
Collection Oriented Programming

Guy Blelloch
Carnegie Mellon University

Fall 2020 1

A bit of History

The Connection Machine (1985)
– 64K single-bit processors
– Richard Feynman, Steve Wolfram,

Jack Schwartz, Guy Steele
Realization

– Traditional parallel constructs (e.g.
cobegin), were not adequate

– Several data parallel languages
developed:
C*, *Lisp, CM-Lisp, CM-fortran

2

Collection Oriented
Programming

Realization that similar to some existing “very-
high-level” languages: APL (1966), SETL (1968),
FP (1977), SQL (relational algebra, 1970)

– Work on collections, think ”parallel”
– Largely functional style programming

Many variants of core ideas:
– Nested vs. Flat
– Implicit vs. explicit map
– Collections types: sequence, map, set,

relation
– Collection operations: map, reduce,

filter, ….

Fall 2020 3

Many languages since:

Nesl, Hadoop (map-reduce), Spark, LINQ,
Matlab, Python (comprehensions), clojure, R,
parallel Haskell, Lua, …, ???

Fall 2020 4

Implicit vs Explicit

APL, Fortran90: A + 1
CMLisp: (a+ A a1)
SETL, Nesl : {a + 1 : a in A} -- “comprehensions”
Implicit is particularly bad for nested collections:

e.g. reverse([[1, 2], [3,4]]) = ?
but even for flat collections, with overloading:

e.g. square([2,3]).
Implicit: APL, Matlab, Fortran90, C*, R,
Explicit: Nesl, CMLisp, SETL, Hadoop, Spark,

Fall 2020 5

Type of Collections

Sequences : Nesl, Spark, Parallel Haskell, R
Arrays : APL, Matlab, Fortran90, R
Sets/Maps: CM-lisp, SETL, python
Relations: SQL, Paralation-Lisp, …
Others? :

Fall 2020 6

Nested vs Flat:
Nested Collections: Elements can be collections:

e.g.: [[2,3,4], [5,6], [8,9]]
– Flat: APL, SQL, C*, *Lisp, Hadoop, Spark
– Nested: APL2, FP, CM-Lisp, Nesl, parallel Haskell

Nested parallelism:
function quicksort(S) =
if (#S <= 1) then S
else let a = S[rand(#S)];

S1 = {e in S | e < a}
S3 = {e in S | e > a};
R = {quicksort(v) : v in [S1, S2]};

in R[0] ++ [a] ++ R[1];

Some languages (e.g. SQL) support ”nested parallelism” without
nested tables,

e.g: {sum({o.value : o in orders | o.nation = n}
: n in nations}

Fall 2020 7

Operations
Basic: Map, Reduce, Filter (pack), Tabulate, Scan
Ordering: Sort, Merge, Kth-Smallest
Grouping by: GroupBy (collect), groupByReduce,
Batch updates: Inject, multi-insert, …
Nested: Flatten, Split, partition
Sets/Tables: Union, Intersect, Difference
Relations/Dataframes: join, semi-join
Matrices: Multiply, inverse
Strings: tokens, toString,
Other: remove duplicates, append, subseq

Fall 2020 8

Some Key Operations : Scan
Scan(f, s, a) -> [s, f(s,a[0]), f(f(s,a[0]),a[1]), …

e.g. scan(‘+, 0, [1,1,1,1]) -> [0, 1, 2, 3]
– f must be associative

Why Important:
– needed to capture “loop carried dependences”

Appications:
– Filter
– Partitioning a sequence
– Carry propagation
– Finite state automata
– Linear recurrences (x_i = a_i * x_{i-1} + b_i)
– Tokenizing a string
– Flattening nested parallelism (segmented scans)

Fall 2020 9

10

Parallel Filter

{e in S | e < a};

S = [2, 1, 4, 0, 3, 1, 5, 7]
F = S < 4 = [1, 1, 0, 1, 1, 1, 0, 0]
I = addscan(F) = [0, 1, 2, 2, 3, 4, 5, 5]

where F
R[I] = S = [2, 1, 0, 3, 1]

Each element gets sum of
previous elements.
Seems sequential?

Fall 2020

Some Key Operations: GroupBy
groupBy([(3,a), (5,b), (3,c), (1,d), (3,e)])

-> [(3, [a,c,e]), (5, [b]), (3, [e])]
– Called ”collect” in some languages (e.g. Nesl)
– groupByReduce is also useful

Why important:
– Easy to do by hand sequentially (e.g. hash tables, linked lists), hard to

do by hand efficiently in parallel.
Applications:

– Hadoop Map Reduce
– Histograms
– Counting by type
– Very wide variety of database queries (~50% of TCP-H)
– Indexing
– Bucketing

Fall 2020 11

What about costs?

• How expensive is my code (roughly)?
• Is algorithm A or B better?
• Why is my code taking 10 hours to run, and

when will it finish?
Not talking about precise times, but rather
relative times, and order-of-magnitude times.

Fall 2020 12

In the Sequential World

DIMACS 11 13

Memory

CPU

Random Access
Machine (RAM)

Programming Languages
C, Java, Pascal, …

Algorithms and Analysis
-Mergesort = O(n log n)
-BFS = O(n)
-MxM = O(n2.376)
-…

In the Parallel World

Work = total number of instructions
Depth = Longest Dependence Path

DIMACS 11 14

Parallel
machine

Parallel Algorithms

Collection-based
language

Work and Depth

Theoretical
Scheduler

Compiler
scheduler

15

Scan code
function scan(g,s,A) =
if (#A <= 1) then [s]
else let

sums = {g(A[2*i], A[2*i+1]) : i in [0:#a/2]};
evens = addscan(sums);
odds = {g(evens[i] + A[2*i]) : i in [0:#a/2]};

in interleave(evens,odds);

W(n) = W(n/2) + O(n) = O(n)
D(n) = D(n/2) + O(1) = O(log n)

Fall 2020

Nesl in some more detail.

Fall 2020 16

ParlayLib
A library for C++ that supports “collection oriented programming”.

– Shared memory machines
– Sequence data type (similar to std::vector, but much better support

for parallelism).
– All the standard operations: map, reduce, scan, groupBy, sort, merge,

partition, tokens, ….
All are optimized.

– Allows nesting
– Integrates with Ligra (graph processing), and PAM (sets and tables)
– Only possible since C++11 due to lambda (makes heavy use of)
– Has its own work-stealing scheduler, but can also work with Cilk

scheduler
– Supports delayed sequences – important for efficiency for supporting

“loop fusion”.
– Still most functional style, but within C++

Fall 2020 17

Delayed Sequences
A = reduce(map(S, [] (int a) {a + 1;}))

Would create an intermediate sequence, which is passed to reduce. Instead:

A = reduce(delayed_map(S, [] (int a) {a + 1;}));

This is about 3x faster, and saves memory. Delayed sequences can be used
anywhere an immutable sequence can be used.

Fall 2020 18

Example : Primes
sequence<long> prime_sieve(long n) {

if (n < 2) return sequence<long>();
long sqrt = sqrt(n);

auto primes_sqrt = prime_sieve(sqrt); // recursive call

sequence<bool> flags(n+1, true);
flags[0] = flags[1] = false;

parallel_for(0, primes_sqrt.size(), [&] (long i) {

long prime = primes_sqrt[i];
parallel_for(2, n/prime + 1, [&] (long j) {

flags[prime * j] = false; }); });
return pack<long>(iota(n+1), flags);}

Iota(n) is a lazy sequence of the integers, [0, 1, …, n-1].
Total work is O(n log log n), depth is O(log n).

Fall 2020 19

Example: Counting Words
auto word_counts(sequence<char> str) {

sequence<sequence<char>> words = tokens(str, is_space);
return group_by_and_count(words);}

e.g.
"this is a test of a test"

-> [("this",1), ("is",1), ("test",2), ("of",1), ("a",2)]

Uses “small string optimization”. i.e. if a sequence fits into 15 bytes, then don’t
allocate space for it.

Above code can process 1G string in .5 seconds on 72 cores. This is 50x faster than
best sequential code, which takes about 25 seconds.

Fall 2020 20

Example: Breadth First Search
auto BFS(graph const &g, vertex start) {
long n = g.num_vertices();
sequence<vertex> Parents(n, n);
update = [&] (vertex s, vertex d) {

return atomic_compare_and_swap(&Parents[d], n , s); };
cond = [&] (vertex d) { return (Parents[d] == n); }

Parents[start] = start;
vertex_subset frontier(start); //creates initial frontier
long levels = 0, visited = 0;
while(!frontier.is_empty()) { //loop until frontier is empty

visited += frontier.size();
levels++;
frontier = edge_map(g, frontier, update, cond);}

return levels;}

Uses ligra interface for graphs, which is built on parlaylib.
Very fast (almost fastest available). Applied to graphs with more than 100Billion
edges.

Fall 2020 21

Conclusion

Collection-oriented programming is fun and fast.

Fall 2020 22

23

Scan

[2, 1, 4, 2, 3, 1, 5, 7]

[3, 6, 4, 12]
sum

recurse
[0, 3, 9, 13]

[2, 7, 12, 18]
sum

interleave
[0, 2, 3, 7, 9, 12, 13, 18][0, 2, 3, 7, 9, 12, 13, 18]

Fall 2020

