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Background

Tutte [ 14] made the following definition which is crucial in understanding
symmetric cubic graphs. We should call a pair consisting of a connected cubic
graph G and a group of automorphisms of G an object denoted (G, A).

Definition Given an object (G, A) we say A is s-transitive (s-regular) over
G if A is (sharply) transitive over paths of length s.

In [14] Tutte showed that:

Theorem 1 If (G, A) is an object and A is s-transitive but not (s + 1)-
transitive then A is s-regular.

The other major result of Tutte, on which all that is to follow is based, is
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Theorem 2 [13] If (G, A) is as in Theorem 1 and A is s-regular then
l1<s<s

A very natural infinite cubic graph is the infinite tree of valence 3 which
we will denote by I';. The full automorphism group of I'; is w-transitive but
we shall see that there are s-regular groups acting on I'y for 1 <s < 5. An
interesting corollary to Tutte’s two theorems is

Corollary If (I'5, A) is an object and A is 6-transitive then A is -
transitive.

1. Vertex Fixers and Edge Stabilizers

Let (G, A) be an s-regular object, uy,. .., u;asimple pathin G, A(u,, . . ., u))
the subgroup of A which fixes ug, ..., u;, 0 < j <'s. The s-regularity of 4
implies that | A(u, ..., u;)| = 2 /for 1 < j < sand|A(uy)| = 3-2°~ L Thus
the cardinality of A(u,) is dependent only on s. In fact, up to isomorphism
A(ug) 1s only dependent on s.

Theorem 3 If (G, A)is an s-regular object and u is a vertex of G then A(u)
is unique independent of G and A.

Proof See Propositions 2-5 in [6]. [ |

We shall denote this group by X .

As a corollary to Theorem 3 we get that for each s the edge fixers are
unique. Let H denote the edge fixers. Let {u, v} be an edge in G, (G, A4) as
before, and let Afu, v] be the subgroup of 4 which need only stabilize
{u, v}. Since s > 1, A(u, v) 1s a subgroup of index 2 in A[u, v] and there exist
elements in A[u, v] which flip the edge {u, v}. We say that A4 is of type s if
there exists an involution o € A which flips an edge. Otherwise we say A4 is of
type s”.

Theorem 4 If (G, A) is an s-regular object and if s is odd then the edge
stabilizer is unique and of type s'; on the other hand, if s is even then the edge
stabilizer is either of type s” or type s” and otherwise unique.

Proof See Propositions 2-5 in [6]. ||
Let Y, (Y,.) denote the edge stabilizer of type s’ (s”). The group Y, is
defined only when s is even.
2. Amalgams and Amalgamated Products

An amalgam is an ordered pair (X, Y) consisting of two groups X and Y,
such that multiplication in X and Y coincide on X nY and X nY is a
group. Given an arc (4, v) in G we can in a natural way form the amalgam
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(A(u), Alu, v]) where A(u) N A[u, v] = A(u, v). By the proof of the last three
theorems we get

Theorem 5 The amalgam of an arc is unique up to s and the type.
Proof See Proposition 10 in [6]. [ |

We shall denote this amalgam by (X, Y..) or (X, Y..), depending on the
type.

For each amalgam we can construct a unique group the amalgamated
product, i.e.,

As' = Xs }.);, Ys’? As" = Xs I-);, Ys"'

The importance of A, is twofold. Net only shall we see that 4 acts s-regularly
on I'; but if (G, A) is an s-regular object and A, is of the right type, then there
exists a natural surjective homomorphism from A; to 4.

Given A, and X, Y, we can construct a graph G, = (V, E) as follows:

V = A/X, (the left cosets of X;),

E = {{ux,, vx}|lu"'ve X,yX},
where ye Y, — X,.
We list a few facts:

Theorem 6 (1) G, is I'5; (2) A, acts on G, by left multiplication; and
(3) (T'5, A,) is an s-regular object.

Proof See Proposition 11 in [6]. [ |

Let (G, A) be an s-regular object and A, be of the same type as A and g
the canonical group homomorphism from A4, to A then we can define a
graph homomorphism f: X, — g(e)u, « € A, and u the implicit vertex in G.
Now the pair (f, g) satisfies certain properties which we now define.

Definition A covering morphism is a pair (f, g): (G, A) = (G', A’) such
that:

(1) g: A - A’ onto group homomorphism;

(2) f:G - G’ onto graph homomorphism;

(3) fis locally 1-1 (neighbors of a vertex are sent to distinct vertices);
and

(4) the diagram

G._"_.,G

GI ) GI

g(@)

commutes, i.e., g(a) - f = f- o for all « € A.
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With one more definition we can state the key idea for the diagrams. A
subgroup of A, is said tobe small in A)If K<JA,, KnX,=KnY,=1,
and (4;: KX,) > 2.

Theorem 7 Let G be a connected cubic graph and A an s-regular subgroup
of Aut(G), 1 < s < 5. Let A, = A, or A,” be of the same type as A. Then
there exists a covering morphism (f, g): (I's, A,) — (G, A) and ker g is small
in As.

Conversely, let K be a small subgroup of A, and put Ay = A/K. Let G
be the graph whose vertex-set is A,/JK X, and in which two vertices uK X and
vK X, are adjacent iff u='ve KX yX,. Then Gy is a connected cubic graph,
Ay is an s-regular subgroup of Aut(Gy), and Ay is of the same type as Aj.
There is a covering morphism (f, g): (I'5, A;) = (Gk, Ax) where g: A, - Ag
is the canonical map and f: T35 — G is defined by f(uX) = uKX.

Proof See Theorem 1 in [6]. | |

If (f, g) is a covering morphism the kernel of (£, g) will be defined to be the
kernel of g. We have from Theorem 6 that every s-regular object generates a
small normal subgroup of A, i.e,, the ker(/, g), and every small normal sub-
group of A, generates s-regular objects. The next two theorems tell us how
many normal subgroups correspond to a given cubic graph.

Theorem 8 Let (G, A) be an s-regular object, s = 3 or 5; then all covering
morphisms (f, g): (I's, A;) = (G, A) have the same kernel.

Proof See Theorem 2 in [6]. n

Theorem 9 Let (G, A) be an s-regular object,s = 1,2,4,and (I', A;) being
the same type as (G, A); then over all covering morphisms from (I'y, A;) to
(G, A) there are either one or two kernels and if there is exactly one kernel then
G is (s + 1)-transitive.

Proof See Theorem 8 in [6]. |

Before presenting the diagram, we need a few more results about the
subgroup structure of the A4/’s.

Theorem 10 The subgroup structure for the A/'s is indicated by the

following diagram:
As As
Ay Ay /A Ay

A,
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3. Some Subgroups of A,

Some subgroups of A;. are shown in Fig. 1 and we shall describe them
now. The lines indicate normal subgroups and the number indicates the
index. Starting with A5 it has three subgroups of index 2, namely, 4,. and A4,-
and the even subgroup of 4., the subgroup which preserves the bipartition
on I'; denoted A3.. The group A,. contains two copies of 4, and its even
subgroup A4,* which equals 4,  n A3* n A4,.. The even subgroup of
A, is A,- N A,* and A,. contains a normal subgroup of index 3, 4,. which
is vertex-regular on I'y. Now A7 contains two copies of two even subgroups
of vertex-regular groups on I'y. The subgroups K,., K, and Qs., Qs
correspond to the two copies of the graph K, and the cube, respectively. The
graph K; ; corresponds to a unique normal subgroup of Aj since it is
3-regular. Now N corresponds to a 3-regular graph which is a 12-fold covering
of Q5 and a 16-fold covering of K3 3. The subgroup P <] A;. corresponds to
Petersen’s graph; D', D" <} A,. correspond to dodecahedron; and Z <] 4,
corresponds to Desargue’s graph. Finally K <] 45. corresponds to the vertex
primitive 3-regular graph on 28 vertices G(28).

Mk 0k,

Figure 1 Partial subgroup structure of Aj;.
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By simply noting where the subgroup of a graph lies in the diagram a large
amount of information can be read off. As an example, K ; is contained in
A, and A,.; therefore, Aut(K; ;) contains subgroups of type 2’ and type 2”.
Similarly, Aut(K; ;) contains two l-regular subgroups and at least two
O-regular subgroups: K; ; must be bipartite. Now Petersen’s graph has no
type 2" or type 1" actions since it is not contained in 4, nor A,.. The fact that
Petersen’s graph contains no 1-regular subgroup follows by the fact that
Petersen’s graph is not bipartite and the following proposition:

Propoesition Let (G, A) be a 3-regular object; then the following hold:

(1) if A contains a 1-reqular subgroup then G is bipartite and A contains
two 2-regular subgroups and two 1-regular subgroups;
(2) if A contains two 2-regular subgroups then G is bipartite.

Proof See Proposition 26 in [6]. [ ]

4. Some Subgroups of A..

Some subgroups of 4. are shown in Fig. 2, and we shall describe them
now. We have 4. = A, n A,.. T is the normal subgroup of A,. which

Figure 2 Partial subgroup stricture of As.
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corresponds to Tutte’s 8-cage. As is well known, we have A,./T = Aq,
ALIT = Sg,and As./T = Aut(Ss). Now M <] A; corresponds to the unique
finite primitive 5-regular object (G(234), Aut(SL;(3))). We have 4,-/M =
SL5(3) and A5 /M ~ Aut(SL;(3)).

Now A, contains 16 copies of 4,.. They are all conjugate in A and fall
into two conjugacy classes of size 8 in A,.. Let A,. and A4, denote members
of each of the two conjugacy classes. The intersection of the A,.’s and the
intersection of the 4,.’s correspond to the two copies of Heawood’s graph.

Theorem 11 Heawood’s graph is the unique minimal graph which is
4-regular and whose automorphism group contains a l-regular subgroup. So,

every 4-regular object with a 1-regular subgroup is a covering of Heawood’s
graph.

Proof See Proposition 29 of [6]. |

Finally, P = H' n H" corresponds to the unique minimal 5-regular graph
such that Aut(G) contains a 1-regular group.
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