
Copyright @ 2009 Ananda Gunawardena

Lecture 09

 C Structs and Linked Lists

In this lecture

• Structs in C

• � operator

• Structs within BMP files

• Reading Header information from BMP files

• Passing structs to functions

• Passing pointer to structs

• Array of structs and Array of struct pointers

• Concept of a linked list

• Types of Linked List

• Implementation

• Further readings

• Exercises

• Answers

Structs in C

Structs in C are used to package several data fields into one unit. Structs can be used to

define types and can be used to define variables of that type. C structs are different from

Java classes. Java Classes “encapsulates” both state (data fields) and behavior (methods)

with these fields being public, private or protected. C structs can only declare public data

fields and all fields are accessible using the dot (.) operator. For example, we can define a

typedef for a struct that contain two fields, var1 and var2 as:

typedef struct {

 unsigned int var1;

 char* var2;

} node;

A variable mynode of type node can be defined as

node mynode;

fields within mynode variable can be accessed using,

mynode.var1 = 100;
mynode.var2 = malloc(20); =================== (1)

Copyright @ 2009 Ananda Gunawardena

The amount of memory required to hold the variable mynode is equivalent to

sizeof(unsigned int) + sizeof(char*) . You can also write sizeof(node) to find the how

many bytes are required to hold a variable of size node. The amount of memory

necessary to hold struct is not always the sum of the data sizes. It is possible that a

padding may occur for word alignment. Note that sizes of specific data types are

dependent on the machine you may be using. For example, on andrew domain

machines(unix.andrew.cmu.edu), an address variable is 4 bytes while in CS domain

machines (linux.gp.cs.cmu.edu) an address variable is 8 bytes.

As with initializing variables as they are declared, structs can also be initialized as

node mynode = {100, malloc(20)};

� operator

There are two ways to access fields within a struct. Field within a struct can be accessed

using the dot operator. However, if a pointer to the struct is given, then we can access

fields within the struct using -> operator. For example,

node mynode;

node* ptr = &mynode;

ptr�var1 = 100;

ptr�var2 = malloc(20);

is equivalent to the code given above in (1) using the dot operator. The arrow operator

will be used extensively in cases where a pointer to the struct is passed to a function

instead of a copy.

Define a struct that can hold a name(char*) and an int. Show how to read data

into the struct using fscanf.

Copyright @ 2009 Ananda Gunawardena

Structs within BMP files
An interesting example of a struct type is header information stored in a bitmap (BMP)

file. BMP, a format invented by Microsoft stores the image using a schema as follows.

The first 14 bytes is reserved for information given by the following struct

typedef struct {

 unsigned short int type; /* BMP type identifier */

 unsigned int size; /* size of the file in bytes*/

 unsigned short int reserved1, reserved2;

 unsigned int offset; /* starting address of the byte */

} HEADER;

The next 40 bytes are reserved for a structure as follows.

typedef struct {

 unsigned int size; /* Header size in bytes */

 int width,height; /* Width and height in pixels */

 unsigned short int planes; /* Number of color planes */

 unsigned short int bits; /* Bits per pixel */

 unsigned int compression; /* Compression type */

 unsigned int imagesize; /* Image size in bytes */

 int xresolution,yresolution; /* Pixels per meter */

 unsigned int ncolors; /* Number of colors */

 unsigned int importantcolors; /* Important colors */

} INFOHEADER;

Suppose we are interested in extracting this information from a BMP file. First we need

to read a block of 54 bytes using fread function as follows. Since BMP files are binary

files (recall that there are two types of files, ASCII and Binary) and reading bytes from a

BMP file needs to be done using fread (instead of fscanf for formatted data)

The prototype of the fread function is given by

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);

The fread() function reads, into the array pointed to by ptr, up to nitems members whose

size is specified by size in bytes, from the stream pointed to by stream. [source:open

group]

Show how to define a struct pointer and read data into a struct.

Copyright @ 2009 Ananda Gunawardena

Reading Header Information from BMP file
Suppose we would like to read header information from a BMP file. Let us first allocate a

block of 54 bytes to hold the struct.

void* ptr = malloc(54);

Now we can read 54 bytes from a file stream that is opened.

FILE* infile = fopen(“image.bmp”, “r”);

fread(ptr, 54, 1, infile);

Now suppose we need to find the width and height of the image from header information.

We could look at the 54 bytes as follows.

To find the width, we need to offset a total of 18 bytes (14 + 4 bytes for the unsigned int).

Hence we can extract information about width as follows.

int* tmp = ptr + 18;

printf(“The width of the image is %d \n”, *tmp);

Similarly all other information about the BMP file can be extracted and manipulated.

Passing Structures to Functions

Structures can be passed to functions as arguments. For example, consider the following

function foo that takes a copy of a struct as an argument. We will be using struct

INFOHEADER as defined above in BMP example.

int foo(INFOHEADER info){

 …..

 return 0;

}

We define a variable info and pass that to function foo. A copy of info is made and

placed on the runtime stack of foo.

INFOHEADER info;

foo(info);

See Demo Code

Copyright @ 2009 Ananda Gunawardena

Note that the fields within the original variable info may not be affected by statements in

foo.

When a structure is passed as value parameter, a copy of the struct is made on the

runtime stack and information is used to perform the operations. If the function does not

require permission to change the original variable info, this may be ok. However, a

programmer needs to be aware that if the struct is large, then two much information may

be copied to run time stack, making the program run slower. A programmer must be

careful in a situation where the foo may be called multiple times.

Passing a Pointer to a Struct
To avoid copying large structs within the run time stack, we can pass the address of a

struct variable (i.e. a pointer) to a function. There are two instances under which passing

a pointer to a struct, instead of a copy of the struct may be advantages. A pointer allows

efficient access to the struct (instead of making a copy on runtime stack) as well as the

opportunity to directly manipulate the information within the original struct.

For example, if we need to change some information within a field of INFOHEADER,

we can pass the address of an INFOHEADER variable to a function whose prototype is

given by

int foo(INFOHEADER* ptr){

 …..

 ptr ���� width = 720;

 return 0;

}

In the calling function we can do;

INFOHEADER info;

foo(&info);

Now the fields within the original variable info can be manipulated directly by the ptr.

ptr -> width = 720;

Compromising Security
One disadvantage of passing an address to a function is that we may be compromising the

security of the variable. When a pointer to a struct is passed to a function, then the

function can change the information within the struct, even if you did not intend to do so.

But there is a way to retain the efficiency of passing by reference, while maintaining the

security. One possibility is to define a function as follows.

int foo(const INFOHEADER* ptr){

 …..

 return 0;

Copyright @ 2009 Ananda Gunawardena

}

This does not allow any changes to the original content, but provides access to the fields

within the struct directly from the ptr.

So ptr -> width = 100; would be illegal

while

int tmp = ptr -> width; would be legal

Array of Structs
Structs can be combined to form an array. Suppose we need to define a struct that will

store positional information as well as color information of a point in 2D space. A struct

2Dpoint is then can be defined as follows.

typedef struct {
 unsigned char R,G,B; // stores a value between 0-255 representing the color depth

 int x,y;

} 2Dpoint;

Then we can define an array of 100, 2D points as follows.

2Dpoint A[100];

The array can also be initialized as

2Dpoint A[100] = {{0,0,255,20,40}, {255,0,255,40,20}, ….};

It should be noted that one could ignore the inner braces as long as the list matches the

amount and type of things to be initialized. So we could write

2Dpoint A[100] = {0,0,255,20,40,255,0,255,40,20, ….};

Array of Struct Pointers
In some applications, using an array of struct pointers may be useful. Therefore we can

define an array of struct points as follows.

2Dpoint* A[100];

In this case each array element, A[i], is a pointer to a 2Dpoint. Access to the fields can be

obtained using

A[i] ���� R = 255; /* changes the color red to 255 */

Copyright @ 2009 Ananda Gunawardena

Dynamically Allocated Lists

Concept of a linked list
Static arrays are structures whose size is fixed at compile time and therefore cannot be

extended or reduced to fit the data set. A dynamic array can be extended by doubling the

size but there is overhead associated with the operation of copying old data and freeing

the memory associated with the old data structure. One potential problem of using arrays

for storing data is that arrays require a contiguous block of memory which may not be

available, if the requested contiguous block is too large. However the advantages of using

arrays are that each element in the array can be accessed very efficiently using an index.

However, for applications that can be better managed without using contiguous memory

we define a concept called “linked lists”.

A linked list is a collection of objects linked together by references from one object to

another object. By convention these objects are named as nodes. So the basic linked list

is collection of nodes where each node contains one or more data fields AND a reference

to the next node. The last node points to a NULL reference to indicate the end of the list.

image source: Weiss Data Structures

The entry point into a linked list is always the first or head of the list. It should be noted

that head is NOT a separate node, but a reference to the first Node in the list. If the list is

empty, then the head has the value NULL. Unlike Arrays, nodes cannot be accessed by

an index since memory allocated for each individual node may not be contiguous. We

must begin from the head of the list and traverse the list sequentially to access the nodes

in the list. Insertions of new nodes and deletion of existing nodes are fairly easy to handle

and will be discussed in the next lesson. Recall that array insertions or deletions may

require adjustment of the array (overhead), but insertions and deletions in linked lists can

be performed very efficiently.

Types of Linked Lists
There are few different types of linked lists. A singly linked list as described above

provides access to the list from the head node. Traversal is allowed only one way and

there is no going back. A doubly linked list is a list that has two references, one to the

next node and another to previous node. Doubly linked list also starts from head node,

but provide access both ways. That is one can traverse forward or backward from any

node. A multilinked list (see figures 1 & 2) is a more general linked list with multiple

links from nodes. For examples, we can define a Node that has two references, age

pointer and a name pointer. With this structure it is possible to maintain a single list,

Copyright @ 2009 Ananda Gunawardena

where if we follow the name pointer we can traverse the list in alphabetical order of

names and if we traverse the age pointer, we can traverse the list sorted by ages. This

type of node organization may be useful for maintaining a customer list in a bank where

same list can be traversed in any order (name, age, or any other criteria) based on the

need.

 Figure 1 – Linked List with two pointers

Another example of multilinked list is a structure that represents a sparse matrix as shown

below.

Figure 2 – A sparse matrix representation

Copyright @ 2009 Ananda Gunawardena

Another important type of a linked list is called a circular linked list where last node of

the list points back to the first node (or the head) of the list.

Implementation of a Linked List

Designing the Node
Linked list is a collection of linked nodes. A node is a struct with at least a data field and

a reference to a node of the same type. A node is called a self-referential object, since it

contains a pointer to a variable that refers to a variable of the same type. For example, a

struct Node that contains an int data field and a pointer to another node can be defined as

follows.

struct Node {

 int data;

 struct Node* next;

}

typedef struct Node node;

node* head = NULL;

Allocating memory for the first node

Memory must be allocated for one node and assigned to head as follows.

head = (node*) malloc(sizeof(node));

(*head).data = 10;

(*head).next = NULL;

Adding the second node and linking
node* nextnode = malloc(sizeof(node));

(*nextnode).data = 12;

(*nextnode).next = NULL;

(*head).next = nextnode;

 10

head

 10

head

 12

Copyright @ 2009 Ananda Gunawardena

Continuation of this process creates a linked list of

nodes. The advantages of a linked list as compared to an

array is that memory blocks are small and hence there is

more flexibility in managing memory required by the

application. In the next lesson we will discuss some

operations on linked lists as well as details about

implementing a Doubly Linked List.

Further Readings
[1] K & R – chapter 6.1-6.4 – pages 127-138

Exercises

For all of the following exercises (where applicable) use the following

definition of node.

typedef struct node {

 int data;

 struct node* next;

} node;

[1] What would be returned if sizeof(node) is used (assume linux.andrew.cmu.edu)

[2] What is wrong with the following code?

 node ptr;

 ptr ���� data = 25;

 ptr ���� next = NULL;

[3] The following code is supposed to insert a new node, after the first node. (assume

there is at least one node). However, the code seems to throw a seg fault after sometime.

What could be the reason?

 node* newnode = malloc(sizeof(node));

 first ���� next = newnode;

 newnode ���� next = first ���� next;

[4] design a struct that can be used to implement a multilinked list as given in Figure 2.

 Include the proper fields to hold all the data.

See demo code on how to build a linked list of nodes

Copyright @ 2009 Ananda Gunawardena

Answers

For all of the following exercises (where applicable) use the following

definition of node.

typedef struct node {

 int data;

 struct node* next;

} node;

[1] What would be returned if sizeof(node) is used (assume linux.andrew.cmu.edu)

ANSWER: sizof(node) = sizeof(int) + sizeof(struct node*)

 = 4 + 4 = 8

[2] What is wrong with the following code?

 node ptr;

 ptr ���� data = 25;

 ptr ���� next = NULL;

ANSWER: Memory is not being allocated for ptr. Therefore any dereference to

Ptr ���� data could cause a segmentation fault

[3] The following code is supposed to insert a new node, after the first node. (assume

there is at least one node). However, the code seems to throw a seg fault after sometime.

What could be the reason?

 node* newnode = malloc(sizeof(node));

 first ���� next = newnode; ----------------- (2)

 newnode ���� next = first ���� next; ----------------- (3)

ANSWER: The problem seems to be that this creates an infinite loop situation. We

can fix the code by switching lines 2 and 3.

[4] design a struct that can be used to implement a multilinked list as given in Figure 2.

 Include the proper fields to hold all the data.

ANSWER:

typedef struct node {

 int row, col;

 double value;

 struct node* rowptr;

 struct node* colptr;

} node;

