Regular Groups of Automorphisms of Cubic Graphs

DRAGOMIR Ž. DJOKOVIƆ
and
GARY L. MILLER‡

Background

Tutte [14] made the following definition which is crucial in understanding symmetric cubic graphs. We should call a pair consisting of a connected cubic graph G and a group of automorphisms of G an object denoted (G, A).

Definition Given an object (G, A) we say A is s-transitive (s-regular) over G if A is (sharply) transitive over paths of length s.

In [14] Tutte showed that:

Theorem 1 If (G, A) is an object and A is s-transitive but not (s + 1)-transitive then A is s-regular.

The other major result of Tutte, on which all that is to follow is based, is

[†] The work of the first author was supported in part by NRC Grant A-5285.

[‡] The work of the second author was supported in part by NRC Grant A-5549.

Theorem 2 [13] If (G, A) is as in Theorem 1 and A is s-regular then $1 \le s \le 5$.

A very natural infinite cubic graph is the infinite tree of valence 3 which we will denote by Γ_3 . The full automorphism group of Γ_3 is ω -transitive but we shall see that there are s-regular groups acting on Γ_3 for $1 \le s \le 5$. An interesting corollary to Tutte's two theorems is

Corollary If (Γ_3, A) is an object and A is 6-transitive then A is ω -transitive.

1. Vertex Fixers and Edge Stabilizers

Let (G, A) be an s-regular object, u_0, \ldots, u_s a simple path in $G, A(u_0, \ldots, u_j)$ the subgroup of A which fixes u_0, \ldots, u_j , $0 \le j \le s$. The s-regularity of A implies that $|A(u_0, \ldots, u_j)| = 2^{s-j}$ for $1 \le j \le s$ and $|A(u_0)| = 3 \cdot 2^{s-1}$. Thus the cardinality of $A(u_0)$ is dependent only on s. In fact, up to isomorphism $A(u_0)$ is only dependent on s.

Theorem 3 If (G, A) is an s-regular object and u is a vertex of G then A(u) is unique independent of G and A.

Proof See Propositions 2–5 in [6].

We shall denote this group by X_s .

As a corollary to Theorem 3 we get that for each s the edge fixers are unique. Let H_s denote the edge fixers. Let $\{u, v\}$ be an edge in G, (G, A) as before, and let A[u, v] be the subgroup of A which need only stabilize $\{u, v\}$. Since $s \ge 1$, A(u, v) is a subgroup of index 2 in A[u, v] and there exist elements in A[u, v] which flip the edge $\{u, v\}$. We say that A is of type s' if there exists an involution $\alpha \in A$ which flips an edge. Otherwise we say A is of type s''.

Theorem 4 If (G, A) is an s-regular object and if s is odd then the edge stabilizer is unique and of type s'; on the other hand, if s is even then the edge stabilizer is either of type s' or type s'' and otherwise unique.

Proof See Propositions 2-5 in [6].

Let $Y_{s'}(Y_{s''})$ denote the edge stabilizer of type s'(s''). The group $Y_{s''}$ is defined only when s is even.

2. Amalgams and Amalgamated Products

An amalgam is an ordered pair (X, Y) consisting of two groups X and Y, such that multiplication in X and Y coincide on $X \cap Y$ and $X \cap Y$ is a group. Given an arc (u, v) in G we can in a natural way form the amalgam

(A(u), A[u, v]) where $A(u) \cap A[u, v] = A(u, v)$. By the proof of the last three theorems we get

Theorem 5 The amalgam of an arc is unique up to s and the type.

Proof See Proposition 10 in [6].

We shall denote this amalgam by $(X_s, Y_{s'})$ or $(X_s, Y_{s''})$, depending on the type.

For each amalgam we can construct a unique group the amalgamated product, i.e.,

$$A_{s'} = X_{s H_s}^* Y_{s'}, \qquad A_{s''} = X_{s H_s}^* Y_{s''}.$$

The importance of A_s is twofold. Not only shall we see that A_s acts s-regularly on Γ_3 but if (G, A) is an s-regular object and A_s is of the right type, then there exists a natural surjective homomorphism from A_s to A.

Given A_s and X_s , Y_s we can construct a graph $G_s = (V, E)$ as follows:

$$V = A_s/X_s$$
 (the left cosets of X_s),

$$E = \{\{ux_s, vx_s\} | u^{-1}v \in X_s yX_s\},\$$

where $y \in Y_s - X_s$.

We list a few facts:

Theorem 6 (1) G_s is Γ_3 ; (2) A_s acts on G_s by left multiplication; and (3) (Γ_3, A_s) is an s-regular object.

Let (G, A) be an s-regular object and A_s be of the same type as A and g the canonical group homomorphism from A_s to A then we can define a graph homomorphism $f: \alpha X_s \mapsto g(\alpha)u$, $\alpha \in A_s$ and u the implicit vertex in G. Now the pair (f, g) satisfies certain properties which we now define.

Definition A covering morphism is a pair (f, g): $(G, A) \rightarrow (G', A')$ such that:

- (1) $g: A \to A'$ onto group homomorphism;
- (2) $f: G \to G'$ onto graph homomorphism;
- (3) f is locally 1-1 (neighbors of a vertex are sent to distinct vertices); and
 - (4) the diagram

$$\begin{array}{ccc}
G & \xrightarrow{\alpha} & G \\
\downarrow^f & & \downarrow^f \\
G' & \xrightarrow{\sigma(\alpha)} & G'
\end{array}$$

commutes, i.e., $g(\alpha) \cdot f = f \cdot \alpha$ for all $\alpha \in A$.

With one more definition we can state the key idea for the diagrams. A subgroup of A_s is said to be *small* (in A_s) if $K \triangleleft A_s$, $K \cap X_s = K \cap Y_s = 1$, and $(A_s: KX_s) > 2$.

Theorem 7 Let G be a connected cubic graph and A an s-regular subgroup of Aut(G), $1 \le s \le 5$. Let $A_s = A_s'$ or A_s'' be of the same type as A. Then there exists a covering morphism $(f, g): (\Gamma_3, A_s) \to (G, A)$ and ker g is small in A_s .

Conversely, let K be a small subgroup of A_s and put $A_K = A_s/K$. Let G_K be the graph whose vertex-set is A_s/KX_s and in which two vertices uKX_s and vKX_s are adjacent iff $u^{-1}v \in KX_syX_s$. Then G_K is a connected cubic graph, A_K is an s-regular subgroup of $Aut(G_K)$, and A_K is of the same type as A_s . There is a covering morphism $(f,g): (\Gamma_3,A_s) \to (G_K,A_K)$ where $g: A_s \to A_K$ is the canonical map and $f: \Gamma_3 \to G_K$ is defined by f(uX) = uKX.

Proof See Theorem 1 in [6].

If (f, g) is a covering morphism the kernel of (f, g) will be defined to be the kernel of g. We have from Theorem 6 that every s-regular object generates a small normal subgroup of A_s , i.e., the ker(f, g), and every small normal subgroup of A_s generates s-regular objects. The next two theorems tell us how many normal subgroups correspond to a given cubic graph.

Theorem 8 Let (G, A) be an s-regular object, s = 3 or 5; then all covering morphisms $(f, g): (\Gamma_3, A_s) \to (G, A)$ have the same kernel.

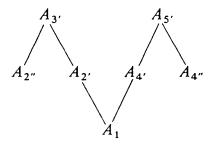
Proof See Theorem 2 in [6].

Theorem 9 Let (G, A) be an s-regular object, s = 1, 2, 4, and (Γ_s, A_s) being the same type as (G, A); then over all covering morphisms from (Γ_s, A_s) to (G, A) there are either one or two kernels and if there is exactly one kernel then G is (s + 1)-transitive.

Proof See Theorem 8 in [6].

Before presenting the diagram, we need a few more results about the subgroup structure of the A_s 's.

Theorem 10 The subgroup structure for the A_s 's is indicated by the following diagram:



3. Some Subgroups of A_3

Some subgroups of $A_{3'}$ are shown in Fig. 1 and we shall describe them now. The lines indicate normal subgroups and the number indicates the index. Starting with A_3 it has three subgroups of index 2, namely, $A_{2'}$ and $A_{2''}$ and the even subgroup of $A_{3'}$, the subgroup which preserves the bipartition on Γ_3 denoted $A_{3'}^+$. The group $A_{2'}$ contains two copies of A_1 and its even subgroup A_2^+ which equals $A_2 \cap A_3^+ \cap A_2^-$. The even subgroup of $A_{1'}$ is $A_{1'} \cap A_{2}^{+}$ and $A_{1'}$ contains a normal subgroup of index 3, $A_{0'}$ which is vertex-regular on Γ_3 . Now A_1^+ contains two copies of two even subgroups of vertex-regular groups on Γ_3 . The subgroups $K_{4'}$, $K_{4''}$ and $Q_{3'}$, $Q_{3''}$ correspond to the two copies of the graph K_4 and the cube, respectively. The graph $K_{3,3}$ corresponds to a unique normal subgroup of A_3 since it is 3-regular. Now N corresponds to a 3-regular graph which is a 12-fold covering of Q_3 and a 16-fold covering of $K_{3,3}$. The subgroup $P \triangleleft A_{3'}$ corresponds to Petersen's graph; D', $D'' \triangleleft A_{2'}$ correspond to dodecahedron; and $Z \triangleleft A_3$ corresponds to Desargue's graph. Finally $K \triangleleft A_{3'}$ corresponds to the vertex primitive 3-regular graph on 28 vertices G(28).

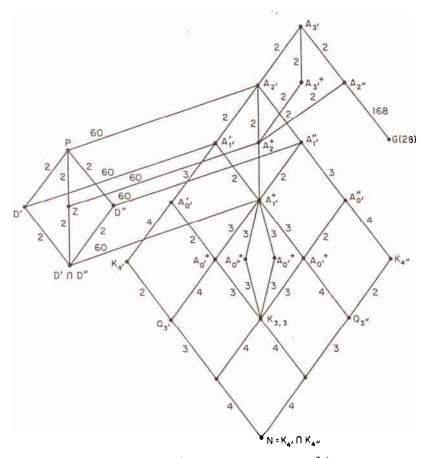


Figure 1 Partial subgroup structure of A₃.

By simply noting where the subgroup of a graph lies in the diagram a large amount of information can be read off. As an example, $K_{3,3}$ is contained in $A_{2'}$ and $A_{2''}$; therefore, $\operatorname{Aut}(K_{3,3})$ contains subgroups of type 2' and type 2". Similarly, $\operatorname{Aut}(K_{3,3})$ contains two 1-regular subgroups and at least two 0-regular subgroups: $K_{3,3}$ must be bipartite. Now Petersen's graph has no type 2" or type 1' actions since it is not contained in $A_{2''}$ nor $A_{1'}$. The fact that Petersen's graph contains no 1-regular subgroup follows by the fact that Petersen's graph is not bipartite and the following proposition:

Proposition Let (G, A) be a 3-regular object; then the following hold:

- (1) if A contains a 1-regular subgroup then G is bipartite and A contains two 2-regular subgroups and two 1-regular subgroups;
 - (2) if A contains two 2-regular subgroups then G is bipartite.

Proof See Proposition 26 in [6].

4. Some Subgroups of $A_{5'}$

Some subgroups of $A_{5'}$ are shown in Fig. 2, and we shall describe them now. We have $A_{4'}^+ = A_{4'} \cap A_{4''}$. T is the normal subgroup of $A_{5'}$ which

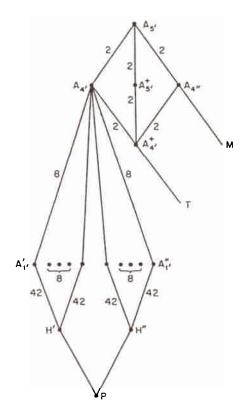


Figure 2 Partial subgroup structure of A₅.

corresponds to Tutte's 8-cage. As is well known, we have $A_4 \cdot / T \approx A_6$, $A_5^+ / T \approx S_6$, and $A_5 \cdot / T \approx \operatorname{Aut}(S_6)$. Now $M \triangleleft A_5$ corresponds to the unique finite primitive 5-regular object $(G(234), \operatorname{Aut}(SL_3(3)))$. We have $A_4 \cdot / M \approx SL_3(3)$ and $A_5 \cdot / M \approx \operatorname{Aut}(SL_3(3))$.

Now $A_{4'}$ contains 16 copies of $A_{1'}$. They are all conjugate in $A_{5'}$ and fall into two conjugacy classes of size 8 in $A_{4'}$. Let $A_{1'}$ and $A_{1''}$ denote members of each of the two conjugacy classes. The intersection of the $A_{1'}$'s and the intersection of the $A_{1''}$'s correspond to the two copies of Heawood's graph.

Theorem 11 Heawood's graph is the unique minimal graph which is 4-regular and whose automorphism group contains a 1-regular subgroup. So, every 4-regular object with a 1-regular subgroup is a covering of Heawood's graph.

Proof See Proposition 29 of [6].

Finally, $P = H' \cap H''$ corresponds to the unique minimal 5-regular graph such that Aut(G) contains a 1-regular group.

REFERENCES

- 1. N. Biggs, "Algebraic Graph Theory," Cambridge Univ. Press, London and New York, 1974.
- 2. N. Biggs, Three remarkable graphs, Canad. J. Math. 25 (1973) 397-411.
- 3. J. Dieudonné, "La Géométrie des Groupes Classiques," Springer-Verlag, Berlin and New York, 1963.
- 4. D. Ž. Djoković, Automorphisms of graphs and coverings, J. Combinatorial Theory Ser., B 16 (1974) 243-247.
- 5. D. Ž. Djoković, On regular graphs V, J. Combinatorial Theory Ser B, to appear.
- 6. D. Ž. Djoković and G. L. Miller, Regular Groups of Automorphisms of Cubic Graphs, TR20, Computer Science Department, University of Rochester, Rochester, New York, 1977, to appear in J. Combinatorial Theory Ser. B.
- 7. D. Gorenstein, "Finite Groups," Harper, New York, 1968.
- 8. B. Huppert, "Endliche Gruppen I," Springer-Verlag, Berlin and New York, 1970.
 - 9. R. C. Miller, The trivalent symmetric graphs of girth at most six, J. Combinatorial Theory Ser. B 10 (1971) 163-182.
- 10. M. Newman, "Integral Matrices," Academic Press, New York, 1972.
- 11. J.-P. Serre, Arbres, amalgames, SL₂, Astérisque, No. 46 (1977).
- 12. J. Tits, Sur le groupe des automorphismes d'un arbre, in "Essays on Topology and Related Topics, Volume Dedicated to G. de Rham," pp. 188-211. Springer-Verlag, Berlin and New York, 1970.
- 13. W. T. Tutte, "Connectivity in Graphs," Univ. of Toronto Press, Toronto, 1966.
- 14. W. T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947) 459-474.

- 15. W. T. Tutte, On the symmetry of cubic graphs, Canad. J. Math. 11 (1959) 621-624.
- 16. R. M. Weiss, Über s-reguläre Graphen, J. Combinatorial Theory Ser. B 16 (1974) 229-233.
- 17. R. M. Weiss, Eckenprimitive Graphen vom Grad drei, Abh. Math. Sem. Univ. Hamburg 41 (1974) 172-178.

AMS 05C25

Dragomir Ž. Djoković
DEPARTMENT OF PURE MATHEMATICS
UNIVERSITY OF WATERLOO
WATERLOO, ONTARIO

Gary L. Miller

DEPARTMENT OF MATHEMATICS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS