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A polynomial time algorithm is presented for the founding question of Galois theory: deter-

mining solvability by radicals of a monic irreducible polynomial over the integers. Also a
polynomial time algorithm which expresses a root in radicals in terms of a straightline 

program is given. Polynomial time algorithms are demonstrated for computing blocks of

imprimitivity of roots of the polynomial under the action of the Galois group, and for com-

puting intersections of algebraic number fields. In all of the algorithms it is assumed that the

number field is given by a primitive element which generates it over the rationals, that the

polynomial in question is and that its coefficients are the integers. Academic

Press, Inc.

Every high school student knows how to express the roots of a quadratic
equation in terms of radicals; what is less well known is that this solution was

found by the Babylonians a millenium and a half before Christ Three thou-
sand years elapsed before European mathematicians determined how to express the
roots of cubic and quartic equations in terms of radicals, and there they stopped,

for their techniques did not generalize. published a treatise which dis-
cussed why the methods that worked for polynomials of degree less than five did

not extend to quintic polynomials hoping to shed some light on the problem.
Evariste Galois, the young mathematician who died in a duel at the age of twenty,
solved it. In the notes he revised hastily the night before his death, he an
algorithm which determines when a polynomial has roots expressible in terms of
radicals. Yet of this algorithm, he wrote, “If now you give me an equation which

you have chosen at your pleasure, and if you want to know if it is or is not solvable
by radicals, I need do nothing more than to indicate to myself or anyone else the
task of doing it. In a word, the calculations are impractical.”

They require exponential time. Through the years other mathematicians 
developed alternate algorithms all of which, however, remained exponential. A

major impasse was the problem of factoring polynomials, for until the recent
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180 LANDAU AND MILLER

breakthrough of Lenstra, Lenstra, and Lovasz all earlier algorithms had 

exponential running time. Their algorithm, which factors polynomials over the-

rationals in polynomial time, gave rise to a hope that some of the classical

questions of Galois theory might have polynomial time solutions. We answer that

the basic question of Galois theory-is a given polynomial, over the rationals

solvable by radicals-has a polynomial time solution. 

Galois transformed the question of solvability by radicals from a problem concer-
ning fields to a problem about groups. We transform the inquiry into several
problems concerning the solvability of certain primitive groups. We construct a 
series of polynomials such that the original polynomial is solvable by radicals iff

each of the new polynomials is solvable by radicals. Each polynomial is constructed
so that its Galois group acts primitively on its roots. Palfy has recently shown that

the order of a primitive solvable group of degree is bounded by for a 

constant 3.24399... We attempt to construct the Galois group of these
specified polynomials in polynomial time. If we succeed, we use an algorithm of

Sims to determine if the groups in question are solvable. If any one of them is not,
the Galois group ovr Q is not solvable, and is not solvable by
radicals. It may happen that we are unable to compute the groups within the time 
bound. Then we know that the group in question is not solvable, since it is
primitive by construction, and primitive solvable groups are polynomially bounded 
in size.

We first observe that there is a polynomial time algorithm for factoring

polynomials over algebraic number fields by using norms, a method due to

Kronecker. We construct a tower of fields between Q and by determin-
ing elements i =0, + 1, such that Q =

The tower of fields we find is rather special. If is the
minimal polynomial for over then the Galois group of over

acts primitively on the roots of The Galois group over Q is
solvable iff the Galois group of over is solvable for i=0, r.

Using a simple bootstrapping technique, it is possible to construct the Galois 
group of over in time polynomial in the size the group and the
length of description of Since the are determined so that the Galois group
of over acts primitively on the roots of if the group is solvable,
it will be of small order. In that case, we can compute a group table and verify
solvability in polynomial time. If it is not solvable, but it is of small order, we will
discover that instead. Otherwise we will learn that the Galois group of over

is too large to be solvable, and thus is not solvable by radicals
over Q.

Our approach combines complexity and classical algebra. We introduce
background algebraic number theory and Galois theory in Section 1. Section 2
begins the discussion of solvability. The algorithmic paradigm of

quer finds a classical analogue in the group theoretic notion of primitivity. Galois
established the connection between fields and groups; permutation group theory

explains the connection between groups and blocks. Combining these ideas we
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present an algorithm to compute a polynomial whose roots form a minimal block
of imprimitivity containing a root of

We use this procedure in Section 3 to succinctly describe a tower of fields
between and A simple divide-and-conquer observation allows us to

convert the question of solvability of the Galois group into several questions of
solvability of smaller groups. These are easy to answer, giving us a polynomial time
algorithm for the question of solvability by radicals.

We discuss in Section 4 a method for expression the roots of a solvable
polynomial in terms of radicals. We present a polynomial time solution to this
problem using a suitable encoding. We conclude with a discussion of open
questions.

1 . BACKGROUND

If = + +a, is a polynomial with coefficients in then, Lenstra, 
Lenstra, and Lovasz showed that

1 . 1 . A polynomial in of degree n can be factored in

As we are concerned with expressing roots as radicals, it is natural to ask if the
above can be extended to finite extensions of the rationals. We recall some
definitions. An element a is algebraic afield K iff a satisfies a polynomial with
coefficients in K.An extension field L is algebraic ouer afield K iff every element in

L is algebraic over K. It is well known that every finite extension of a field is 
algebraic; the finite extensions of are called the algebraic number

Every algebraic number field is expressible as for a suitable a. The field
is isomorphic to t ) , where ) is the minimal (irreducible)polynomial for a.
Let the degree of be m. The conjugates of a are the remaining roots of

a can be thought of as By the minimality of these are all distinct. 
(Note that the fields are all isomorphic.) Every element in can be
quely expressed as + ,with the that is, is a

vector space of dimension m over This provides a third way to describe an
algebraic number field.

A number a is an algebraic integer iff it is a root of a polynomial over
The set of algebraic integers of form a ring, frequently written If we

a polynomial in a number ring, the factors of also lie in the num-
ber ring. The ring of algebraic integers of is contained in for some 
d for which

2disc( = -a,) .
j
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If ... +

nomials in algebraic

as 'above. Then

= +h, +
is primitive.be a factor of in

+ ..- + then

A proof appears in
A classical technique to reduce questions in number fields to questions in the

rationals is the norm. If the conjugates of a =a, over are a,, then if

is an element of the = =

We can think of a in as

a polynomial in two variables, and a, and denote it by It is quite natural to
extend the definition of norm to polynomials in by

i

) is in then is in Under appropriate hypothesis, a
mial in can be factored by taking the norm of the polynomial, fac-

toring the norm over the rationals and raising that to a factorization of the

polynomial over the n ber field. It was shown in that these techniques lead to
a polynomial time a rithm for factoring polynomials over algebraic number 
fields:

THEOREM 1.3. Let a satisfy a irreduciblepolynomial of degree m over
with discriminant d, and let be in be of degree n. Then can be 

factored into irreducible polynomials over in

We note that in factoring over we obtain a primitive element for the
field where is a root of will prove useful in
Algo

We conclude with a brief review of Galois theory; for a more complete treatment 

the reader may consult either or Lang
Let be an algebraic number field, and let be a polynomial with

in with roots a, a,. Then N N but in general 

I
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for The field a,) is called the splittingfield of over

We consider the set of automorphisms of a,) which leave fixed. These
form a group, called the Galois group of a,) over K. As we can think of
these automorphisms as permutations on the a,, this group is sometimes referred to
as the Galois group of over The Galois group is transitive on a,),

that is, for each pair of elements there is an element in G, with =

Galois’ deep insight was to discover the relationship between the subgroups of the
Galois group G, and the subfields of a,).

Let H be a subgroup of G. We denote by a,)” the set of elements of
a,) which are fixed by H. This set forms a field. Furthermore, H fixes so

that we have

H
a,) a,).

Conversely suppose that is a field such that a,). Then y

can be written as a polynomial in a,, and H, the subgroup of G which fixes
consists of those elements of G which fix y. The relationship between the

and the groups can be formally stated as

FUNDAMENTAL THEOREM OF THEORY. Let K be afield, and let with

roots a,, be irreducible over Then

Every intermediate field with K a,) defines a sub-

group of the Galois group G, namely the set of automorphisms of ...,a,)

which leave

is uniquely determined by H, for is the set of elements

of a,) which are invariant under action of H.

The subgroup H is normal iff a,) over is a Galois extension,

that is, iff the minimal polynomial for over K splits into linear factors over In

that case the Galois group of over K is

(1)

(2)

(3 )

(4) = a,): K ] , and = a,):

Once the Galois group is known, the fundamental theorem allows us to deter-
mine all intermediate fields:

THEOREM A. Let the hypothesis be as in the fundamental theorem. If

a,),

then the group corresponding to is a subgroup of group corresponding to
L , , and vice versa.

THEOREM B. Let the hypothesis be as in the fundamental theorem. Then
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( 1 ) Let and be two a,) which contain Suppose H ,
and are the subgroups G which correspond to and respectively. Then
H , is the subgroup G corresponding to L ,

( 2 ) The corresponding to H , is

We want to know the answer to the following question: What irreducible

can be expressed in terms of the
operations and taking radicals.

valued function, as in, for example 

in question be represented by

equations have the property that their
elements of the base field K by means

ore precise. general is a
require that all solutions to

expressions of the form

(or similar ones), and that these expressions are to represent solutions of the
equation for any evaluation of the radicals appearing. (If a radical appears more 

than once, it is assigned the same value each time.) 
Since roots of unity can always be expressed in terms of radicals (see let us

consider for a moment determining expressibility of a root in radicals over
where is a primitive mth root of unity. This will simplify the situation. Suppose a

root is expressible in terms of radicals, and the expression is an mth root. If m is

not prime, m = Then taking an mth root could be broken up into two steps,

first taking root, then an root. By further decomposition, one need only
take roots of prime degree. This would give rise to a series of field extensions,

= F , where is an extension of which is obtained by
taking a root of some element in Each extension is Galois. The accom-
panying tower of groups c c c where the subgroup of G
which fixes satisfies the following two important conditions: normal

and is of prime order. A group which satisfies these two conditions is

called solvable. Galois showed that is solvable in radicals iff the Galois group
of over is solvable.

FUNDAMENTAL THEOREM ON EQUATIONS SOLVABLE BY RADICALS. ( 1 ) one
root an irreducible equation ( x )over K can be represented by an expression the

( 1 ), then the Galois group ( x )over K is solvable.

Conversely, the Galois group ( x )over K is solvable, then all roots can
be represented by expressions ( 1 ) in such a way that the successive extensions over

are extensions prime degree, with = with and -

irreducible over ,.
Galois transformed the problem of checking solvability by radicals to a problem

of determining if the Galois group is solvable. Yet on first glance, it is not obvious
that this reduction is useful. How does one check solvability of a group? Various
algorithms exist which do so in polynomial time given generators of the

(2)
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group. We do not use this approach since there is at present no polynomial time

algorithm for determining the generators of the Galois group. Instead, solvability
provides a natural way to use divide-and-conquer. If H is a normal subgroup of G,

then G is solvable iff H and are. Finding the right set of is the key to solv-
ing this problem, and is the subject of the next section.

2. FINDING BLOCKS OF IMPRIMITIVITY

Let a be a root of If is a normal polynomial, factors com-
pletely in the Galois group can be computed easily. Suppose

= ( x- -a,) ( x-a,) in then the will be expressed as
polynomials in a, with = Since the Galois group is a permutation group of
order m on m elements, for each a, there is a unique in G with = =

Then = implies that = = and the 
action of on can be determined.

Thus in the case that is normal, we can construct a group table for G and
check solvability in polynomial time 17, Of course, it is rare that is nor-
mal. We now develop some group theory to handle the nonnormal situation. 

The Galois group G is a transitive permutation group on the set of roots

{ a,} =

We define

G, = =a }

and we call G regular if G is transitive and G, = 1 for all a. A fundamental way the
action of a permutation group on a set breaks up is into blocks: a subset B is a
block iff for every in G, B = or It is not hard to see that if B is a
block, is also. We will let be the subgroup of G which fixes the block

Every group has trivial blocks: { a } or The nontrivial blocks are called blocks

of imprimitiuity, and a group with only trivial blocks is called a primitive group. The
set of all blocks conjugate to B: B, form a complete block system. The
idea is to construct minimal blocks of imprimitivity, and to consider actions on the
blocks. We first present several well known theorems about permutation groups; 
proofs and further details may be found in Wielandt

THEOREM 2.1. Let a 1. Then the transitive group G on is primitive

G , is maximal.

2.2. The lattice of groups between G , and G is isomorphic to the lat-

tice of blocks containing a.
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induced action of on A. Sin
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We claim A is a block. For suppose is contained in A an element of G.

Then = = for some in G,). But a = implies

that is in G,. Since are both in G,), we have is an element of
(G,, therefore A = and A is a block. If A is nontrivial we are done.

Suppose A = { a } . Then G, =G,, and we let

We know a, are in so is nontrivial. Furthermore G is transitive, so By
Corollary 2.4, is a block.

Our final case occurs when Let be an element of G, and suppose

Then there is a in G , ) , with Thus and

belongs to G,. But this would mean that is in (G,, G,), and that (G,, G,) =G,
contrary to assumption. We are done.

2.6. Suppose G acts transitively on and G , has no points

except a. Let A be a minimal nontrivial block containing a. Thenfor in A, a,

Let be in Then we let Since
we have

Next, suppose is an element in for some in G. Then and
= with elements in G,). But a = means that

is an element of G,. Then belongs to (G,, G , ) , and = Therefore is a

block. But A is a minimal nontrivial block containing a; therefore

Proposition 2.6 provides a way to compute a minimal block of imprimitivity.

Since the roots of the irreducible factors in form the orbits of G,,
the orbit structure of G, can be determined from a factorization of in
We can likewise deduce the orbit structure of G , from a factorization in

By considering a factorization in it is possible to tie
together the orbit structures of G , and G , so as to determine whether

G,) = G. Observe that since G is a transitive group, a may be fixed, and only
need vary.

Let be an irreducible polynomial over with roots Suppose

and

with =x-a, and =x-a,. (The factorization of over is
the same as the factorization over with substituted in for 

We consider G, the Galois group over Q, acting on the roots
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We propose to determine a minimal nontrivial block of imprimitivity containing 

a, it exists. Let us consider a factorization over for a,. By
tying the factorization over to its factorization over we

are able to compute the block fixed
Define a set of graphs 2, vertices and edges by

u = r}

I

Now there is an edge between and iff 1; identically,

nd they have a common root. We compute

=

connected to

and let is a root of We claim To
prove this we observe the following:

LEMMA 2.7. Let a, be a root of in Then the roots are

precisely a

Suppose is connected to Then is a root of and if
are also roots of then { Suppose the is also connec-
ted to with roots a, a,,. Then (G , , , It follows
that the 1 iff n where is a root of
and is a root of This implies

LEMMA 2.8. Let be a root of afactor of in Then

is connected to

If we compute for =2, we are cycling over all a,. which are roots of
and computing (G , , , By Proposition 2.6, this will give us a minimal 

nontrivial block containing if one exists.
We now briefly describe our algorithm, details of which appear in the Appendix.

Algorithm 2.1 determines minimal blocks of imprimitivity.

Let be an irre polynomial of degree over Q. We factor over

has more than one linear factor, we compute the induced action
of group on those roots which are elements of This gives us a
group table, from which we can determine a minimal block using Atkinson's

algorithm.
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Otherwise suppose that ( x )= in where
For each different from we factor over

(z), y ) ) .Let be identical to with replaced by y . Then for
we compute the gcd of all pairs of polynomials and

( i , k = 1, over Let be the graph with vertices 

and and edges defined by iff over
is nontrivial. We compute which is the set of polynomials

connected to and let be the product of those polynomials.
The algorithm returns the of minimal degree. This is a polynomial whose

roots form a minimal block containing

At this juncture, we observe that it is unnecessary to actually factor over

since we can determine a primitive element for
by over By computing gcd's of the factors 

over and we avoid a factorization of over

THEOREM 2.9. ( x ) of degree m is irreducible, Algorithm 2.1 computes
a polynomial in whose roots are elements of a minimal block

of imprimitivity containing a. It does so in the time required to factor over

and to calculate of polynomials of degree less than and
with coefficient length less than over a field containing two roots

We note that Zassenhaus suggests a method for computing Galois groups 
which also uses blocks of imprimitivity. His method is prima facie exponential,

although using our techniques its running time can be improved.
The fundamental theorem of Galois theory establishes the correspondence 

between field and groups, and we know now that the lattice of groups between G,

and G is isomorphic to the lattice of blocks of G which contain a. In the next sec-
tion we use the minimal blocks of imprimitivity to obtain a tower of fields between 
Q and Having this tower of fields will enable us to check solvability of the
Galois group in polynomial time.

A generalization of Algorithm 2.1 gives a method to compute the intersection of
and Since G,, is the subgroup of G belonging to the

and G , is the subgroup of G belonging to is the subgroup of G

belonging to n [Theorem B]. We can compute even when
a and are not conjugate over Since the minimal polynomial for over Q may
factor over (in'which case the problem is ambiguous), we must have a descrip-
tion of a field containing a and The description where a

satisfies the irreducible polynomial over and satisfies the irreducible

polynomial y ) over ( x ) suffices.
Suppose =m, and let a,,, be the conjugates of a over Sup-

pose also that satisfies an irreducible polynomial over and assume
that the conjugates of over are with We know there exists a
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the Galois group for over (elementary) symmetric functions in elements of

B), then G , acts primitively on B. We would like to find a set of elements
p, , 1, r, such that if is the minimal polynomial for over then

the Galois group G , of over acts primitively on the roots of
These elements will be primitive elements for over Q, We

already have a description of the from Lemma 3.1; what we seek is a succinct
description. We would like a set of whose minimal polynomials over Q have

polynomial length coefficients. (Since for each we know that the 

degree of each will be less than m.)We will describe the in terms of their

minimal polynomials, over Q. There is an inherent ambiguity as to which

root of we are referring, but this difficulty can be resolved by linking the fields

and through the polynomial
Of course one way we could determine would be by calling BLOCKS

Then if

is the polynomial described earlier, = and equals one of the
since is a field obtained by adjoining (elementary) symmetric functions in a

minimal block of imprimitivity.
Let where is the identity, form a complete block system for G

acting on the roots of and suppose that is the minimal polynomial for 

over Q. Then is of degree = j . We know that = for in

If = for i= 1, then =0 implies that = is a root of

Applying BLOCKS to returns a polynomial

whose roots form a minimal block containing Then

= functions in { 0 , } )

= functions in {symmetric functions in (a ,

symmetric functions in a, } } ).

But , is a cumbersome way to name we would like to name in
terms of the original roots a,,..., a,,,. Fortunately, there is a simple way to
do this.

LEMMA 3.2. Let ( x ) be irreducible with roots = a,,,, and Galois
group G. Let be of with and let be an

irreducible factor in Then the roots a block
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The set of roots of form a block of which contains B,.

Let be the minimal polynomialfor over I f the group of over

acts primitively on the roots of the roots Of a
block containing B,.

1

In particular,

j
block =

give a polynomial whose roots are a block of which contain
If the Galois group of over acts primitively on the roots of

then is a minimal block of

This lemma allows us to compute the blocks of a, directly. As the coef-
ficients of are elements of and

= is a of if are the elementary sym-

metric functions in we can determine

where = and the are integers less than We let be
the minimal polynomial for over Q.

We have found fields = = = and

= = such that
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(1 ) the Galois group of over acts primitively on the roots 

( 2 ) the Galois group of over acts primitively on the roots of

We may now repeat process with playing the same role as did, and
determine a minimal block of roots of Iterating this process until BLOCKS

returns a polynomial in determines a set of fields

1, k,such that if is the minimal polynomial for over and G, is
the Galois group of over then G, acts primitively on the roots of

y ) . Furthermore = and =

It is not hard to show that the have succinct descriptions This is

because the roots of are sums of elementary symmetric functions of the roots
of Then

( 3 ) for 1, 2, and

Generalizing this procedure yields an algorithm for determining and

i = 1, r which satisfy 

(4) The Galois group of over acts primitively on the

(5) The Galois group of over acts primitively on the roots of

roots of g , ( y ) .

THEOREM 3.3. of degree m be irreducible. Algorithm 3.1 computes

, r } which satisfy conditions 1, 2, 3, and 4 above. Let BLOCKS

be the running BLOCKS on input Then the running time for
FIELDS BLOCKS where degree m, and the coefficients

are than

The algorithm, a proof of correctness, and an analysis of running time appear in
the Appendix.

We can now determine a tower of fields between and This enables us to
check solvability by a simple divide-and-conquer observation. Let be a field
such that c Every element in can be written in radicals over 
iff every element of can be written in radicals over and every element of

can be written in radicals over Suppose we continued until there were a

We denote a by The divide-and-conquer terminates when the

Galois group of the normal closure of over acts primitively on the
roots of the minimal polynomial of over for each i from 1 to r + 1 (with

maximal number of fields between and with c
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FIG. 3.1. The primitive extensions between Q and

We consider what this means group-theoretically. Suppose { i = 1 , r + 1} are
such that if is the minimal polynomial for over then the Galois

group of over acts primitively on the roots of If the set
i = 1, r + is chosen so that is the splitting field for over

let be the block of imprimitivity associated with and let

a,,,}, be the conjugate blocks. Then, if
are the fields associated with the conjugate blocks, we know that
for 1, t . This means that the Galois group of a,,,)

over fixes each of the Assume is the subgroup of the Galois group 

which fixes Clearly cL, ; furthermore, H , c (induced action of on

If is the Galois group of over then H , and
is solvable if is.

The question of whether a particular polynomial is solvable by radicals can be
transformed into log m questions of solvability of particular primitive groups: if G,
is the Galois group of the normal closure of over
solvable by radicals iff is solvable for 1, r + 1 . This is
answer, for primitive solvable groups are highly structured, which

THEOREM 3.4 G is a primitive solvable group which acts transitively on

This result is for us to obtain a polynomial time algorithm for checking

n elements, then for a constant =3.243999....

solvability by radicals. Let be an
a,,,. We have shown how to compute field extensions

that =Q, and
normal closure of over acts primitively on the conjugates of

= and for = 1, + 1, the Galois group of the
over
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[Algorithm 3.11. Although no algorithms which compute the Galois group 

in time polynomial in the size of the input are known, a straightforward bootstrap-

ping method yields an algorithm whose running time is polynomial in the size of

the group. We factor in If does not factor completely we

adjoin a root different from y , to compute a primitive element,
and over the new field. We continue this process until a splitting field for

is reached. (The algorithm, GALOIS, is a straightforward generalization of
Corollary 6 and we do not repeat a proof of correctness here.)

THEOREM 3.5. Let a polynomial be and irreducible of
degree m, where is an algebraic integer of degree 1 over Q, and is the 

ring of integers of Algorithm 3.2, FIELDS, returns y ) and G, where y y )
is the splitting fieldfor K, and G is the Galois group of over K (given
as a table). It does so in 0(( log +
steps.

We know that primitive solvable groups are small. We call FIELDS on to
determine a tower of fields, each one of which has the Galois group acting
primitively on the roots of the polynomial which generates it from the field below.
For each one of these extensions, we call GALOIS with a clock. Let be the
polynomial described in FIELDS, and suppose the degree of is By con-

struction the extension over has Galois group which acts
primitively on the roots of By Theorem 3.4, if this group is solvable, then
its order must be less than For each i, 1, + 1, we call GALOIS
on input We allow this procedure to run while the extension is
of degree less than If the procedure fails to return a Galois group in that
amount of time, we know that the Galois group of over is not

solvable, and hence neither solvable over If a group is returned, we call
one of the standard algorithms for testing solvability of a group 17, Since the
order of the group is polynomial size in these algorithms can check solvability
of the group in polynomial time. Let SOLVABLEGP be the reader’s favorite
algorithm for testing if a given group is solvable. We assume that the input to
SOLVABLEGP is a Cayley table for G, the Galois group for over

Then SOLVABLEGP returns “yes” if the group is solvable, and “no” 
otherwise.

ALGORITHM 3.2: SOLVABILITY.

input: monic irreducible of degree m

Step 1. Call

Step 2. For 1 + 1, do:
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For steps, do:

Step 3. Call
If no return, return “IS NOT SOLVABLE BY RADICALS”
Else call

If =“no”, return “IS NOT SOLVABLE BY
RADICALS

Step 4. return “IS SOLVABLE BY RADICALS”

THEOREM 3.6. Let in be and irreducible of degree m over Q.
Then Algorithm 3.2 determines whether the roots o f f ( x )are expressible in radicals in

time polynomial in and log

4. EXPRESSIBILITY

( x )is an irreducible solvable polynomial over the rationals, it would be most

pleasing to find an expression in radicals for the roots of In this section we
outline a method for obtaining a polynomial time straight line program to express

the roots of in radicals. We begin with a definition.
Let K be an algebraic number field which contains the roots of unity. Then

is a Galois extension of and the map where is a

primitive root of unity, generates the Galois group of over K, which is 

cyclic of order n. If is a Galois extension of K with cyclic Galois group, we say

is a cyclic extension of K. If is cyclic of order n, we claim that

for some a in K. Let be a generator of the Galois group of over
and let be a primitive root of unity. For each element y in we can form

the Lagrange resolvent: 

The Lagrange resolvent is a K-linear map form onto itself, and can be thought
of as a matrix. Then y ) =0 iff is in the space of this matrix. Then we need

THEOREM 4.1
linearly independent over K.

The elements of the Galois group of K are

Now let y be such that y ) 0, and consider
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This means that is fixed by and thus that y)" is in But we also know 

from (2) that = which means that the only element of the Galois
group which fixes is the identity. If we let a = y)", we conclude that

= We have shown 

THEOREM 4.2. Every cyclic field of degree over an algebraic number field can

be generated by an adjunction of an root provided that the roots of unity lie in

the base field.

The method we use to express a as radicals over Q relies on the effective proof of
Theorem 4.2, which appears in Roots of unity play a special role in the

question of expressibility; it is well known that

LEMMA 4.3.
radicals" over K.

The pth roots of unity, p a prime, are expressible as "irreducible

As always is an irreducible solvable polynomial of degree m over the
rationals, and we let a be a root of In Section 3 we presented an algorithm
which found a tower of fields = 1, + 1, where Q =

and the Galois group of over acts
primitively on the roots of the minimal polynomial of over We also

described a polynomial time algorithm to find the fields 1, + 1, where

is the splitting field for over In light of Theorem 4.2, we first
adjoin to Q the lth roots of unity, where We claim that there is a
straight line program which expresses a primitive lth root of unity, in radicals in 
polynomial time. Since the proof is similar to that for expressing as radicals in 
polynomial time, we will instead begin by showing a bound for the

Actually we find elements such that = To write straight line

code to express a as radicals over it suffices to present straight line code for

expressing as radicals over Since there are at most log m fields between 
and if we can solve the latter problem in time polynomial in m and

log the former can also be solved in polynomial time. bounds we
present are not best possible, but are simplified for the sake of readability.)

LEMMA 4.4. I f is the minimal polynomial for over then

I f is the minimal polynomial for over then

Proof. Because the Galois group of is solvable, each extension 

where = Since Q ]= m, we
have Q ] Now = implies that =

y ) ) , where y ) is an irreducible factor of the cyclotomic
polynomial + + 1 over By Theorem 1.2



1

(We re
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In order to write straight line code to express a as radicals over it to

present straight line code for expressing as radicals over If we can solve

the latter problem in time polynomial in m and then the former can also 

be solved in polynomial time, since there are at most logm fields between

and

Suppose that H is the group for over and that H is
solvable. In polynomial time we can find a set of subgroups of H which satisfy 
( e }= c c where is normal in + and + is of prime

order 17, We let

then is the of corresponding to Since we can
compute the in polynomial time, we can also compute polynomial in
polynomial time. We can also find a primitive element for the field

in polynomial time. We do this in the usual way. If

I- ... the are symmetric functions in conjugates of and
pick-

ing the from so as to ensure that is primitive. Then <
and is the minimal polynomial for over Q,

If we let be the minimal polynomial for over
factor of we have

then since is a

We conclude

LEMMA 4.6. Let be the minimal polynomial for Q. Then
is the minimal polynomialfor then

We have determined primitive elements such that is a cyclic extension of

is a cyclic extension of and is a cyclic extension of

(For the sake of simplicity, let = Denote by
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FIG. 4.1. The cyclic extensions between and

We inductively express such that = and

where To do this it is also necessary to construct

=0, s, where = 0,). Once we have shown how to construct
and in size polynomial in and log we will be done showing how to

express over in a straight line program in polynomial time. Finally will be
expressed in a similar way.

We proceed with induction, beginning with Consider the resolvent

of over and let be in space of

(Observe that can be found in polynomial time.) If then

=

Let = By the proof of Theorem 5.2, = and

= Let be such that = We want to show
that ( x ) has polynomial size coefficients. 

Since is small in absolute value, its minimal polynomial over Q has
polynomial size coefficients. This polynomial factors over Since
- =x- is a factor, we conclude by Weinberger and Rothschild (22,

Theorem 1.2) that has polynomial size coefficients. We repeat this with actual,

though not best possible, bounds.

We chose = This means that

By Lemma 4.6, and By a rough approximation 
using Weinberger and Rothschild, we find
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Next we determine and bound y ) . Our argument is that the minimal

polynomial for 8, over is of bounded size (Lemma and thus its factors over 

are also bounded. We find an integer such that = + is a
primitive element for over Then has a minimal polynomial over Q

which is of bounded size. This means that the polynomial such that

= ,(v,) has polynomial size Coefficients. Furthermore the polynomial

y ) such that 8 , = = y + also has polynomial
size coefficients.

For the inductive step it remains to replace 0 by and 1 by 1, because all of
our bounds are a priori established by Lemmas 4.4-4.6. The crucial fact to observe

is that each of the polynomials and y ) are determined in sequence from 

the whose length of description is polynomially bounded. 
One step remains. We must show that if with a polynomial in 

then the coefficients of are polynomial in size. This folows immediately 
since the minimal polynomials for and over are polynomial in size. We
have shown

THEOREM 4.7. There exists a polynomial time straight line program to express a,

a root of a solvable irreducible polynomial over in terms of radicals.

We have not yet shown how to express the Ith roots of unity as radicals over 

but Lemma 4.3 is effective. We observe that in order to express the lth roots of
unity as radicals over we need to have the roots of unity expressed as
radicals, where is a prime divisor of Of course, this requires that roots
of unity are expressed as radicals, where is a prime divisor of - 1. This induc-

tive construction requires no more that log1 steps. Therefore we conclude that

can be expressed as radicals over in a field of degree no greater than over
It would be much more pleasing to express a in polynomial time in the form

rather than what we have proposed here. However, for small examples, the field
which contains expressed in radicals in the usual way is of degree over
This indicates that Theorem 4.7 may be the best we can do.' 

5. OPEN QUESTIONS

If now you give us a polynomial which you have chosen at your pleasure, and if
you want to know if it is or is not solvable by radicals, we have presented techni-
ques to answer that question in polymonial time. We have transformed 

The second author has shown that polynomial size representation of roots in radicals possible

given symbols for roots of unity
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exponential time methods into a polynomial time algorithm. if the

polynomial is solvable by radicals, we can express the roots in radicals

suitable encoding. Although we have provided a polynomial time algorithm

motivating problem of Galois theory, we leave unresolved many interesting 

questions. In light of the run g times presented in Section 3, we hesitate
for our polyno m. This suggests the following

questions:

(1) All our running times are the
for factoring polynom time

improved?

(2) In Section 2 w which determines a minimal 

we would like to

The divide-and-conquer technique used to determine solvability answers the

see a proof of this.

question without actually determining the order of the group. We ask

(3) Is there a polynomial time algorithm to determine

(a) the order of the Galois group

(b) a set of generators for the Galois group, 

in the case of a solvable Galois group?

The real buried treasure would be a polynomial time algorithm for
the Galois group, regardless of solvability. A polynomial of degree may have a 
Galois group as large as but a set of generators will be polynomial in size.

see no immediate way that a divide-and-conquer approach might solve this
problem, but we do observe that some characteristics of the Galois group
inferred without actually determining the group. For example, the Galois group

an irreducible polyno degree over the rationals is contained in the
alternating group of is a square in This means that the
Galois group of an irreducible polynomial of degree 3 over may be found
simply calculating the discriminant. Various tricks and methods have been
determine the Galois group of polynomials over Q of degree less than 10

but until the recent results concerning polynomial factorization there 
feasible way to compute the Galois group of a general polynomial of large

It would be most exciting if a polynomial ti algorithm were found for computing

the Galois group. We offer no further insig n this probem, but we hope for, and
would be delighted by, its solution.
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APPENDIX

This algorithm computes a minimal block of imprimitivity. It can be easily

modified to compute a tower of blocks.

ALGORITHM 2.1. BLOCKS.

input: irreducible of degree n over Z

Step 1. Find 0 such that -cz)) is squarefree and factor 

For i = 1 1 do: over

[At most c's in Z do not satisfy this condition.]

[Thus = is a complete factorization of over

has more than one linear factor, compute the induced action of
Galois group and table, and find maximal block by inspection.

Then

return

Step 2.

1
Step 3.

[In this case, the fixed points form a block, and the induced action of
the full group on the block can be determined by substitutions.]

For each -cz) a factor of -cz)) do steps 5-9:

Step 5. t ) constant term of -c x ) ) over t, t)

[This computes and z in terms of a primitive element for the

Step 4.

-

Step 6. For 1 1, do:

[This rewrites the factorizations over and
) as factorization over t ).]

Step 7. Compute the graph (V,, E,), with vertices, and edges,
given by:

Step 8. Compute Y,= { i is connected to =x- in

Step 10. of minimal degree

return: a polynomial whose roots form a minimal block of

imprimitivity containing z 
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Step 5. 1 do:

[This rewrites the factorizations of over and

as factorization over

Compute (V,, a graph with vertices V, and edges given by:6.

=

I
Step 7.

Step 8.

return: a polynomi 

Compute Y = is connected t ( x ) in

hose determine the field

ALGORITHM 3.1. FIELDS.

, a irreducible p

t )

rm we compute in order to
e the chain of fields.]

Else go to return

Step 3.

Step 4.
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Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Step 1 1 .

Step 12.

Step 13.

Step 14.

Step 15.

Step 16.

Step 17.

1, k- 1, do:

While { 1, do:

+
[This computes an element such that

While { 1, is a linearly independent set over do:

Else if + ' ( z )+ + =0,
+ + +

[This determines the minimal polynomial for over Q; we have

For 0, - 1, do:
Find such that =

+

For =0, k- 1, do:
Find such that =

+ + +
[This expresses a polynomial in in

terms of the element x.]

t'+ + +
For =0, - 1, do:

+ + +

[This will allow us to express as a polynomial with
which are polynomials in z and which has root

return: 1, r}, where

(3) The Galois group of over acts primitively on the
roots of

(4) The Galois group of over Q acts primitively on the roots of

THEOREM 3.3. Let of degree m be irreducible. Algorithm 3.1 computes

1, which satisfy conditions and (4) above.
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BLOCKS be the running time for BLOCKS on input Then the running

and 12, in the case 1 are redundant.

over acts on the roots of We know

mmetric functions in for

x is a root of If we rewrite as a

= t )

are block containing B,. Be p of over
acts primitively o the roots of are a

minimal block containing We can calculate this norm by a resultant. In order 

to do so, we express as a polynomial with coefficients in
This is done in Steps 14 and 15. Since x is a root of Step 16 computes

correctly.
Inductively suppose that Algorithm 4.1 has computed = 1,

which satisfy:

nd for

p of over

roots of

and that t ) is a polynomial wh
single iteration o
which satisfy the

the elements of the block + We

11 produce and
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If we are done, since then the roots of are z,, and we
have satisfied conditions (1)-(4) of the theorem. Suppose Then in

Steps 3-5 we compute a primitive element for (elementary) symmetric

functions in the elements of In Steps 6 and 7 we determine the

minimal polynomial for over

Next we calculate Since the Galois group of over acts

primitively on the set of roots of is-almost-the we want. The
only difficulty is that is written as a polynomial with coefficients in
This however, is easily circumvented, since has coefficients which are in

We express them in terms of in Step 9, and we write out in
Step 10.

Now we are ready to find the next block. We seek to express as a
polynomial over we proceed in the same manner as we did for

We do so in Steps 11-12. Then will consist of the roots of the norm of

over a subfield of + a minimal subfield. We compute this
subfied by calling BLOCKS on + the subfield is determined by the elemen-
tary symmetric function of the elements of a minimal block of roots of or

more simply, by the of the polynomial returned by BLOCKS
in Step 13. In Steps 14 and 15 we rewrite the polynomial as a polynomial in
the variable with coefficients in Then by Lemma 3.2, the polynomial
we are seeking is:

+ I Q + + t )

=

= t ) .

We are done. Let us now examine running time.

Observe that Algorithm 3.1 is looped through at most times, since each 
iteration produces a subfield between and Let us consider the running time

necessary for the first iteration.
The time needed for Step 1 is dominated by the call of BLOCKS on

Steps 2-4 take constant time. The loop of Step 5 is passed through a maximum of

times, with no more than log nontrivial executions. The computations
{ 1, '(z)} is done at most times for each with each test

requiring no more than steps. (This is simply a linear algebra problem of
testing independence; the bound is due to Edmonds Step 5 requires much less
time than BLOCKS of Step 1.

The running time for Steps 6-12 is less than the time required for Step 5 , and is

therefore dominated by Step 1. In Step 13, we call BLOCKS on a factor of
The time required for Steps 1-16 is dominated by the time required for Step 5.

Thus the time required for the first iteration is dominated

where is a factor

,
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Subsequent iterations are dominated by
of them. Hence we conclude that the runni

BLOCKS( where degree(

factor, and there are at most log
ime for FIELDS is less than
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