the problem can be
reduced to the cost of one sort. Both randomized and
deterministic algorithms using O(log n) time and 0f{n)
processors are known for sorting [1,13,16]. In this
proceedings the second author gives a randomized sorting
algorithm using only O (log n) time with O (n/log n)
processors for numbers of size O (n') [19]. Using this
result we get:

Theorem 19: Tree isomorphism and common
subexpression elimination can be done with a O-sided
randomized algorithm in O(logn) time and 0(n/log n)
Processors.

Note that this randomized procedure does not produce
canonical forms for trees. We next show that canonical
forms can be obtained by using sorting. The idea is to
assign canonical labels to the nodes inductively by height.
The leaves are labeled with zero. Suppose inductively
that the children’ v,,..v;, of v have labels L(vl)""’I,’("k)
then the label of v will be the concatenation of the sorted
list of labels L{v)),...,L{v}) in braces. This definition of

the label for T seems hard to implement in parallel since a
label which takes a long time to compute may bave a
small lexigraphic value. We solve this problem by first
sorting on the time that it takes to compute the label and
then sort on the label itself. It will suffice to begin sorting
when all but one child has its label and this final child’s
label will be placed at the end of the list. A node, which
at an intermediate point of the algorithm, has one child
may have a label with one free variable. The intended
value of the variable is the label of the child. Thus, if the
child also has only one child and its label has been
computed up to a free variable we may compose the
labels. :

Since the labels may be as large as 0(n) long, it is
unreasonable that two labels can be compared by one’

it I 1 pw

e s e e e

i+

e 31

| Rebu

—

x.

3

.

s
A

i A T
e a4

L e s

sy o n

T T A -

processor in unit time. We will use the following easily
proved fact.

Lemma 20: Two strings of length n can be compared
in 0(1) time using 0(nlog n) processors.

Using the lemma we get: ,
~ Theorem 21: Canonical labelings for trees can be
computed in 0{log n) time using O(nzlog n) processors.

To prove the theorem we must see that dynamic tree
contraction only takes O(log n) time even when the tree
has unbounded indegree and the cost of RAKE for 2 node
with k children is 0(log k). Here we may assume that the
time to RAKE a node is independent of the size of its
label and only dependent on the number of children.

Theorem 22: If the cost to RAKE a pode with k
children is bounded by clog k for some constant ¢ then
Dynamic Tree Contraction requires only 0(log n) time.

7. Computing the 3-Connected Components

The 2-connected components of a graph are defined by
an equivalence relation on the edges; two edges are
equivalence if there exists a simple cycle containing both
edges. The induced graphs formed from the equivalence
classes of this relation are called the 2-connected
components. Recently, Tarjan and Vishkin have shown
how to construct the 2-connected components of a graph
in O (logn) time and linear pumber of processors on a P-
RAM [22]. These components form a tree where a pair of
components are adjacent if they share a vertex. The
definition of the 3-connected components are more
difficult to define and seem to require a more
sophisticated algorithm.

Hopcroft and Tarjan give 2 precise algorithmic
definition of the 3-connected components and show how
any graph can be decomposed uniquely into a tree of 3
connected components {9]. They also give a linear time
algorithm for finding the tree of 3-connected components

19)- Unfortunately, it is a highly sequential algorithm. A
related question is finding the maximal subsets of vertices
of size > 2 which are pairwise 3-connected. We shall call
these subsets the 3-sets of G. Ja'Ja’ and Simon give an
algorithm using O (log n) time and n 1) processors for
finding these 3-sets [11]. There is a unique 3-connected
graph associated with each 3-set. The proof and
construction can be obtained by the following simple
lemma. ,

First we define the notion of a bridge. Let CCV. Two
edges e and ' of C are C-equivalent if there exists a path
from ¢ to ¢ avoiding C. The induced graphs on the
equivalence classes of the C-equivalent edges are called
the bridges of C. A bridge is trivial if it consists of a
single edge. A pair of vertices is a separating pair if they
have 3 or more bridges or 9 or more nontrivial bridges.

Lemma 23: If CCVis a 3.set of G then each bridge

of C contains at most 2 vertices in C. fGis 2-connected '7

then the bridge contains exactly 2 vertices of C.

Proof: Suppose that some bridge B of C contains
three vertices z,,75,%3 in C. Let p be a simple path from

T, 10 I3 in B. Let p, bea simple path from z, to a single

vertex, say y of p such that p,—¥ is disjoint from p. Let
PPy be the disjoint simple subpaths of p from y to Z,,Z,,
respectively. Then p,,py,P3 are - disjoint paths from y to
‘ It follows that y is 3-

connected to all the elements of C. This contradicts the
assumption that C'is 2 (maximal) 3-set. o

The algorithm will consists of two phases, in the first
phase we shall remove all 3-sets of size > 3 (proper 3-
sets). - This will decompose the G into a collection of
disconnected subgraphs. Each subgraph will correspond
to a maximal .subtree of the tree of 3-connected
components that contains no proper 3-sets. The second
phase decomposes 2 9.connected graph, which does not
contain any proper 3-sets, into a tree of simple cycles and
m-bonds. (An m-bond is a graph on two vertices with m
edges between the two vertices.) We start with a
discussion of the first phase.

distinct vertices I,,Z5,%3 of C.

Let C be a proper 3-set in G. We define two graphs C

and H from C and G. Let 'C’-=(C,—E-) where the edge set E
consist of 1) all edges in G whose end points are in C but
these end points do not form a separating pair for G plus
2) a new virtual edge for each separating pair contained
in C. While the graph H=(V',E"). where V! consists of
all vertices of G minus those vertices of C that do not
belong to some separating pair. The edges E' of H will

~ consist of all the edges of G not in C plus a new virtual

edge for each separating pair contained in C. The graphs

T and H are constructible in O (log n) time when C and
the separating pairs are given. It is not hard to see that if
Cl""'Ck are the 3-sets we can simultaneously construct

51,...,-ék and the graph H. If some connected component

" of H consists of an edge with exactly two virtual edges e

and ¢ we shall delete the edge from H and associate ¢ in

some '5'. with €' in some —C-J. We state a lemma about C
and H. . . ' A

- Lemma 24: The proper 3-sets of H are precisely the
proper 3-sets of G minus C. The resulting graph H, after
removing 2all the proper 3-sets from G, will have no
proper 3-sets and each connected component will be 2-
-connected. :

"We next show how to decompose 2 graph H into its
tree of 3-connected componeiits when H is 2-connected
and has no proper 3-sets. Here, we shall use the ideas
from the parallel tree contraction. Namely, 1) find all the
leaves, remove them and 2) find and contract maximal
chains.” :

Let {z,y} be a 3-set. Then_the bridges of {z,y} are of
three types 1) a simple edge, 2) a path of length two or

486’

- RAM.

more and 3) a bridge containing a vertex from some other
3.set. We claim that the leaves of a tree of the 3-
connected components are of 2 types: 1) 2 bridge of a 3
set {z,y} consisting of a path p of length 2> 2 plus a
virtual edge from z to ¥. 2) A 3-set {z,y} which contains
at most one bridge that is not an edge, plus edges
consisting of (a) the simple edge bridge between I and ¥
and (b) 2 virtual edge for the nonedge bridge.

These leaves are constructible in parallel and each
requires at most O (log n) time to construct using 2 P-
We next characterize those 3-connected
components which are simple cycles_of the graph but
which are vertices of the tree of 3-connected components
and have valence 2. Find all pairs of paths, py and P
{z,y} and {w,z}, satislying the
P, is a simple path from Z to w

and pairs of 3-sets,
following condition:

visiting no other 3-sets and p, is a simple path from 2 toy

visiting no other 3.sets. By adding 2 virtual edge from w
to z and a virtual edge from y to'z we get a simple cycle
that is a valence 2 vertex in the tree of 3-connected
components. It follows that we can remove all such
simple cycles from H in parallel. -

This in O (log n) time we can
of m-bonds and simple cycles.

decompose A into 3 tree
We state this as a theorem.

Theorem 25: The tree of 3-connected components is
constructible in O (log n) time using 00

Note that we have only described the decomposition in
the case when the graph is 9.connected. It is not hard to
extend this to the case of all connected graphs. In this
case, the virtual objects will be both edges and vertices.

Ja'Ja’ and Simon only test whether in principle a graph
is planar but they do mnot actually construct the cyclic
ordering of the darts except if the graph is 3-connected
f11}. .

Slince we now can construct the tree of 3-connected
components it is not hard to see how to actual construct
the embedding in general by viewing this as a tree
contraction problem.

processors.

. Theorem 26: Planar.g'mbedd'mg for planar graphs are

constructible in O (Iog2n) time using n° (_‘ _processors.

7.1. Canonical Forms of Oriented Graphs

Let G=(V,E) be an undirected graph. We associate
with each edge e={z,y} two darlts (z,y) and (y;z). The
vertex z is the tail and y is the head of the dart {(z,y)-
The graph G is oriented by fixing 2 permutation ¢ of the
darts which sends tails to tails and cyclically permutates
darts with the same tail. Let R be the permutation of the
darts sending (z,y) to its reflection (v,7). A planar
embedding of G can be specified by an orientation of G.

Witney showed that every 3-connected planar graph

has exactly two planar embeddings, an embedding ¢ and
its reflection o1 (25]. Ja'Ja’ and Simon have shown that

a planar embedding can be constructed using O (log2n)
time on a P-RAM for 3-connected planar graphs {11}.

487

Any isomorphism of a planar 3-connected graph must
preserve its planar orientation up to reflection. More
formally, two oriented graphs (G,¢) and (G',¢) are
isomorphic if there exists a bijective map f from the darts
of G to the darts of G' which preserves both adjacency
and orientation, R’ f=fR and ¢'f=f¢. Using Witney's
theorem two 3-connected planar graphs G’ and G are
isomorphic if and only if (G',¢') is isomorphic to (G,¢) or
(G

Note that an isomorphism of one embedded graph onto
another is determined by the image of a single dart.
Given a sequence of numbers u=(u1,...,uk) and a dart e
we get a unique path where c..=¢u‘R(cl._l) for
1<i<k Given a path of darts we can construct 2
unique sequence of integers by choosing the minimum

e==€g,- 18

. u,
u, 20 such that e;/=¢ 'Rle;_,)- We pext show how to

compute canonical sequences. These sequences will be
used for canonical forms for embedded graphs.

Theorem 27: Canonical numbering for oriented

graphs is computable in O (logn) time using n®)
processors.

We will ‘construct a canonical form M{e) for each dart
ein (G,¢). We then simply pick the lexically least such
form. For each dart ¢ 7% ¢ we find the lexigraphically
least number sequence OVer shortest paths from e to ¢

Suppose the graph G has d darts. Consider 2 d X d matrix
where each entry is 2 pumber sequence or blank. Here
the basic scalar operations will be lexigraphical minimum
and concatenation as opposed to + and X. Initially start
with the matrix with all paths of length two by storing 2
sequence of pumbers of length one. If we only restrict the
number of processors to a polynomial in n then a matrix
product over minimum and concatenation can be
computed in O (1) time. By computing O {log n) iterated
powers of this matrix we get the lexigraphically minimal
of all shortest paths between all pairs of vertices. Thus we
get 2 canonical matrix M{e) for each dart e in (G,¢). The
minimum canonical matrix Mie) (under lexigraphical
order) will be 2 canonical form for the embedded graph
(G,9)-

Note that there is an isomorphism if and only if the
matrices Me), as described above, are equal. By also
constructing the adjacency matrices for the reflection
(G’,f‘) and computing the minimum over the larger set
of matrices we have constructed canonical forms for
embedded graphs up to reflections. Using the additional

fact that one can compute a planar embedding for a 3

connected graph in O (logzn) time on 72 (1) P.RAM
processors we get from above the following theorem:

Theorem 28: Canonical numbering of 3-connected
planar graphs can be done in O (log2n) time using n°
P-RAM processors.

-

PR e .
. -
., X

§ gt
e e T b
o n gk g 4

e
-

v e | -

i P A b 8

parst Ty vt i
payis e e

T
e

s IR s s

" 7
A

> -\-1"-;’.-—.:.;:_; T
e s Al

Rere ¥ T
| oo e s AN

5 e b

T

e Ly

EEYS

Lo

. 1
7

.
£
2
£
r’.
£,

:

s M e 535

g

e pm—————

e L T G e e

Remark: This result can be improved. By the use of
the random walk techniques of Aleliunas, Karp, Lipton,
Lovasz, Rackoff, and Reif [2, 18] we can decrease the
number of processors by 2 factor of n. '

7.2. Reducing the Problem of Finding Canonical
Forms of Planar Graphs to the 3-Connected
Case

In this section we give an O (log n) time reduction from
finding canonical forms for general graphs to that of
canonical forms for 3-connected graphs. Since we have
given O (Iog2 n) time algorithms for finding canonical
forms for 3-connected planar graphs this reduction implies
an O (Iog3 n) algorithm for canonical forms for all planar
graphs. We state this as a Theorem.

- Theorem 29: Computing canonical forms for general
graphs is O (log n) time reducible to computing canonical
forms for its 3-connected components.

By computing canonical forms we mean an oracle that
accepts as input 2 3-connected graph with labels on its
darts and vertices and returns an incidence matrix unique
up to isomorphism. We shall also assume that we have a
list of new labels that we can add to the darts or vertices.

By the methods of the last section we can find up to
isomorphism a unique decomposition of 2 graph into 2
tree of 3-connected components, where 3 3-connected
component is either & 3-connected graph, a simple cycle, 2
multibond, or a vertex. Two components are related by
either identifying 2 virtual edge with orientation, a dart,
in one with a virtual edge with orientation in the other or
by identifying 2 virtual vertex in one with a vertual
vertex in the other. We shall formally only handle the
case when the identifications are edges, i.e., the graph is
9-connected. The general case is a straightforward
generalization.

In O (logn) time we can find either 3 3-connected
component or an identified edge which is of maximum
height in the tree. If the center is an edge we simply
introduce a 2-bond as a new component which will be the
center of the tree. Thus, we may assume that the tree is

. rooted.

To achieve the reduction for the theorem we need only
implement the two basic tree contraction operations,
RAKE and COMPRESS described in Section 2. We first
discuss the operation COMPRESS.

Let C be a component with one child, where d; and d,
are the darts associated with the parent and ¢; and ¢, are
the darts associated with the child. We ask the oracle for
4 canonical matrices by assigning a new label X to either
d, or dy and a new label Y to either ¢; and e, We write
each matrix as a string and denpote it by Mc(d‘,ej) for
1<ij<2 Let C! be the child of C and suppose the
child also has only one child. Further, suppose the virtual
darts are cl,ez,fl, and f, As we did for C, we labeled e,
or e, with X and f; or fa with Y and ask the oracle for

the canonical labels for C', denoted MC,(e'-,fj). Finally,
canonical labels for the pair C,C' will be:
Md,, jj)=lexigraphi¢al minimum of
{]\/lc(d'-,ck),MC '(ck’fj)} Jor k={1,2}. *

Thus the operation COMPRESS is achieved by finding
the four labels for each component with an only child and
combining labels using (*). If C' had no children then we
return with only two labels for the pair C,C', one for d;
and one for d,.

The RAKE operation is much simpler, in the case
when the leaf C is not an only child. If d; and d, are its
virtual darts we ask for canonical forms for C, where

“either d, and d, is assigned the label X. These labels are

then assigned to the appropriate dart of the parent of C.
Using the analysis of CONTRACT given by Theorem 1
we get an O (log n) time reduction.

8. The Random Variable Mate
Let I be the space of all zero one strings of length n+1
for n > 1. Let MATE be a random variable defined on

. £ where MATE equals the number of 01 patterns in 3

string from Z.
Lemma -30: The random variable
expected value n/4 and variance (n+2)/16.
Proof: Let 8;...8, be a random strings of zeros and
ones. Since the expected value of MATE, substring 8.8, .,

is 1/4 and there are n such substrings the expectation for
808y must be n/4. Here we used the fact that
expectations sum.

To compute the variance we consider a slightly
different random variable with the same probability
distribution. Let S be the binomial random variable on
binary strings of length n with p=1/2. We define a
random variable X with p=1/2 over the space of all zero-
one strings of length n+1 as follows:

MATE hss

X(to...t")={[5"(tlmt")/ﬂ i.f to--O.

[Sn(ll...tn)/2] if ty=1

To see that X is simply a change of variables of MATE
consider the map from s ...8 to bty defined by ¢, +— 3,
and inductively s =0 iff s, ,=3; One can see that this
map is surjective and X(so...sn)=M’ATE(to...tn). Thus the
expected value of X is n/4 and we need only compute the
ond moment of X, EX). '

BxY)=1/2) {[k/‘z]éProb(Sn—_:k).;.[k/gjzpmb(sn_;k)}
k=0 .
—1/2 (K:+1)/2Prob(S, =k} +1/2 Y K[2Prob(S,=
k odd 7 - k even k)

488

n
=1/ 2
_l/l(z k“Prob(s =k)+ Z Prob(Sn=k))
Th f.""") k odd :
¢ first term in the sum is just 1/4 of the 2nd moment

of S'n which is (n?+n)/4. By 'a straight forward
examination of Pascal's Triangle the second term equals

1/2. 'l’h'us, (XY =(n%+n+2)/16. Therefore the
var(X)=F{ X?)~ ¥ X)=(n+2)/16. .
Next consider the random variable MATE, over all

zero-one strings of length n+1 which begin with a zero.
By similar argument as above we get:

Lemma 31: The random variable MATE over the

space 0{0,1}" has expected value (n+1)/4 and variance
(n+1)/16.

M/lz;'ls:ni]nr arguments we get the following bound on
Lemma 32: VzProb([S /2] < 7)
R qore
< Prob{(MATI_ < z) < Prob(|S,/2) < 2)-

References

1. M. Ajtai, J. Komlcs, and E. Szemeredi. An 0(nlog n)

Sorting Network. Proc. 15th Annual Symposium on the
Theory of Compuling, , 1083, pp. 1-9.

2. R. Aleliunas, R. H. Karp, R.H. Lipton, L. Lovasz, and
C. Rackoff. Random Walks, Universal Traversal
Sequences, and Complexity of Maze Problems. Proc.

‘20'.1‘\1 Aum‘u}l Symposium on Foundations of Computer
Science, 1EEE, 1079, pp. 218-223.

3. D../\ngluin, aud L. G. Valiant. *Fast Probabilistic
Algorithms for Hamiltonian Paths and Matchings®. J.
Comp. Syal. Sci. , 18 (1979), 155-193.

4. 1 B:l'r-()n. and U. Vishkin. *Optimal Parallel
Generation of a Computation Tree Form®. ACM

Trannuct{onu on Programming Languages and Systems
7,2 (April 1085), 348-357.

6. R.P. Brent. *The Parallel Evaluation of General

Arithmetic Expressions®, JACM 21, 2 (April 1974),
201-208. .

6. 1. Chernoff. *A Measure of Asymptotic Efficiency for
Tests of n Hypothesis Based on the Sum of Observations®.
Annals of Malh. Stulialics 23 (1952).

7. E. l".'Fich. New Bounds For Parallel Prefix Circuits.
Proe. of_ Tho Fifteenth Annual ACM on Theory of
Computing, ACM, , 1983, pp. 100-108.

8. W, llooffding. "On the Distribution of the Number of

Successes in Independent Trials®. Ann. of Math Stat.,
27 (1056), T13-721, ’ .

9. 3. ‘E.- Noperoft, and R. E. Tarjan. *Dividing 3 Graph
into T nc'onncctcd Components®. SIAM Journal on
Computing 2, 3 (September 1973), 135-158.

489

10. O. H. Ibarra, and S. Moran. »Probabilistic
Algorithms for Deciding Equivalence of Straight-Line

Programs®. J. of the ACM 80, 1 (January 1983),
217-228.

11. J. Ja'Ja’, and J. Simon. *Parallel Algorithms in
Graph Theory: Planarity Testing®. SIAM Journal
Computer 11, 2 (May 1982), 314-328.

12. N. J. Johnson, and S. Katz. Discrete Distributions.
Houghton Mifflin Comp., Boston, MA, 1968.

13. T. Leighton. Tight Bounds on the Complexity of
Parallel Sorting. Proc. 16th Symp. Annual ACMon
Theory of Computing, ACM, Washington, D. C., April,
1984, pp. 71-80.

14. M. Loeve. Probability Theory. Springer, Berlin,
1977.

15. G.L. Miller.
For 2-Connected

*Finding Small Simple Cycle Separators
Planar Graphs®. JCSS (to appear).

16. J. H. Reif, and L. G. Valiant. A Logarithmic Time
Sort for Linear Size Networks. Proc. 15th Annual ACM
Symp. on the Theory of Computing, ACM, 1883, pp-
10-16.

17. J. Reif. "On the Power of Probabilistic Choice in
Synchronous Parallel Computations®. SIAM
J. Computing 15, 1 (1984), 46-55.

18. J. H. Reif. *Symmetric Complementation®. JACM

31, 2 (April 1984), 401-421.

19. J. H. Reif. An Opimal Parallel Algorithm for Integer
Sorting. Proc. of 925th Annnual Symp. oD Foundations of
Computer Science, ACM, 1985.

20. W.L. Ruzzo. "On Uniform Circuit Complexity*®.
Journal of Compuler and System Sciences 22, 3 (June
1981), .

21. Y. Shiloach, and U. Viskin. * An 0{logn) Parallel
Connectivity Algorithm®. J. of Algorithms 3(1982),
57-67.

22. RE. Tarjan, and U. Vishkin. Finding Biconnected
Components and Computing Tree Functions in
Logarithmic Parallel Time. 25th Annual Symp. on
Foundations of Computer Science, IEEE, 1984, pp. 12-22.

23. J. Usi)ensky. Introduction to Mathematical
Probability. ‘MecGraw-Hill, New York, 19837.

24. U. Vishkin. Randomized Speed-Ups in Parallel
Computation. Proc. of the 16th Annual ACM Symp. on '
Theory of Computing, ACM, Washington, D.C., Apri,
1984, pp. 230-239. _

“ A Set of Topological Invariant For
Journal Math 55, (1937), 321-335.

25, H. Witney.
Graphs*®. American

e

