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Abstract
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this family of separators we get an time

gorithm for solving linear systems that arise from 

parallel algorithm design. Divide-and-Conquer can
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algorithms and numerical analysis the efficiency of
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methods exist for the finite element method in the

3-dimensions (possibly the most important dimen-

sion). The algorithms we present for finding these

family are randomized. But linear system solvers

are otherwise deterministic. 

To motivate our result we view the planar sepa-

rator theorem as a statement about 2-dimensional

simplicial complexes. We first give a few defini-

tions.

Definition 1.2

A k-dimensional simplex (k-simplex) is the con-

vex hull of k 1 independent points in

space. A simplicial is a collection of sim-

plexes closed under subsimplex and intersection. A
k-complex K is a simplicial complex such that for

every in K , k .

Thus, a 3-complex is a collection of tetrahedra

or cells triangular patches or faces

edges (l-simplexes), and vertices

(O-simplexes). The k-skeleton of a simplicial

complex K is the k-complex consisting of all
simplexes in K for k. Thus, the l-skeleton

of a 2-complex in the plane can be viewed as a

graph that is planar. On the other hand, by

Theorem we know that every planar graph can be

embedded in the plane such that each edge maps

to a straight line, Thus, if G is a tri-

angulated planar graph then it can be embedded

in a l-skeleton of a 2-complex in the plane. Thus

we can view the planar separator theorem as state-

ments about the l-skeletons in 2-dimensions. The

main goal of this paper is to show that under rea-

sonable assumptions small separators exist and can

be found for l-skeletons of 3-complexes embedded

3-dimensions.

We next discuss the restriction we place on the

complex. It is not hard to see that any graph can be

embedded in 3-dimensions. In particular, one can

show that the complete graph can be embedded in

the l-skeleton of a 3-complexin The 3-complex

will have 3-simplexes. We can accomodate 

this example by allowing the size of the separator

to be a function of the number of 3-simplexes.

This restriction alone is not sufficient to insure

the existence of small separators. In Section 6 we

exhibit a 3-complex such that its l-skeleton has

only separators for size t log c, where c is the

number of 3-simplexes and t is some fixed constant.

The 3-simplexes in the example are long and thin. 

For many applications we can restrict our atten-

tion to those complexes where the simplexes have 

bounded aspect-ratio. There are many equivalent 

definitions of the aspect-ratio of a simplex such as:

all angles have minimum size, the number of sim-

plexes that can share a point is bounded below,

and ratio between the diameter of the circumscrib-

ing sphere and diameter of the inscribing sphere is

bounded. We have picked the following definition:

Definition 1.3 The diameter of a

simplex is the maximum distance between any

pair for points in S . While the aspect-ratio equals

where denotes the k-dimensional volume of S .

There is one other restriction that we need to

complete the list. A simplicial complex need not

contain all of space. We assume that the k-complex

is contained in for k . A point is a vector

in R'. The underlying space of K is all those

points lying in some simplex of K.

Definition 1.4 A simplex S of is exterior if

S is contained in the boundary of the underlying

space of K . A simplex of K is interior if it is not

exterior.

Our separator will "separate" any subset of ver-

tices. For many applications one only needs to sep-
arate interior vertices. For example, in the finite el-

ement method vertices on the boundary correspond

to points with known values and thus they need

not be separated. For other applications one would

need to introduce dummy 3-simplexes around the

boundary. We use this idea when we show how to

find a family of separators.

We can now state our first separator theorem.

A k-complex K is a-stable if every k-simplex has 

aspect-ratio at most a.

Theorem 1.5 If K is a a-stable 3-complex in

with c 3-simplexes and exterior vertices, then the
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I-skeleton has that

separates where is constant only depending

on

We shall find the separator in two steps. In the

first step we solve a continuous version of the prob-

lem. While in the second, we show how to use a

solution to the first problem to solve the separator

problem for simplicial complexes. 

Let be a real valued nonnegative function 

defined on such that all integrals exist. We

think o f f as the cost function. The total cost of

the system is

Total-Cost = (2)

Note that in d-dimensions we are integrating over

f This definition seems rather nonintuitive. But

in fact this definition is crucial for our application.

If S is a (d- 1)-sphere then the cost of S will be

(3)

Theorem 1.6 I f f is a cost function on and Q

is set of n distinct points in then there exists

( d - 1)-sphere in that separates the points of

Q not on into two sets, the interior and exterior

of each of size at most and the =

((Total-

I

This last theorem can be strengthened by replac-

ing the set of points Q by almost any mass function

such that the mass at any point is at most

where n is the total mass. The above theorem will

suffice for our application. We discuss generaliza- 

tions in the full paper.

The general outline of the algorithm for finding 

the separator for Theorem 1.5 is as follows:

d

1. Define a cost function that is constant in each 

3-simplex such that the cost of each 3-simplex

is one. 

2. Find a 2-sphere SP that separates the vertices

and has cost by Theorem 1.6.

3. “Pull” the sphere SP back to a 2-complex in

that also separates the vertices of K.

2 Separating

Our goal in this section is to prove Theorem 1.6

by finding a sphere that separates a set of points

and whose cost is small. As in the introduction let

f be a “nice” nonnegative real valued function on

Piecewise linear suffice for our application.

Let be a set of n points in We separate

with a plane by first mapping the points Q onto

the unit d-sphere in d 1dimensions and then sep-

arating the points with a hyperplane. We let

denote the unit d-sphere in centered at the

origin.

Recall that a map is conformal if it preserves an-

gles. Clearly, rigid motions and dilations goes

to for are conformal maps. A nontriv-

ial conformal map is the stereographic projection

which maps plus infinity onto Since the

composition of any two conformal maps is confor-

mal, we may apply any combination of the above

maps and obtain a conformal map. If is a con-

formal map then we can also map the cost function 

to a new cost function such that costs are pre-

served in every dimension simultaneously. We will

not need to compute this cost function. In fact in

our application the cost function only occurs in the

proof and not in the actual algorithm.

Thus, we may assume that the cost function f is

defined on the points Q are also on the unit

sphere, and our goal is to find a hyperplane P in

which separates Q and the cost of P S =

((Total-Cost ) ).
It is well known that there exists a point in

the sphere such that every hyperplane contain-

ing is a separator, these points are called center-

points.

Definition 2.1 The point p is

point for set of n points Q c if every hyper-

plane P , not containing p contains at most

point of Q .

d

It follows from fixed point theorem 

and also theorem that

terpoints always exist. In Section 5 we discuss

known and new algorithms for finding centerpoints

and “almost” centerpoints.
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We next conformally move the centerpoint to the

origin. First we observe that a conformal map of

can be extended to points of such that

lines go to lines. This extension is not in general

conformal on the unit ball. However, it is not hard

to see that, in this extension, any point interior

to the sphere can be moved to the center by one

rotation followed by a dilation.

WLOG,we may assume that any hyperplane 

containing the origin is a separator of the points of

and that cost function is defined on the sphere.

We next show that, on the average, the cost of a hy-

perplane containing the origin intersected with the

unit sphere (a great circle) is small. Let

We denote by the oriented great circle in 

that is centered at x. We define the expected cost

a great circle to be

where the volume of and

= This integral can

be rewritten as

2.1 Using Cauchy-Schwarta Inequality

In this subsection we bound the size of an average

great circle.

Let the kth moment be

Observe that = Total-Cost and =
use the following form of the Cauchy-Schartz's in-

equality:

( J (7)J J
Setting u to f and to the constant function 1we

get:

Rewriting this in terms of moments we have

Using inequalities of this form
we get:

Theorem 2.2

We rewrite e uations 4 and 5 in terms of
ments; avg = Combining this with

Theorem 2.2 we get:

Theorem 2.3 The cost circle is

at most - -

For avg

Thus, we see that picking a random great circle,

after conformally mapping the centerpoint to the

origin, gives a separator of cost 2/3 power of the

total cost for 3-dimensions. 

Separating a Simplicia1 Com-

plex with a Sphere

In this section, we show how to separate a

k-dimensional simplicial complex by a k -
dimensional subcomplex given that we have a

dimensional sphere which separates the vertices of

the complex. We also restrict ourselves to k =
two and three dimensions.

3.1 Definition of a Sufficient
Simplex and Related Bounds

Let SP be a - l-dimensional sphere which in-

tersects some of the cells of K. We assume that

P does not contain any vertices from K.We next

describe a 2-dimensional simplicial complex of

derived from SP which partitions the cells of

and the vertices of K.
A in is the intersection of a

closed d-ball (closed complement of a d-ball) and

a the ball may be a half-space. A

simplex is trivial if it empty or the whole simplex. 

The complement of a half-simplex is the closure

of its set-theoretic complement. A half-simplex is 

major if its volume is its complement, otherwise 

it is minor.
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Definition 3.1 A half-k-simplex is sufficient if it

contains a major half-(k - 1)-simplex. The half-

( k - 1)-simplex may be a complete simplex. 

Proof: Let F be a 2-simplex and be a circle

which intersects the boundary of F. Since F can

intersect the boundary of in at most 6 points

F n will consist of t 3 curved segments. We

Observe that a half-simplex or its complement

must be sufficient. It is possible the a half-simplex

and it complement may both be sufficient.

We need the following technical lemma which we

state separately for 2 and 3 dimensions.

In two dimensions we will use the notion of an

7-split.

Definition 3.2 We say that and is an

split of if

where is the half-edge ofE in

Thus, if and is a partition of S into 2 suf-

ficient half-cells then they are a An or-

thogonal projection is a linear map from @ onto

in the natural way.

Lemma 3.3 If a line L a is of a

F then there exists an 'orthogonal projection P such

that n n

Proof: Suppose that L is a 7-split of half-faces

and F2. The line L must intersect two of the

edges E and E' of F. Assume that the vertex V
common to E and is in Since L is a 7-split of

F , we know 7= WLOG

we may assume that 7 = If we let be

the orthogonal projection of onto a line normal

to E then n =

Lemma 3.4 Suppose that F is a and

and is a division ofF into two sufficient

tsimplexes then the length 1 in the intersection of

and satisfies the inequality 1.

304

place the t curved segments with t nonintersecting

straight line segments . . , without increas-

ing the length of the intersection. We view each

of the line segments as splitting F. Thus we have

for 1 i t. Since the half-face exterior

to is sufficient some half-edge E is major. Let

be the line segments common to E, =
It follows that + Thus by Lemma 3.3

there exists orthogonal projections and such

Since We have
I

The similar bound in 3 dimensions is more com-

plicated. The result follows using the theory of

isoperimetric inequalities and was proved with the

help of Fred Almgren.

Lemma 3.5 Suppose that is a and

and is a division of into two half-

cells then there exists a constant independent of

a, such that the area A in the intersection of

and satisfies the inequality

We start by proving a special case of Lemma 3.5
where is the symmetric d

and Cut is a 2-dimensional incision of that

separates, B, the boundary of into two parts

and We let = and =

Lemma 3.6 The incision Cut satisfies

for some constant If has unit volume

instead of diameter then

Proof: Suppose and Cut are as above. We

assume that the barycentre, see lies at the

origin. Let for 0 < 1 be the simplex ob-

tained from by multiplying every element in 



by 6. Consider the following integral

where is the Euclidean distance from x to

y. The point is on the boundary of S obtain
by projecting a ray starting from x through y,

for x is the cotangent of the angle

that makes with the boundary of S, for not

in a subsimplex of S. We substitute d for

since it bounded by the diameter of S. Observe

that - 6). Reversing the order

of integration and making the above substitutions

we get:

It is not hard to see that the integral over x

is a maximum when is at the origin. Thus, by a

straightforward calculation this integral is at most

The volume = Making these

substitutions and simplifying we get:

Setting = 1/2 we get Thus, is

at least If S has unit volume then the surface

area of S is Combining these two facts gives

the second part of the lemma.

To prove Lemma 3.5 let S be a 3-simplex sat-

isfying the hypothesis of Lemma 3.5 and the

symmetric 3-simplex of unit volume. We may pick

a linear transformation T which maps onto S
such that the largest eigenvalue of T is the di-

ameter d of S. Let Cut be the preimage of n
in S‘, Cut = Since and

are both sufficient the constant 7 for the Cut must

be 7 Thus The area

We need one further estimate of the size of a cut. 

We say an edge E in a 3-complex K is exposed

with respect to a sphere SP if:

1. E is internal to K.
2. E and SP are disjoint.

3. The complement of every containing

is sufficient.

Lemma 3.7 If E is an exposed edge with respect

to a SP then there exists a S con-

taining E such that . <
for some constant p.

Proof: Let E be an exposed edge of length e .
There are two cases depending on whether or not

there exists a 3-simplex S containing E and a point

x on E such that the distance from x to is

at least Suppose x and are such a point and

3-simplex. Consider the following integral similar

to the one in the proof of Lemma 3.6:

where is the surface area of S exterior to SP.

By our hypothesis we know the

Further, It is not too hard

to see that Therefore,

e The case where S does

not exist is slightly messier and will be handled in

the full paper.

3.2 Picking a Linear Approximation of
the Sphere

In this subsection we define our linear approxima-

tion of the sphere. We first pick a collection of

half-cells, -C. From the half-simplexes we

obtain the 2-dimensional subcomplex that will be

our separator. 

For each cell that intersects SP we pick the

half-cell of that is not sufficient, if it exists. Oth-

erwise, we pick the half-cell with the fewer vertices,

if it exists. Otherwise, we arbitrarily pick one of the

half-cells. Let - be this set of nontrivial

cells. Thus, our linear approximation will simply

be the “pull back” in the direction of the chosen

half-simplexes.

The separator is the subcomplex. Let

consist of all simplexes in that are contained
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in the union of half-3-simplexs of H-C. The vertex

separator of K is the vertices V' of K'. To prove

that V' is a small separator we need to examine K'

more closely.

Claim: Every interior 2-simplex of K that in-

tersects SP has two half-simplexes in H - C, ei-

ther two copies of the same half-simplex or a half-

simplex and its complement. Since exterior sim-

plexes are common to only one 3-simplex of K,
they have exactly one half-2-simplex in H -C.

Lemma 3.8 Every edge E that intersects S P has

at least one vertex in V'.

Proof: The 1-simplex E is contained in a

simplex S that intersects SP. The vertices of E

belongs to different half-3-simplexes of S. Since

one of these half-3-simplexes is in H - one of the

vertices of belong to H - and thus to K'.
We next bound the number of vertices in K' as a

function of the number of faces in The vertices

of K' fall into three types. Each Type 2 vertex

belongs to some face of K'. While each type

tex does not belong to any face of K' but it does

belong to some edge of K'. Finally, each type 0

vertex is isolated; it belongs to no face or edge of

K'.
Observe that if there is a type 0 vertex v then it

is either on the boundary of K or else K' consists

of just v . If v is of type 1then it must belong to an

exposed edge. Thus, the number of type 1vertices

is at most twice the number of exposed edges in

K'. Similarly the number of type 2 edges is at

most three times the number of faces of K'. This

discussion proves the following lemma.

Lemma 3.9 The number of vertices in K' is at

most where is the number of exposed

edges in K', is the number of faces in K', and

is the number of exterior vertices of h'.

3.3 Bounding the Number of Vertices in
the Separator

Let K, be as in Section 3.2. We define a function

f ( x ) on the underlying space of K as follows: If x is

a point on the interior of a 3-simplex of then

set = If x is not in the underlying

space of K, set f ( x ) = 0 . set f ( x ) equal

to some arbitrarily value.

We define the cost of a 3-simplex S, with respect 

to f,to be

Thus, the cost of any 3-simplex in K is 1and the

total cost of K is the number of 3-simplexes.

Note that the opposite of each half-3-simplex

in H - is a sufficient half-3-simplex. But the

half-simplex in - need not be sufficient. We

next show that, if a sphere divides a 3-simplex

with bounded aspect-ratio into two sufficient half-

simplexes, then the boundary between the two half-

simplexes is bounded from below.

Lemma 3.10 Suppose that S is a cell with

a and and is a division of S into two

suficient half-cells then the cost in the intersection

of and is at least

We show that Lemma 3.10 follows from

Lemma 3.5.

Proof: Let A be as in Lemma 3.5, and =

and v Let be the density in S,
= 1. We must bound First we bound d f .

Using the fact that S has an aspect-ratio at most

a, d Thus,

Using the inequality A from Lemma 3.5
we get:

-=- -. (20)df df a

Lemma 3.11 Let F be a 2-simplex in K' where

and are the two 3-simplexes in K containing
F , then either or is split into two 

half-8-simplexes by S P .
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The sphere SP splits into two

and Since both and belong

I -C, they must each belong to sufficient

say, belongs to and belongs

in On the other hand, either or

I major half-2-simplex. Suppose is major.

I the half-simplex of containing is also 

Therefore both half-3-simplexes of

I sufficient.

3.12 If E is an exposed edge in K‘, then
exists a cell containing E such that the cost

is at least

I’roof:

3.10, except here we use Lemma 3.7.

The proof is very similar to that of

‘I‘lreorem3.13 The number of vertices in is at

+ where m is the cost of S P .

I’roof: By Lemma 3.9 the number of vertices in 

is at most + 3 + where is the number

exposed edges in is the number of faces in 

and is the number of exterior vertices of K.

Lemma 3.12 By Lemma 3.11 each 

in is contained in a cell whose intersection

is at least Lemma 3.5. But, each

in can be common to at most 4 faces in

Substituting these inequalities

Theorem 1.5 now follows from Theorems 2.3 and

+ 3 + proves the theorem.

4 Finding a Family of Separa-

tors

In this section we show how to find a family of

separators. We must show that small separators

in the subcomplexes that have been created

the removal of prior separators. The problem

is that the separator constructed in Theorem 1.5

grows as a function of the boundary. We show that

the algorithm works unchanged. But we modify

the analysis. We assume that is a complex in 

and has at most external vertices.

We include in the root separator all of the external

vertices of K.Let be a subcomplex of which

we want to separate. Let be the subcomplex

K consisting of simplexes in plus 3-simplexes

in K that contain a vertex in We also include

in all subsimplexes so that is a

complex. We bound the number of 3-simplexes in

in terms of the number of vertices in K‘.

Lemma 4.1 If K is an a-stable complex in
then the number of common to a vertex

is at most where is some fixed constant.

We now apply Theorem 1.5 to separate the vertices

of but use the 3-simplexes of to determine

the cost function. Observe that Theorem 1.5can be

strengthened to separate any subset of the vertices,

it will separate a weighted combination of the

vertices.

5 Finding a Centerpoint

Finding centerpoints is the only nontrivial com-

putational step in the construction of the sepa-

rator given in Theorem 1.5. Theorem 1.5 finds

a centerpoint in where the points lay on

the unit 3-sphere. We know of no randomized or

deterministic algorithm which finds these

points in less than time. On the other hand, 

there are randomized algorithms which find points

such that any hyperplane not containing con-

tains at most + points. We call these

ecenterpoints. in can be found 

in constant time where the probability of error is at

most RNC algorithms

exist that always return an

6 A 3-coniplex with only Large

Separators

We exhibit a complex in with sim-

plexes such that any separator has size The

idea is to embed the Cube-Connected-Cycles graph

in the 1-skeleton. The vertices will be integer 

points in and = The vertices are triples

such that 0 0 and

We view vertices with the same

value as on a level. We connect the vertices on a
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level together to form a mesh. Between consecu-

tive levels we connect as follows: vertex is

connected to and vertex is

connected to (p, Thus, the four corners 

of two adjacent squares at level are connected to

four corners of two adjacent squares at level +1.

As it is now defined this is not the l-skeleton of a

3-complex. But, we can refine it until we have a

3-complex. Recall that the CCC has as its vertex

set all pairs i ) where to are zero

or one and 0 i n. We connect i ) to

i f 1) i ) where

the complement of a. We view the pair of inte-
gers as the binary string

where and binary representa-

tion of x and y respectively. Thus, changing level

corresponds to changing the value of i in the CCC.

Therefore any separator of the complex will be a

separator of the CCC graph. But it is known that
I

I

Parallel Nested Dissection

any separator of the CCC has size

7 Solving Linear Systems use

In this section we show that the when we

ply Nested Dissection is not too large. One could

possibly use Theorem 6 from We can an-

alyze our separators directly. The main advantages 

of a direct analysis will be: (1) the constants will

be smaller, (2) we can apply our results to finite el-

ement graphs and there generalization to and

(3) we get faster algorithms.
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