
15-123

Systems Skills in C and Unix



Questions?
� Why do we need hashing?

� Can there be entries in the hash table with same key?

� Can there be entries in the hash table with same value?

� Can there be two entries in the hash table with same 
key and same value?



Questions
� What would be a good table size to select given n keys 

to insert

� What is load factor?

� What would be a good load factor?

� What would you do if the load factor is too high?



questions
� how would you select a hash function?

� How do you know if your hash function is a good one?

� Is it possible to pick a function that is 1-1? How difficult 
is it to find one?



What is a collision
� A collision occurs when two keys map to the same 

location

� Why do collisions occur?

� Mainly due to bad hash functions

� Eg: imagine hashing 1000 keys, where each key is on 
average 6 characters long, using a simple function like 
H(s) = ∑ characters, and a table size of at least 1001, how 
many collisions can be expected per cell (collisions occur 
only when the cell is taken and another key wants to 
map into the same place)



How to resolve collisions



Separate Chaining



Separate Chaining
� Pros

� No probing necessary

� Each node has a place in the same hashcode

� List gets never full 

� Performance can go down though

� Cons

� Complicated implementation of array of linked lists

� Still lots of collisions can create a “bad” hash table



Load factor
� Need to keep the load factor reasonably under control 

� If load factor becomes too large, rehash



Rehash
� The process of creating a larger table to distribute the 

keys better



Implementing a generic hash table
� Library design considerations

� hash_node – a node that contains (key, value, next)

� A struct that contains

� Array of hashnode*’s

� Size of the table

� Function pointers

� equal – compare two elems and return success (equal) or 
failure(not equal)

� free_key, free_value



Client considerations
� Must provide a hash function

� It is also possible to provide a generic hash function like 
java API

� Must allocate memory for key and value (if necessary)



Implementation

hashlib.chashlib.h

hashlib.0

client.c

a.out



Data Structures



Library Interface
� ht_init

� ht_insert

� ht_retrieve

� ht_rehash

� ht_set functions

� equal, free_key, free_value



Client implementation
int hashcode(void* s, int m) { 

/* this takes a pointer to a key and 

computes the hash code. m is string size

*/

}



Code Examples


