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THE COMPLEXITY OF COLORING CIRCULAR ARCS AND CHORDS*

M. R. GAREY." D. S. JOHNSON." G. L. MILLER: AnD C. H. PAPADIMITRIOU?

Abstract. The word problem for products of symmetric groups. the circular arc graph coloring problem,
and the circle graph coloring problem, as well as several related problems, are proved to be NP-complete. For
any fixed number K of colors. the problem of determining whether a given circular arc graph is K-colorable is
shown to be solvable in polynomial time. '

1. Introduction. The NP-completeness of many standard graph-theoretic prob-
lems for general graphs [4] has motivated the study of various special classes of graphs
for which these problems might be less difficult. A variety of results, both positive (i.e.,
polynomial time algorithms) and negative (i.e., proofs of NP-completeness), have been
obtained for such classes as planar graphs, comparability graphs, interval graphs,
chordal graphs, circular arc graphs, and circle graphs (see [4]). However, a number of
significant questions have remained open. In this paper we address two of these open
questions, namely the questions of how difficult it is to color circular arc graphs and
circle graphs.

A graph G is called a circular arc graph if its vertices can be placed in one-to-one
correspondence with a family F of arcs of a circle in such a way that two vertices of G are
joined by an edge if and only if the corresponding two arcs in F intersect one another.
For example, the graph in Fig. 1(a) is a circular arc graph because it has the circular arc
model shown in Fig. 1(b). Circular arc graphs were first discussed in [8] as a natural
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Fi1G. 1. A circular arc graph and its circular arc model.

generalization of interval graphs (defined analogously, but using intervals on a line
instead of arcs of a circle), and they have since been studied extensively [6], [10]. [11],
[12],[13]. Tucker [13] has recently given a polynomial time algorithm for recognizing
circular arc graphs. Gavril [6] has shown that the problems of finding a maximum
independent set, a maximum clique, and a minimum covering by cliques, all of which
are NP-complete for general graphs. can be solved in polynomial time for circular arc
graphs.
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A graph G is called a circle graph if its vertices can be placed in one-to-one
correspondence with a family of chords of a circle in such a way that two vertices are
joined by an edge G if and only if the corresponding chords intersect. Fig. 2 shows a
circle graph and its chord model. Although no polynomial time recognition algorithm is
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FiG. 2. A circle graph and its chord model.

known for circle graphs, [S] shows that, if the graph is described by giving its chord
model, then both the maximum independent set problem and the maximum clique
problem can be solved in polynomial time.

We shall study the coloring problems for these two classes in the following form:
Given a family F of circular arcs (chords) and a positive integer K, can the arcs (chords)
in F be colored with K or fewer colors so that no two intersecting arcs (chords) have the
same color?

A number of partial results about the arc coloring problem (coloring circular arc
graphs) can be found in [12], which also notes the potential applicability of circular arc
coloring to the following register allocation problem. Consider a loop in a computer
program, and regard the flow of control afound the loop as being described by a circle.
For each assignment of a value to a variable within the loop, the liferime of that
assignment consists of the portion of the loop that begins where the assignment is made
and that ends where that value is used for the last time. Each such lifetime thus
corresponds to an arc of the circle. Furthermore, 2 K-coloring of this set of arcs can be
regarded as assigning one of K registers to each lifetime, in such a way that, if the value
corresponding to that lifetime is stored in the associated register, then no value will ever
have to be recomputed or stored elsewhere. The minimum value of K for which the
circular arc graph can be colored therefore gives the minimum number of registers
needed for doing this.

The chord coloring problem is discussed in [2], where it is shown to model a
problem of realizing a given permutation using a minimum number of parallel stacks.

In this paper we provide strong evidence that neither of these coloring problems
can be solved in polynomial time, by showing that they are both NP-complete. (Readers
unfamiliar with the central notions and terminology pertaining to the theory of
NP-completeness can consult [1] or [4].) We begin by concentrating on the circular arc
coloring problem. In § 2 we show that this problem is equivalent to the word problem
for products of symmetric groups' and use this equivalence to derive an
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O(n-K!' - K -logK) algorrthm for coloring n crrcular arcs with K colors (whenever
possible). This implies that there is a sense in which circular arc coloring is easier than
general graph coloring. The algorithm will run in polynomial time for any fixed value of
K, whereas for general graphs the coloring problem is NP-complete for every fixed
value of K >2{3]. However, if K is not fixed, the circular arc coloring problem loses its
advantage and becomes, like the general problem NP-complete. We prove this in § 3
by show;ng that the word problem for products of symmetric groups is itself NP-
complete In § 4 the NP-completeness of the chord coloring problem is derived by a
drrect transformation from the circular arc colormg problem. Finally, in § 5 we dlSCUSS
the 1mpllcatrons of our. results and some of the remaining open problems and directions
for further research. . e , : -

- 2. Circulararc coloring asa permutation problem. In this section, we formalize the
circular arc coloring problem (in a manner suitable for computation), introduce the
word problem for products of symmetric groups, and prove that these two problems are
equivalent with respect to polynomial time solvability. We then use this equivalence to
give an O(n - K!- K - log K) algorithm for coloring n circular arcs with K colors
whenever such a coloring is possible.

We formalize the circular arc coloring problem as follows: A family F of circular
arcs is a set {A,, A,, -+ -, A}, where each A, is an ordered pair (a;, b;) of positive
integers, with a, # b,. Let m denote the largest integer among all the a;'s and b;’s. Then
we can regard the circle as being divided into m parts by m equally spaced points,
numbered clockwise as 1, 2, - - -, m, and each A; = (a,, b;) can be regarded as represent-
ing the circular arc from point a; to point b;, again in the clockwise direction. Notice that
we might have either a; <b, or b; <a, for any A,. : :

The span sp(A,-) of an arc A, =(a;, b;) is the set {a; +1,a;+2, -, b;} if a; <b, or
{a;+1,---,m,1,2,--+, b} if bj<a,. We say that two arcs A; and A, intersect if
sp(A; )ﬂsp(A ) is not empty. Notice that two arcs do not intersect if they share only
common endpoints. The circular arc graph corresponding to the family F is the graph
G = (F, E), where {A,, A;} € E if and only if A; and A; intersect.

Notice that, since we are only interested in the int’ersection’pattern amongarcsin F,
there is no loss in generality in assuming that all the integers appearing in the pairs
(a;, b;) are bounded above by 2n, where n is the numbers of arcs in F. (If not, we can
simply sort the a;’s and b;'s and replace each by its rank in the sorted sequence.)
Henceforth we shall restrict our attention to families F satisfying this property. The arc
. coloring problem can now be defined as follows:

ARC COLORING. Given a family F of circular arcs and a positive integer K, can
F be partitioned into K classes so that no two arcs in the same class intersect? (Or,
equivalently, can the circular arc graph G = (F, E) be colored with K colors?)

To define the word problem for products of symmetnc groups, let Sx denote the
symmetric group of all permutations on {1, 2, - - -, K} (i.e., the set of all one-to-one
functions from {1, 2, - -, K'} onto itself). For Xg{l, 2,--+,K}, let Sx denote the
subgroup of Sk consisting of exactly those permutations that leave all elements outside
of X fixed. If P, and P, are subsets of Sk. then their product P, - P, is the set of all
permutations 7 € Sk that can be written as o = | - 7, (with 7, -  interpreted as first
applying 7, and then applying ), where 7, € P, and m; € P,. The word problem for
products of symmetric groups (WPPSG) is deﬁned as follows:

WPPSG. Given K, subsets X, X3, -, Xin __{1 -+, K}, and a permutation
7 € Sk, does 7 belong to the set P=Sy, - S,\_. Sv. Sx,,,. i.e., can 7 bc written as
wT=, Wy Wy * W, Where me Sy, for 12i=m?
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The main result of this section is then given by the following theorem:

THEOREM 1. WPPSG is polynomially equivalent to ARC COLORING.

Proof. We describe the two transformations. First, given an instance
K, X1, X3, - *, Xmm, m of WPPSG, we shall show how to construct in polynomial time 3
family F of circular arcs such that F is K-colorable if and only if 7 € P. ’

Without loss of generality, we may assume that each integer ie{1,2,-- ", K}
occurs in at least one set S;; for if { occurs in no such set, then either (/) # i and the
answer is trivially *no"" for this instance, or 7 (i) = i and we can simply delete i from the
instance (decreasing all integers larger than { by 1) to obtain an equivalent instance. The
family F will be formed using the points 1,2, - - -, K + m. For each i e {1,2,- -, K}, it
contains a set F; of arcs determined by the sets X that contain i and a single arc C; that
depends on 7 ~'(i). Each F; is constructed as follows: Let L{1), (2], - - -, L[k (i)) denote
the indices of the sets X, that contain /, listed in increasing order. Then F; consists of the
k(i) arcs

An=3 K +1[1)),
A"z = (K + 1,[1], K + 1,[2]),
Ai=(K +1[2], K +,[3)),

A,’_k(,') = (K + 1,[/((1) - ].], K +l,[k“)])

Notice that the spans of the arcs in F; are pairwise disjoint and that the union of the
spans includes exactly the points from i +1 up to K + li{k(i)]. The arc C; simply spans
the region from the end of the last arc in F; to the beginning of the first arc in F,-1,:

Ci=(K +L[k(D)], =7 (i)).

Letting C ={C}, G, - - -, Ck}, the family F is defined by

K
F=UFUC

i=1

An example of the construction is shown in Fig. 3.

[t is easy to see that the family F can be constructed in polynomial time. It remains
for us to show that F is K-colorable if and only if me P.

To do this, we first consider all possible ways of K-coloring the alternative family
F', which uses the points 1,2, -+ -, K+m +1 and which is derived from F by replacing
each arc G =(K +/[k(i)], # i) eC by the two arcs (K +/[k(i)], K +m +1) and
(K+m+1,77'()). Let F), 1 =i = K, denote the subset of F' that consists of all arcs in
F;, the arc (K + [;,[k(i)], K + m + 1), and the arc (K +m+1,i). Then the sets F, forma
partition of F’, and each set F; is made up of a collection of pairwise disjoint arcs that
together span all the points p, 1 =p = K + m + 1. It follows that at each such point p all
K colors must be distributed among the K arcs (one from each F;) that span p.

Any K-coloring of F' can be described by a collection of functions opm 1ZEpE
K +m +1, where o,,(j) denotes thatindex / € {1, 2, - - -, K} such that, among all the arcs
spanning point p, color j is assigned to the one from £/. Thus each U, Is a permutation of
{1,2,---, K}. Without loss of generality we can assume that o(j)=jforally i.e., that
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each arc of the form {K +m +1, i) is assigned color i. Furthermore, we observe that in
each set F} the two arcs (K +m +1,1i) and (i, K +[;[1]) both intersect the K —1 arcs
(K+m+1,k), i+1=k =K, and (k, K +/,[1]), 1=k =i—1, so that both these arcs"

ARC_COLORING INSTANCE

WPPSG INSTANCE

K=5 (=2
X, ={1,3) m2)=4
X,={3,4,5 m3i=1
. X,=1{2,5) w4 =35

X,={1,2.4} mS)r=3

FiG.3. Aninstance of WPPSG and the corresponding instance of ARC COLORING constructed from it.

must have the same color. Thus, in any K-coloring of F’, we have
O1=02="""=0K+1-

We next examine how o,.; can be formed from o,, K+1=p<K+m+1. If
o,(j)=i and the arc from F; spanning point p also spans point p+1, then we
necessarily must have o, (j) = 0,.1(j) = i. Thus the only cases in which o, ., (/) can differ
from o,(j) are those in which F; ;, contains an arc that ends (and, by construction,
another arc that starts) at the point p. The colors assigned to the sets having this property
by o, can be arbitrarily redistributed in forming o, .,. However, by our construction,

‘ ; these are exactly the sets F; such thati € X,,_x. Therefore, we can write 0,41 = 0p * Tp-k
3 5,‘ where m,-x € Sx,_,. Furthermore, any such choice of m,_x provides a legal way of
O redistributing colors at this point.

Thus the possible “final" permutations ox ..+ that can be obtained by K-colorings
3 of F' have a particularly simple structure. They are exactly those permutations that can
2 [ be writtenas 7y -y - - - - .. where each 7; belongs to Sx, i.e., they comprise the set
P=Sx,+Sx, """ Sx... :

'_ Recalling that F' was obtained from F by *'splitting™ each arc C; € C into two parts,
we observe that the K-colorings of F' that correspond to K-colorings of F are exactly
o those in which both parts of each C; are assigned the same color. To interpret this in
v terms of the o, notice that one ““part’ of C;, the arc (K +[;,[k(i)], K + m + 1), was placed
3 in the set F, whereas the other “part”, the arc (K +m + 1, 77~ '({)), was placed in the set

F’. -1, Thus, in order for both parts of C; to have the same color, we must have

Txma (D) =0o1" (77 (D).
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Since this equality must hold foralli {1, 2, - - -, K}, and since o) was assumed to be the
identity permutation, this implies that a K-coloring of F' corresponds to a K-coloring of
Fifandonlyif og' e =7 7", or Ok -m+1 = 7. But the set of possible values for OK tmay
is exactly the set P, so F is K-colorable if and only if v belongs to P, which is what we set
out to prove.

For the transformation in the other direction, suppose that we are given a family F
of circular arcs and a number K of colors. Let m be the largest integer used in the
description of the arcs in F. Without loss of generality, we may assume that each point p,
1 =p =m, is spanned by exactly K arcs from F. If some point p is spanned by more than
K arcs, then this can easily be discovered in polynomial time, and it implies that the
answer in this instance must be "'no.” If some point p isspanned by k < K arcs, then we
can add K — k arcs of the form (p -1, p) (or (m, 1) if p=1) to F without changing its
K-colorability.

Given an F of the above form, we first modify it to form an equivalent family F* on
the points 1,2, -, K +m. Let D, D,, - - -, Dk be any ordering of the arcs in F that
span the point 1. Then we replace each arc (a,b)e F—{D,,D,, - -+, Dy} by the arc
(K+a,K+b)e F* and we replace each arc D; = (q, b) by the two arcs (K +a, i) and
(i, K +b). Since the two arcs replacing each D; must necessarily have the same color in
any K-coloring of F*, it follows immediately that F* is K-colorable if and only if F is

K-colorable.

The gist of the argument from this point on is that F* has the same type of structure
as the family F constructed in the first half of the proof, so all we need to do is to invert
the transformation used there. In order to bring out the structure of F*, we shall
partition:it into sets F;, 1 =/ = K, and C. The set C consists of exactly those arcs in F*
that contain the point 1 in their spans. The sets F; will be constructed in the order
Fy, Fy, - - -, Fy, with a particular F, being formed by selecting certain arcs from the set

i—-1
R(=F*-C-UF

i=1
as follows: The first arc selected to be in F; is the single arc in F* that has i as its left
endpoint. Then, so long as there exists an arc in R (i) whose left endpoint is the same as
the right endpoint of the last arc added to F;, we choose one such arc and add it to R (i).
Thus each F; will consist of a collection of disjoint arcs that span all points from i + 1 up
to some point P; (and no others). We also index the arcsin C as Cy,,Cy -+, Ckinsucha
way that the left endpoint of arc C; is the same as the right endpoint P; of the last arc
added to F;. The fact that every point is spanned by exactly K arcs from F* enables all of -
this to be done.

Now we are in a position to construct the sets Xy, X3, - -+, X,, and permutation 7
for the corresponding WPPSG instance. The set X; consists of those integers i€
(1,2, -, K}such that F; contains an arc with right endpoint K + j. The permutation
has (i) = j if and only if the arc C; has right endpoint i. :

It is not difficult to see that this transformation can be performed in polynomial
time. It is also straightforward to verify that if the transformation from the first half of
- the proof is applied to the WPPSG instance, the resulting ARC COLORING instance is
exactly F*. Hence exactly the same argument as used for that transformation suffices to
show that w €Sy, - Sx, - - - Sx,, if and only if F* is K-colorable, and our proof is
complete. 0O

There is an obvious algorithm for solving the WPPSG problem—and, therefore,
the ARC COLORING problem, via the transformation of Theorem 1. Given
X1, X, -+ -, X, one simply computes all elements of the set . = Sx, " Sxy - S, by

) T e R RS Gt

SRS R N E IR PR 2 B S

v .
LTy

< P S S ES T MR AR S e T RS, s R D iRl e e

bt B A

e B’ B,

oak b A TR Y red A WL



221

e the
ng of
+m+1

e set

ily F
1 the
intp,
than
t the
nwe
1g its

*on
that
: arc
rand
orin
Fis

ture
avert
. shall
2 F*
~rder
e set

s left
1€ as
2(i).
1up
icha
tarc

dlof

LA M PR S o s

L D LI P T S s
apbil el s T L i e 8

Q:m.:}-_"-tn_ Eeak Rk

TS

¥ xl Ty o B
- Pt ALY DA

e ot s il et
- i e s 51

g, s AL

o

by

VX .

222 M. GAREY, D. JOHNSON G. MILLER, AND C. PAPADIMITRIOU

starting with the set of permutations Py={e} and successively constructing P;,; =
{mi-m:meP;and meSx, .}, j=0,1,---,m—1. The set P is then given by P,., and
we can easily check whether = belongs to it.

To analyze this algorithm, we observe that multiplication of two permutations over
{1,2,-- -, K} can be done in O(K) operations, and, in order to store sets of permu-
tations, we may assume that each permutation o € Sk is associated with a distinct
integer I(0), 1 =I(0) =K, in such a way that o can be computed from I(o’) and I (o)
computed from o in O(K log K) operations (e.g., see [9, pp. 19, 579]). Then the space
required for the algorithm is O(K!), and the time required is O(m - (K'!)* - K - log K).

This time complexity can be improved, however, by making use of the fact that, if
m €Pj, m2€8x,,,, and 7, - my=m} € P, then m, - Sx,,, = 7} - Sx,.,, 50 we need nof
compute any of the products involving 71. Hence we can compute P;,; from P; as
follows: :

Step 1. Select a permutation 7, from P; and remove it from P;.

Step 2. For each permutation 7, € Sx,

(a) add 7y - 72 to Pjuy;

(b) remove m, - 7, from P; (if it’s there).

Step 3. If P; is nonempty, return to Step 1.

This method for computing P;, from P; has the property that each product gives us a
new member of P;.;. Thus it requires at most K! products and at most O(K!)
conversions between a permutation o and its index I (o). Using this method, the time
for the overall algorithm therefore becomes O(m - K! - K - log K).

The transformation from ARC COLORING to WPPSG given in the proof of
Theorem 1 can be implemented easily to run in time O(K - n). Thus we have the
following corollary: .

COROLLARY. Deciding whether a family of n circular arcs is K-colorable can be
donein O(n - K!- K -log K) time.

The same time complexity suffices for constructing a K-coloring, since in solving
the WPPSG instance we can easily save enough information to allow us to reconstruct a
sequence of permutations whose product is 7. Thus, for any fixed value of K, the

circular arc coloring problem can be solved in linear time, and for small values of X the
algorithm might actually be practical.

+1?

3. ARC COLORING and WPPSG are NP-complete. In this section we show that
WPPSG is NP-complete. By the results of the preceding section, this will imply that
ARC COLORING is NP-complete. The latter result will in turn imply that CHORD
COLORING is NP-complete, as we shall see in the next section. In all three cases, we
leave to the reader the straightforward verification that the problem in question is in
NP. '

THEOREM 2. WPPSG is NP-complete. .

Proof. The known NP-complete problem that we transform to WPPSG is the
following:

DIRECTED DISJOINT CONNECTING PATHS (DDCP). Given a directed
acyclic graph G = (V, A), an ordering s,, 53, - - -, s, Of the vertices with in-degree 0, and
anordering ¢y, t,, - - -, 1, of the vertices with out-degree 0 (we may assume that the two
sets have the same size), does G contain n mutually-vertex-disjoint paths, each going
from a distinct s, to the corresponding t;, 1=i=n?

The undirected version of this problem was proved NP-complete by Knuth (see

(7], and the directed acyclic version can be proved NP-complete by a trivial
modification of his proof.
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Suppose we are given aninstance G =(V, A), 5,52, -, Smand 13, f2, 7 - -, 1, of the
DDCP problem. The first step of the transformation is to replace eacharca = (u, v)e A
by two arcs (u, w,) and (w,, v), where w, is a new vertex involved in only these two arcs.
This certainly has no effect of the existence of the desnred paths. Let G'=(V’, A)
denote the resulting directed graph.

Now, let vy, v2, . be any topological sorting of the vertices of G, i.e., any
ordering such that, for each i, all vertices x for which (v;, x)€ A’ come after v; in the
sequence Such an ordering can be constructed in time linear in |A']. (See, e.g., [Knuth,

. 1]). Furthermore, without loss of generality, we may assume that v; =s; for
l<1<n and that v,_,.; =1, for 1=i=n.

For each vertex v, let

B(i)={j:(v,t)e A}

The sets Xj, 1=j=m =q—n+1, for the corresponding WPPSG mstance are then
defined as follows:

X;={n+j}UB(n+j), 1sj=q-n
Xe-ner={1,2,--+,q-n}

The permutation 7 is defined by:
m(i)=q—n+i, l=si=sn
w(i)=i-n, n+l=i=q.

This transformation is easily performed in polynomial time. It remains for us to
show that e P=8x, - Sx, """ Sx.. if and only if the desired paths from each s; to
each ¢; exist in G'.

First, let us examine how the WPPSG instance can be interpreted in terms of the
graph G'. Each position in a permutation corresponds to a vertex of G'. Initially, each
such position/vertex is labeled by its own index. When we apply a permutation ar; from
some Sx, we move the labels around on some subset of vertices, specifically on some
subset of the vertices whose indices belong to the set X;. Furthermore, the set X;
contains precisely the indices of vertex v,.; and its immediate predecessors in G'. Thus
the process of choosing a sequence of permutations my, 72, " * *, 7m, €ach i € Sx.s
corresponds exactly to choosing a sequence of label rearrangements, first among v,+1
and its immediate predecessors, then among v,., and its immediate predecessors, and
so on, until finally we are allowed to rearrange the labels on all vertices in V'—
{t1, t2, - - +, t,}. Our goal is to move each label i, 1 =i = n, all the way from vertex s; = v;
to the corresponding vertex f; = v,_,... Once this has been done, the final permutation
can be chosen to arbitrarily rearrange the labels on the vertices outside of {ty, 2, - - -, tx}.
(In essence, we don’t really care what labels end up on these vertices, but the WPPSG
problem requires that the entire permutation (i.e., the complete final labeling) be
specified.) Thus the permutation 7 belongs to P if and only if the above relabeling
process can be performed in such a way that the label i ends up on vertex v,.), 1 =i =q.

Given this interpretation, it is not difficult to see that the transformation works as
required. Suppose that G' does contain a set of vertex-disjoint paths, one from each s; to
the corresponding ;, 1 =i =n.Let A* < A’ denote the set of all arcs that occur in these n
paths. Notice that, since the paths are disjoint, no vertex will appear more than once as
right endpoint of an arc in A*. The jth step of the corresponding relabeling process,
1=/=gq—n, is performed as follows: At the jth step we are allowed to rearrange the
labels that occur on vertex v,+,; and its immediate predecessors. If there is some arc of
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the form (i, ta+;) € A*, then we simply interchange the labels on « and v,,.,, leaving all
other labels where they were. If there is no such arc in A¥, then no labels at all are
moved. Since the given paths are disjoint and since V' is indexed in topological order, it
is straightforward to verify that this process will succeed in moving eachlabel i, 1 =i =n,
from s; to 1; by the end of step g —n. Step ¢ — n + 1 then can rearrange the labels on the
‘verticesin V' —{11, t,* - -, t,} from where they have been left by the preceding steps to
where they are required to be. Thus the existence of the specified disjoint paths implies
- the existence of the required relabeling sequence, which in turn 1mplles that e P =

bt s e a L e RPN

sX: . sz ..... SX,,‘~
: For the other direction, suppose there exist m; € Sx, 1 =i=m, such that 7=
Mo my 7m, and consider the corresponding relabeling processon G'. For1 =i =

n, we know that label i starts out on s5; and ends up on the corresponding . What we
need to show is that each label i moves only along a path in G’ and that the paths for two
such labels never intersect at a vertex. For the first of these, suppose that at the jth
relabeling step label i is moved, but not along an arc of G’ (or not in the proper
direction). The topological ordering of V' insures that X is the first set to contain v, .,
. g0 label i could not have appeared on v, .; at the beginning of this step. Thus step j must
- move label i from one immediate predecessor of v,.; to another such immediate
’ predecessor This implies that t,.; must be one of the original vertices of G, because
each of the vertices added to G in forming G' has only one immediate predecessor. In
this case, however, we know that each immediate predecessor of v,.; has only one arc
leaving it in G', the one to v, .j, SO no immediate predecessors of v,.; occur in any sets
“after X. Thus such a *parallel move™ of label i would prevent it from ever reaching r;, a
contradiction which proves that the labels 1, 2, - - -, n move only along paths in G'. To
“see that two such paths cannot intersect, we simply need to observe that the only time a
‘label i, 1 =i = n, can move to a vertex t,-; by moving along an arc of G'is at step j, and
nly one such label can be moved to v, ,; during that step. Thus the paths followed by
hese labels must be disjoint, and the proof is complete. O

As a consequence of Theorems 1 and 2, we immediately have the following:

CoroLLARY. ARC COLORING is NP-complete.

We can also make a remark about an interesting special case of WPPSG, that in
which each set X; contains only two elements. This is simply the problem of determin-
< ing, given a permutation # and a sequence of pairwise interchanges, whether 7 can be
.realized by performing some subsequence of the given interchanges. Let us call this
* problem WPPSG2. We can transform any instance of WPPSG to an equivalent instance
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"_of WPPSG2 by replacing each set X; ={a, ay, - - -, a,} by the following sequence of (2>

. two-sets:
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{az,as}, --- ,{as a},
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{ai.2, aia} {ai-a, ai},

{at-l,a/}

fThUS we have as a corollary of Theorem 2:
CororLLarY. WPPSG?2 is NP-complete.
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4. Chord coloring. We model the chord coloring problem as follows: A chord, like
a circular arc, is a pair (a, b) of integers. The difference between an arc and a chord lies
in the way we interpret such a pair. If the integers occurring in a family of chords (or
arcs) are arranged in clockwise order around a circle, the chord (a, b) is viewed as the
straight line connecting a and b, whereas the arc (a, b) is viewed as the arc of the circle
(in the clockwise direction) from a to 6. Note that, in this interpretation, the chords
(a, b) and (b, a) are identical, but the arcs (a, b) and (b, a) are different (and comple-
ments of each other). We can, however, identify the chord (a, b) with the shorter of the
two arcs (a, b) and (b, a), i.e., the one with smaller span (as defined in § 2), breaking ties
arbitrarily. Then it is easy to see that two chords intersect if and only if the correspond-
ing two arcs A; and A, orerlap, in the sense that their spans intersect and, in addition,
neither'sp(A,) csp (A;) nor sp(A,) < sp(A;). In order to avoid any confusion when we
use this identification in what follows, we shall always refer to chords as “overlapping™
rather than intersecting. . : T

The circle graph corresponding to a family F={4,, A:,-- -, A,} of chords is the
graph G = (F, E) where {A,, A;}€ E if and only if the chords A, and A, overlap. The
chord coloring problem is then defined as follows: .

CHORD COLORING. Given afamily F of chords and a positive integer K, can F
be partitioned into K classes so that no two chords in the same class overlap? (Or,’
equivalently, can the circle graph G = (F, E) be colored with K colors?) .

The main result of this section shows that CHORD COLORING is at least as hard
as ARC COLORING. ~

THEOREM 3. CHORD COLORING is NP-complete. .

Proof. We derive this result by showing that ARC COLORING is polynomially
transformable to CHORD COLORING. Given an instance, F, K of ARC COLOR-
ING, we shall show how to construct in polynomial time a family F’ of chords such that
the chords in F" are K-colorable if and only if the arcs in F are K-colorable. The idea
behind the construction is quite simple and can be summarized as follows: If we view
chords in terms of their corresponding arcs, arc coloring and chord coloring are almost
identical problems, differing only in cases where one arc is contained in another (see Fig.
4(a)). We are going to remove all such occurrences of containment from F by replacing
each arc by a sequence of small chords (Fig. 4(b)). However, we must ensure that all
small chords replacing a particular original arc behave like a single arc, in the sense that
they all must be given the same color. We do this by adding a “‘clique” of K — 1 chords at
each of the junction points (Fig. 4(c) shows the details around the junction points circled
in Fig. 4(b)).

(a) (b) (c)

FIG. 4. An instance of arc containment (a), the result of replacing each arc by a sequence of small
“chords™ (b), and a “closeup” showing how “cliques™ are added at junction points (c).




226 M. GAREY. D. JOHNSON G. MILLER, AND C. PAPADIMITRIOU

Formally, let F be the given family of n arcs, with m =2n denoting the largest
integer used in their descriptions, and let K be the specified number of colors. For each
arc A; = (a,, b;) € F and each point p € sp(A;), F' contains the chords

Q2K Q2pn—(n+1i)),2KQ2(p +1)n —1i)), p=a;+1,
Q2K (2pn —i),2K(2(p + )n —1)), a;+1<p<b,

Furthermore, it is easy to verify that two original arcs intersect if and only if there are
two chords derived from them that overlap. Now consider each pair of chords, derived
from the same original arc, that share a common endpoint. By the construction, that
common endpoint has the form 2Kx for some integer x. We then add the following
“clique” chords, all containing the point 2Kx in their spans:

- (2Kx-1,2Kx+K - 1),
QKx—2,2Kx+K -2),

(2Kx —(K =1),2Kx +1).

Observe that these K — 1 “*clique’ chords all overlap one another and, in addition, they
all overlap the two chords that share endpoint 2Kx. Furthermore, these are the only
chords that they overlap.

Since each A; satisfies |sp(A;)|=m =2n, the above construction clearly can be
performed in polynomial time. By sorting all the chord endpoints and replacing each
endpoint by its rank in the sorted order, all of which can be done in polynomial time, we
also can convert the set of chords into one having the same intersection pattern and
having a description using no integer larger than twice the total number of chords. For
convenience, however, we shall continue to work with the “un-condensed” version in
the remainder of the proof.

We claim that the arcs of F are K-colorable if and only if the chords of F' (using
““overlap” instead of “"intersect”) are K-colorable. Given any K-coloring of F, let C(A;)
denote the color used for arc A,. Then, for each A,, we color all the chords in F' derived
from A; with color C(A;). Since two chords derived from the same arc A; do not overlap
and since two chords derived from different arcs A; and A; do not overlap unless A; and
A, intersect (in which case we know that C(A;)# C(A))), this “‘partial” coloring
correctly assigns different colors to overlapping chords. All that remains is to color the
various “‘clique” chords. Consider the clique chords surrounding some point 2Kx thatis
a common endpoint of two chords derived from a particular arc A,. Since these K —1
clique chords overlap only one another and two chords already colored with color
C(A;), we may color each of them with a different one of the remaining K —1 colors.
Doing this for each such set of clique chords, we finally obtain a K-coloring for the
chords in F".

On the other hand, suppose that we have a K-coloring for the chords in F.
Consider any two chords that share a common endpoint and that are derived from the
same original arc A,. These two chords must be assigned the same color, since both
overlap all the K —1 clique chords surrounding their common endpoint and K —1
distinct colors must be used on those clique chords. It follows that, for each original arc
A, all chords in F’ derived from A’ must have the same color. Thus, we can obtain a
K-coloring for the arcs in F by assigning to each arc A; the same color that is assigned to
all the chords derived from A,. This is a legal K-coloring, because two arcs A; and A, in
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F intersect only if two chords in F' derived from them overlap, and because the given
coloring for F' assigned different colors to any two chords that overlap. g

5. Conclusion. In this paper we have shown that the word problem for products of
symmetric groups is NP-complete, and from this have derived the NP-completeness of
graph coloring, even when restricted to circular arc graphs or circle graphs. Although
we have not given formal definitions for the register allocation problem and the
problem of realizing a permutatlon with parallel stacks, which were claimed to be
equivalent to circular arc graph and circle graph coloringin § 1, the NP- completeness of
these problems also follows from our results. (The reader may fill in the details by
looking up the formal definitions i in [2], [12].)

A number of open questions remain. In § 2 we were able to present an algonthm
which, for any fixed K, ran in polynomial time and produced a K-coloring of a family of
circular arcs if one existed. Does a similar algorithm exist for the chord coloring
problem, or is there, as with general graph coloring, some fixed K for which the chord
coloring problem is NP-complete? What is the complexity of the coloring problem for
proper circular arc graphs (graphs representable by famlhes of arcs which intersect if and
only if they overlap)?

More basically, is there a polynomlal time algorithm for recognizing circle graphs
and constructing their representations in terms of chords (or arcs)? Such algorithms
have been found by Tucker for circular arc graphs [13] and proper circular arc graphs
[10]. A similar algorithm for circle graphs might well widen the usefulness of the
algorithms in [5], as these assume that the representation of the circle graph is known.
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