
Integrated Resource Management and Scheduling with Multi-Resource
Constraints ∗

Sourav Ghosh† Jeffery Hansen‡ Ragunathan (Raj) Rajkumar§ John Lehoczky¶

Abstract

Dynamic real-time systems such as phased-array radars
must manage multiple resources, satisfy energy constraints
and make frequent on-line scheduling decisions. These sys-
tems are hard to manage because task and system re-
quirements change rapidly (e.g. in radar systems, the tar-
gets/tasks in the sky are moving continuously) and must sat-
isfy a multitude of constraints. Their highly dynamic nature
and stringent time constraints lead to complex cross-layer
interactions in these systems. Therefore, the design of such
systems has long been a conservative and/or unpredictable
mixture of pre-computed schedules, pessimistic resource al-
locations, cautious energy usage and operator intuition. In
this paper, we present an integrated approach that simul-
taneously maximizes overall system utility, performs task
scheduling and satisfies multi-resource constraints. Using
a phased-array radar system, we show that our approach
can reconfigure settings of100 tracks at every0.7 sec in
real-time, and performs within 0.1% of the achievable opti-
mal solution.

1. Introduction

In this paper, we consider an integrated framework for
QoS optimization and scheduling for dynamic real-time
systems having multiple resource constraints. A good ex-
ample of such systems is a phased-array radar system. Un-
like traditional radar systems, a phased-array radar can elec-
tronically steer energy beams in a desired direction. To ef-
fectively track a target, it must be scanned at a frequency

∗ This work was supported by the DoD Multidisciplinary University Re-
search Initiative (MURI) program administered by the Office of Naval
Research under Grant N00014-01-1-0576

† Carnegie Mellon University, Department of Electrical and Computer
Engineering, sourav@cs.cmu.edu

‡ Carnegie Mellon University, Institute for Complex Engineered Sys-
tems, hansen@cmu.edu

§ Carnegie Mellon University, Department of Electrical and Computer
Engineering, raj@ece.cmu.edu

¶ Carnegie Mellon University, Department of Statistics.
jpl@stat.cmu.edu

that depends upon its distance, velocity and acceleration.
The larger the distance to the target, the larger the energy
needed to track it. Once a beam transmission is initiated,
it cannot be preempted. The goal of the radar system is to
utilize its finite energy and time resources to maximize the
quality of the target tracks, to search for new targets, and to
confirm new tracks.

Radar system software must make two basic decisions.
First, it must decide the fraction of its resources (energy
and time) to be allocated to each target. For a given re-
source allocation, it must schedule the radar antenna(s) to
transmit the beams and receive the return echoes, both in a
non-preemptive fashion. Since the targets move continually,
sometimes evasively, the resource allocation and schedul-
ing decisions must be made frequently and in real-time.
Due to the multi-dimensional nature of radar resource al-
location [12], the problem of optimally determining the re-
source allocations to maximize total system utility is NP-
hard [7]. Given the high computational complexity and the
need for real-time decision-making, phased-array radar sys-
tems have traditionally employed a combination of conser-
vative heuristics, table lookups, and/or operator intuition to
make the required resource allocation and scheduling deci-
sions.

In our approach, we develop an integrated framework
that performs near-optimal resource allocation and sched-
ules the radar front-ends dynamically in real-time. We show
that such decisions can be made nearly optimally, while
maintaining schedulability and satisfying the resource con-
straints of the system. We concentrate primarily on the radar
resources as these are generally more scarce compared with
system computing resources. Unlike traditional radar sys-
tems, we use two layered components: a QoS optimization
component that is concerned with determining task resource
allocation, and a scheduling component that is concerned
with determining the scheduling of the radar tracking tasks.
In short, our radar resource management scheme deals with
two primary concerns:

Selection of Operating Points:We use the QoS-based Re-
source Allocation Model (Q-RAM)[8][11] as the basis of
our QoS optimization framework. In Q-RAM, the optimiza-

R1 only

R2 only

R3 only

R4 only

R1&R2

R2&R3 R3&R4

R1&R4

(a) Radar Angle
Ranges

t

txi twi tri
Ti

Ai

(b) Radar Dwell

Figure 1. Radar System Model

tion goal is to maximize the total utility derived by all
tasks in the system while meeting resource constraints. In
general, this optimization problem is NP-hard, thus a Q-
RAM solution will not be optimal; however, the solutions
are close to optimal over a wide range of conditions. Fur-
thermore, the Q-RAM solutions can be found very effi-
ciently. We presented ascalableQ-RAM technique for a
radar tracking scenario in [2]. In principle, this approach
can work with a very large number of targets, target con-
figurations, and cooperative radar systems. It also allows
for changing the weights associated with each of the tar-
get types. We assume the results presented in [2].

Ensuring Schedulability:In general, Q-RAM assumes the
use of simple inequality resource constraints. For example,
the total instantaneous usage of any single resource must
be less than or equal to 100%. In a phased-array radar sys-
tem, the situation is much more complicated. It is possi-
ble that a Q-RAM-generated resource allocation may not
be schedulable, jitter constraints can be violated even when
all resource utilizations are less than 100%, and further-
more complex constraints on the use of radar energy over
time must be satisfied. Consequently, the QoS allocator (Q-
RAM) and the task scheduler need to be tightly integrated.
In this paper, we present a solution that integrates the Q-
RAM framework with radar schedulability test that can suc-
cessfully handle even highly dynamic tracking scenarios.

Many recent studies have focused on phased-array
radar systems. For example, Kuo et al. in [6] proposed a
reservation-based approach for real-time radar schedul-
ing. This approach allows the system to guarantee the
performance requirement when the schedulability condi-
tion holds. However, Kuo et al. do not consider the en-
ergy constraint. Shih et al. in [13, 12] use a template-based
scheduling algorithm in which a set of templates is con-
structed offline, and tasks are fit into the templates at
run-time. The templates consider both the timing and
power constraints. They consider interleaving dwells to al-
low beam transmissions (or receptions) on one target
to be interleaved with beam transmissions (or recep-

tions) on another. The templates’ space requirements limit
the number that can be used, and “service classes” de-
signed offline determine how QoS operating points are
assigned to discrete sets of task configurations across an ex-
pected operating range. Goddard et. al. [3] addressed
the real-time scheduling of radar tracking algorithms us-
ing a data-flow model.

The rest of this paper is organized as follows. Section 2
presents our model of the radar system, its associated re-
sources and constraints. Section 3 describes our radar dwell
interleaving scheme. Section 4 presents our integrated re-
source management model. In Section 5, we present an eval-
uation of our experimental results. Finally, in Section 6, we
summarize our concluding remarks and provide a brief de-
scription of our future work.

2. Radar Model

We assume the same radar model as used in [2]. It con-
sists of a single ship with4 radar antennas oriented at 90◦

to each other as shown in Figure 1(a). We also assume that
each antenna is capable of tracking targets over a120◦ arc.
This means that there are regions of the sky that are capable
of being tracked by only one radar antenna, as well as re-
gions that can be tracked by two antennas. The antennas are
assumed to share a large pool of processors used for track-
ing and signal processing algorithms, and a common power
source to supply energy to the antennas.

2.1. Radar Task Model

Each radar task consists of a front-end “dwell” sub-task
at the antenna and a back-end signal processing sub-task
at the processors. A dwell is defined as a single instance
of transmitting a radar beam, waiting for the signal to be
reflected, and receiving the reply. A typical radar dwell is
illustrated in Figure 1(b). It is characterized in terms of a
transmit powerAi, a transmit pulse widthtxi, a wait time
twi and a receive timetri. Generally,txi = tri and the
wait time is based on the round-trip time of the radar signal
(e.g., about 1ms for a target 100 miles away). In practice,
the radar transmission is actually composed of a high fre-
quency series of pulses. Higher the number of pulses, typi-
cally higher is the tracking precision. Also, while the radar
may dissipate some power while receiving, this power is
much smaller than the transmit power. For purposes of sim-
plicity, we assume that the receive power is negligible com-
pared to the transmit power.

A radar task is periodic with a strict jitter constraint. For
example, for a task with periodTi, the start of each dwell
must be exactly1 Ti milliseconds from the start of the previ-

1 In practice, if two successive dwells are not separated exactly byTi,

ous dwell. In this paper, we make the seemingly conserva-
tive choice of using only harmonic periods for radar tasks,
since the harmonics satisfy the stringent periodic jitter con-
straints in a pipe-line scheduling of radar antenna and CPU
(a pin-wheel scheduling problem [9]).

Since the radar is unused during the waiting period of
a dwell, a typical utilization of the radar withN periodic
tasks (dwells) is given by:

Ur =
N∑

i=1

txi + tri
Ti

. (1)

In order to appropriately track a target, the dwell needs to
have a sufficient number of pulses (target illumination time)
with a sufficient amount of power (Ai) on the pulses to tra-
verse across air, illuminate the target and return back af-
ter reflection. Based on the received pulses, an appropriate
signal processing algorithm must be used in order to prop-
erly estimatethe target range, velocity, acceleration, type,
etc. Since a target can maneuver to avoid being tracked, the
estimates are valid only for the duration of the illumina-
tion time. Based on these data, the time-instant of the next
dwell for the task must be determined. Therefore, the track-
ing task needs to be repeated periodically with a smaller pe-
riod providing better estimates. In the absence of any jit-
ter, the tracking period is equal to the temporal distance
between two consecutive dwells. For a large temporal dis-
tance, the estimated error can be too high such that the dwell
will miss the target. On the other hand, a small temporal
distance will require higher resource utilization. Hence, the
radar needs to track the targets with higher importance with
better tracking precision than the ones with lower impor-
tance [2].

2.2. Radar QoS Model

In [2], we developed a Q-RAM model for the radar track-
ing problem. The model defines the problem in terms of a
per-task QoS space (Qi), an operational space (Φi), an envi-
ronmental space (Ei) and a shared resource space (R). Each
of these spaces is defined by a set of dimensions.QoS di-
mensionsrepresent the aspects of tracking quality that are
of direct interest to the user such as the tracking error on a
target.Operational dimensionsrepresent the aspects of the
task over which the radar system has control. For exam-
ple, in the case of a radar tracking task the operational di-
mensions include the dwell period, the dwell time and the
transmit power. While the operational dimensions affect the
tracking quality, they are not of direct interest to the user.
Environmental dimensionsare the aspects of the task that
we do not control, but that affect the mapping between QoS

lower tracking quality will result. If the jitter is higher than a (small)
threshold, an entire track may be lost.

and resource requirements. Examples of environmental di-
mensions for a tracking task include the distance to the tar-
get, the type of the target and its speed.

For each point in the QoS spaceQi of each taski, there is
a utility valueui representing the benefit to tasks of operat-
ing at that quality level. The QoS for a task is a function of
the selected point in the operational spaceΦi (also called
the set-point) and the current point in the environmental
space. The objective of the QoS optimizer is to choose a
point inΦi for each taski so as to maximize the sum of the
utility values over all tasks. The details on the scalable op-
timization algorithm for radar tracks can be found in [2].

In this paper, we will consider two primary types of
tasks: tracking tasks and search tasks. For a tracking task,
the tracking error is its only QoS dimension, with task util-
ity increasing as its tracking error decreases (or, more pre-
cisely, as the reciprocal of tracking error increases). For
search tasks, the number of beams within the angular region
of the radar determines the quality of searching. Hence, the
number of beams is the QoS dimension for the search task,
with a higher number of beams yielding a higher utility. The
expressions for tracking error and utilities are given in Ap-
pendix A.

Q-RAM Resource
 Allocator

Resource
Admission Control/Scheduler

Tasks

Figure 2. Q-RAM & Scheduler

2.3. QoS and Scheduling

As mentioned earlier, a given resource allocation ob-
tained from Q-RAM may not result in a schedulable task
set. If the tasks are not schedulable, Q-RAM must reduce
the resource utilization bounds in order to obtain a schedula-
ble task set. The interaction between Q-RAM and the sched-
uler admission control is shown in Figure 2. We discuss this
in more detail in Section 4 for phased-array radars.

The Q-RAM optimization must be performed at regu-
lar intervals (known as the reconfiguration rate) as a back-
ground process in a dynamic scenario where the task set is
not fixed and tasks are continuously arriving and departing
from the system [4]. It accepts all newly arrived tasks, per-

Sc
he

du
le

r A
dm

is
si

on
C

on
tr

olQ−RAM
Resource
Allocator

Requested Task Queue

Q−RAM Reconfiguaration Clock

Output Task Setting

R
ec

on
fi

gu
ra

bl
e

T
as

k
Q

ue
ue

Figure 3. Dynamic Q-RAM Optimization

forms optimization along with the existing tasks, and pro-
duces the resource allocation settings for all of them as il-
lustrated by Figure 3. Therefore, the scalability of Q-RAM
operation determines how often we can optimize the sys-
tem in a dynamic environment.

2.4. Radar Power Constraints

In addition to timing constraints, radars also have power
constraints. Violating a power constraint can lead to over-
heating and even permanent damage to the radar. A radar
can have both long-term and short-term constraints. For ex-
ample, there may be a long-term constraint of operating
below an average power of 1 kW, and a (less stringent)
short-term constraint of operating below an exponentially
weighted moving average power of1.25 kW in any200 ms
window.

2.4.1. Long-Term Power Utilization Bound If Pmax is
the maximum sustained long-term power dissipation for a
radar, then we define the long-term power utilization for a
set ofN tasks to be

UP =
1

Pmax

N∑
i=1

Ai
txi

Ti
. (2)

That is, the long-term power is given by the fraction of
time each task is transmitting, multiplied by the trans-
mit power for that task. Dividing byPmax gives a utiliza-
tion value which cannot exceed 1. To handle long-term
constraints in Q-RAM, we simply treat power as a re-
source, and denote the amount of that resource con-
sumed by taski by 1

Pmax
Ai

txi

Ti
.

2.4.2. Short-Term Power Utilization Bound We will
now derive a short-term power utilization bound. Short-
term power requirements are defined in terms of an expo-
nential sliding window [1] with time constantτ . With an

exponential sliding window, pulses transmitted more re-
cently have a larger impact on the average power value than
less recently transmitted pulses. Also, the rate that the av-
erage power decreases is proportional to the average
power value meaning that immediately after transmit-
ting a pulse, we have a relatively high but steadily decreas-
ing cooling rate. The use of an exponentially weighted
average over a sliding window has two benefits: it is memo-
ryless, and it closely models thermal cooling which is often
the motivation for the constraint.

In order to define the short-term average power, we
first define an instantaneous power dissipation asp(t). This
function is0 when the radar is not transmitting andAi while
pulse i is being transmitted. We then define the average
power at timet for a time constantτ by

P τ (t) =
1
τ

∫ t

−∞
p(x)e(x−t)/τdx. (3)

Figure 4(a) shows an example of the average power value
for a set of pulses along with the exponential sliding win-
dow at timet0. The shaded bars represent the transmit-
ted radar energy, and the dotted line represents the slid-
ing window at timet0. The short-term average power con-
straint is considered to be satisfied if (3) never exceeds
some boundP τ max. This bound is called thepower thresh-
old over alook-back periodτ . Alternatively, the expression
Eth = P τ maxτ is defined as theEnergy thresholdof the
system.

Now, we define a timing parameter called thecool-down
timetci that precedes a dwell of each taski. The cool-down
time for a task is the time required forP τ (t) to fall from
P τ max to a value just low enough that at the end of the
transmit phase of a dwell,P τ (t) will be restored toP τ max

as shown in Figure 4(b). The cool-down time is a function
of the transmit timetxi and the average powerAi of a dwell,
the time constantτ and the short-term average power con-
straintP τ max. This factor allows the power constraints to
be converted into simple timing constraints.

We will now derive the cool-down timetci for a taski.
We will assume that for this taskAi ≥ P τ max, elsetc = 0.
Let Ps be the average power at the beginning of the cool-
down period,P in be the average power at the end of the
cool-down period, andPout be the average power at the
end of the transmit. We wantPs = Pout = Pmax. We can
expressP in in terms ofPs as

P in = Pse
−tci/τ , (4)

andPout in terms ofP in as

Pout = P ine−tx/τ + Ai(1− e−txi/τ). (5)

t

t=t0

Pτ(t)

e(t-t0)/τ

p(t)

(a) Average Power Window

Ps

Pin

Pout

tcd

ttx

A

P(t)

Pmax

t

(b) Cool-down time

Ps

Pin

Pout

tcd

ttx

A

P(t)

Pmax

t

(c) Non-Optimal Initial Aver-
age Power

Figure 4. Transformation of Short-term Power Constraints to Time Domain

SubstitutingP τ max for Pout into (5) and solving forP in,
we obtain:

P in =
Pmax −Ai(1− e−txi/τ)

e−txi/τ
. (6)

We can now substituteP τ max for Ps into (4) and set the
forward and backward definitions (4) and (6) forP in to be
equal and solve fortci to yield the expression for the cool-
down time,

tci = −τ ln
P τ max −Ai(1− e−txi/τ)

P τ maxe−txi/τ
. (7)

We now present the following theorem:

Theorem 1. For any set ofN periodic radar tasks that do
not violate the short-term average power constraint and sat-
isfyAi ≥ P τ max, 1 ≤ i ≤ N , the total short-term average
power utilization,

Uτ =
N∑

i=1

tci + txi

Ti
, (8)

must satisfyUτ ≤ 1 .

Proof. Assume that we have a set of tasks for whichUτ =
1. From (7), it can be shown that any decrease inP τ max will
causetci to increase, and causeUτ to exceed1. If we can
show that whenUτ = 1, the optimal schedule must include
a point where the average powerPτ (t) equalsP τ max, then
this implies that the theorem must hold. Now, assume that
we have a scheduleS where tasks are scheduled such that
each dwell transmit periodtxi is preceded by an idle time
of tci with the cool-down time for each dwell beginning ex-
actly at the end of the previous dwell’s transmit. Now let
Ps be the average power at the beginning of the cool-down
period preceding a dwell transmit. It can be shown from
(4) and (5) that ifPs < P τ max, then thePout for that
dwell must satisfyPs < Pout < Pmax as shown in Fig-
ure 4(c) due to the fact that the cooling rate is proportional

to the current average power. This implies that at the end of
each transmit period for each successive dwell, the average
power will increase until it converges toP τ max. This means
that in the steady-state, the average power will beP τ max at
the end of the transmit period for every dwell. The schedule
S must be optimal since moving a dwell any sooner would
result in an increase inP in for that dwell and increasePout
aboveP τ max. Moving a dwell any later would trade-off the
efficient cooling immediately after the transmit when aver-
age power is atP τ max for less efficient cooling before the
transmit resulting in a violation after the next dwell. This
shows that the scheduleS must be optimal and that it must
have a point where average power is equal toP τ max.

Based on (8), we model the short-term average power
constraint in the Q-RAM optimization framework by treat-
ing power as a pseudo-resource with a maximum value of 1
and treating each radar task as if it consumestci+txi

Ti
units

of that resource, withtci computed using (7). Hence, we re-
fer to the expression in (8) as thecool-down utilizationUc

of the system.
It is interesting to note that if we take the limit asτ →∞

in (7), it can be shown that:

tci = (
Ai

P τ max

− 1)txi. (9)

If we then substitute the above into (8), we obtain

Uτ=∞ =
1

P τ max

N∑
i=1

Ai
txi

Ti
. (10)

We see that this equation has the same form as the long-term
power utilization given in (2).

3. Scheduling Considerations

Our model of each radar dwell task consists of4 phases:
cool-down time(tc), transmission time (tx), waiting time

tx tw trtc

(a) Dwell with Cool-down Time

Offset

W1

W2

tC1 tC2

(b) Proper Nesting

Offset

W1

W2

tC1 tC2

(c) Improper Nesting

Figure 5. Interleaving of radar dwells

(tw), and receiving time (tr), as shown in Figure 5(a). The
durationstx and tr are non-preemptive, since a radar can
only perform a single transmission or a single reception at
a time. However,tc of one task can be overlapped withtr
or tw of another task, since the radar can cool down dur-
ing the waiting and the receiving period.

Allowing the entire duration of a dwell (from transmis-
sion start to reception end) to be a non-preemptive job
wastes resources and decreases the schedulability of the
system [13]. Task dwells can, however, be interleaved to
improve schedulability. Dwells can be interleaved in two
ways: (1) properly nested interleaving and (2) improperly
nested interleaving. An optimal construction of interleaved
schedules using a branch-and-bound method has been de-
scribed in [12] and [13]. In this paper, we focus on fast and
inexpensive construction of dwell inter-leavings in the pres-
ence of dynamically changing task-sets. The inter-leavings
that we construct may not necessarily be optimal in the
sense of [13], but they will be schedulable.

3.1. Proper Nesting of Dwells

Two dwells are said to be properly nested if one dwell fits
inside the waiting time (tw) of another. Figure 5(b) demon-
strates this scheme where dwellW2 fits in the waiting time
of dwell W1. The necessary condition for this interleaving
is given by Equation (11).

tww1 ≥ (tcw2 + txw2 + tww2 + trw2). (11)

We define a phase offset for a proper interleaving as
given in (12). For instance, we can schedule the cool-down
time of the dwellW2 right after the transmission time of
W1. Thus, the value of the phase offset determines how
tightly two nested tasks fit together. Our aim is to minimize
this offset,

op = tww1 − (tcw2 + txw2 + tww2 + trw2). (12)

The proper nesting procedure is detailed in Algorithm 1
in Appendix B. The core of the scheme deals with fitting a

dwell of the smallest size into a dwell with the smallest fea-
sible waiting time.

3.2. Improper Nesting of Dwells

Two dwells are said to be improperly nested when one
dwell only partially overlaps with another (e.g. as illustrated
in Figure 5(c)). Suppose that taskW1 is improperly inter-
leaved with taskW2, whereW1 starts first. TaskW1 is
called theleading taskand taskW2 is called thetrailing
task. Based on the phasing illustrated in Figure 5(c), the
necessary conditions for the interleaving to occur are given
in (13) and (14),

tww1 ≥ tcw2 + txw2, (13)
tcw2 + txw2 + tww2 ≥ tww1 + trw1. (14)

We define a phase offset for this case given by

oi = tcw2 + txw2 + tww2 − (tww1 + trw1). (15)

Our improper nesting scheme is given in Algorithm 2
in Appendix B. It starts with the task with the largest wait-
ing time (tw), and attempts to interleave it with the task with
the largest possibletw smaller than that of the original task
based on the conditions stated in (13) and (14). The algo-
rithm repeats the process until it reaches the task with the
smallesttw that can no longer be interleaved, or all tasks
are interleaved to form a single virtual task.

3.3. Dwell Scheduler

The responsibilities of the radar dwell scheduler are as
follows.

• Obtain period and dwell-time information
(tc, tx, tw, tr) from Q-RAM for each task.

• Interleave tasks with the same period using proper
and/or improper nesting to create a fewer number of
virtual tasks.

Return?End
 Scheduler
Admission
Control

QoS Optimizer
(Q-RAM)

Start Tracking &
Searching Tasks

Tasks with assigned
 QoS and Resource

Resource
Allocation

Radar Utilization
Bound

Adjustment Detection

1

0

Perform Utilization Bound
Adjustment

Task
 Profiler

Figure 6. Resource Management Model of Radar Tracking System

• Perform a non-preemptive harmonic schedulabil-
ity test for the virtual tasks.

Next, we describe our schedulability test.

3.3.1. Schedulability TestAs mentioned earlier, in order
to satisfy jitter requirements, only relatively harmonic peri-
ods are used for the dwells2. We define the following terms:
• Ni = Number of tasks with a periodTi

• Cij
= Total run-time of thejth task under periodTi

• NT = Total number of periods
• Ti > Tj ,∀i < j
The response timetRi

of the tasks for a given periodTi

is given by:

tRi
=

j=i−1∑
j≥1

dTi

Tj
e

Nj∑
k=1

Cjk︸ ︷︷ ︸
run-time of higher priority tasks

+
Ni∑

k=1

Cik︸ ︷︷ ︸
run-time of tasks with periodTi

+ Bi︸︷︷︸
Blocking term

(16)

The blocking termBi is defined as the maximum run-time
Cmj

among tasks with lower priority, as defined in (17).
As already mentioned, each radar task (virtual or otherwise)
is considered non-preemptive under the schedulability test,
and

Bi = max(Cmn),∀i < m ≤ NT , 1 ≤ n ≤ Nm︸ ︷︷ ︸
Maximum task size among all tasks of lower priority

.

(17)
For a task-set to be schedulable, we must satisfy

tRi
≤ Ti,∀i ∈ NT . (18)

Recall that using nesting, we combine multiple tasks into
a smaller number of virtual dwell tasks within each period.

2 As we show in the next section, our model of radar system does not
show significant degradation in the accrued utility due to the restrict-
ing use of harmonic periods

The run time of a task is given byCjk
= tcjk

+txjk
+twjk

+
trjk

, where the parameterstcjk
etc. may be virtual parame-

ters if the dwells are nested.

4. Iterative Resource Allocation

The entire resource allocation process is detailed in Fig-
ure 6 in the form of a flow-chart. The tracking and search-
ing tasks obtained from the environment are fed into
the QoS optimizer,Q-RAM. Q-RAM determines the re-
source settings of the tasks and attempts to maximize global
utility. The Scheduler Admission Control in-
terleaves the radar tasks as densely as possible, and then
runs the efficient schedulability test. If the task set is
not schedulable, theRadar Utilization Limit
Adjustment function repeats the Q-RAM and schedula-
bility tests by varying the Q-RAM radar utilization bound
using a binary search. That is, if an interleaved task set is
not schedulable, the utilization bounds on the radar anten-
nas are reduced, and vice versa. This iteration is stopped
when it reaches a schedulable task-set, and the utility val-
ues obtained in two successive iterations differ only by a
small value (such as0.1%).

5. Experimental Results

This section is divided into3 parts. We first describe our
assumed radar configuration in detail. Next, we present a set
of experiments to study the impact of using only harmonic
periods in QoS optimization. We compare two different har-
monic period distributions against a wide choice of periods.
Finally, we run the entire resource allocation process as de-
scribed in Figure 6 using various interleaving schemes for
radar scheduling and compare their performances.

5.1. Experimental Configuration

We assume a radar model as pictured in Figure 1(a).
Radar tasks are classified into tracking tasks, high priority
search tasks, and low-priority search tasks. The ranges that

Parameter Type Range

Distance All [30, 400] km
Acceleration All [0.001g, 6g]
Noise All [kTBw,103kTBw] 3

1 (helicopter) [60,160] km/hr
speed 2 (fighter-jet) [160,960] km/hr

3 (missile) [800, 3200] km/hr
Angle All [0◦, 360◦]

Table 1. Environmental Dimensions

Tasks Number of Period (ms) Tx
beams Power (kw) Time (ms)

Hi-Priority [15, 60] 800 5.0 0.5
Search

Tracking 1 [100, 1600] [0.001, 16.0] [0.02, 50.0]
Lo-Priority [10, 30] 1600 3.0 0.25

Search

Table 2. Period and Power Distribution

we use for periods, dwell time, dwell power and the num-
ber of dwells among them are given in Table 2.

As mentioned earlier, tracking error is assumed to be the
only QoS dimension for each tracking task, and the number
of beams is the QoS dimension for search tasks. The track-
ing error, in turn, is assumed to be a function of environ-
mental dimensions (target distanceri, target speedvi, tar-
get accelerationai, target noiseni) and operational dimen-
sions (dwell periodTi, number of pulsesηi in dwell trans-
mit timeCi, pulse widthw, dwell transmit pulse powerAi,
tracking filter algorithm) [2]. For a search task, each beam
corresponds to a single dwell with certain values ofTi, ηi

andAi.
The assumed ranges of the environmental dimensions for

targets are shown in Table 1. The ranges of various opera-
tional dimensions for all types of tasks are shown in Ta-
ble 2. We assume three types of tracking filters, namely
Kalman,αβγ and least-squares, to account for computa-
tional resources. Their estimated run-times have been ex-
trapolated to equivalent run-times of a300MHz proces-
sor as shown in Table 3 in Appendix A. This is because the
radar computing system is assumed to be a distributed sys-
tem consisting of a large (128) number of300MHz proces-
sors. We also assume that the overhead for a search task is
assumed to be the same as that of the Kalman filter.

We use a2.0GHz Pentium IV with256MB of memory
for all our experiments.

5.2. The Effect of Harmonic Periods

Our first experiment studies the effect of using only har-
monic periods on the total utility obtained by the QoS opti-

mization. We consider only tracking tasks for simplicity. We
study the impact of harmonic periods across a wide range of
system configurations. Specifically, we vary the amount of
the two primary resources in the system, namely energy lim-
its and available time. We achieve this by varying two fac-
tors:
• Energy threshold (Eth): LoweringEth increases the

cool-down time for each quality set-point of a radar task,
and therefore the increases the cool-down utilization re-
quirement.Eth is defined at the end of Section 2.4.2.
• Transmission-time tracking constant

(Tx-factor): This factor directly influences the require-
ment of transmission time. A higherTx-factor raises
the transmission time for a particular quality set-point.
This, in turn, increases both the radar utilization as well as
the cool-down utilization requirements for a given qual-
ity of any task.Tx-factor is defined in Appendix A.

We use the settings from Tables 1, 2 and 3, randomly
generate512 tasks (tracks) and develop their profiles. We
also varyTx-factor from 1 to 16 in a geometric fash-
ion, andEth from 20J to 670J keeping the look-back pe-
riod τ constant at200ms[6]. We then perform QoS opti-
mization under three distributions of available periods be-
tween the range[100, 1600]ms:
• A: Arithmetic distribution in steps of10ms (to ap-

proximate a continuous range of available periods to choose
from),
• G2: Geometric distribution with a common ratio of2

(100, 200, 400, · · ·),
• G4: Geometric distribution with a common ratio of4

(100, 400, 1600).

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600 700

U
til

ity

Energy Threhold

Tx-f=1, A
Tx-f=1, G2
Tx-f=1, G4
Tx-f=2, A

Tx-f=2, G2
Tx-f=2, G4
Tx-f=4, A

Tx-f=4, G2

Tx-f=4, G4
Tx-f=8, A

Tx-f=8, G2
Tx-f=8, G4
Tx-f=16, A

Tx-f=16, G2
Tx-f=16, G4

Figure 7. Utility with Energy & Tx-factor (X)

Figure 7 shows the plot of utility againstEth at var-
ious values ofTx-factor averaged over several ran-
domly generated tasks. As expected, whenEth increases,
cool-down times decrease and higher utility is accrued since

higher energy levels are available. AsTx-factor in-
creases, higher transmission times are required for achiev-
ing the same tracking error, and utility accrued is lowered
since the system runs out of time.

In fact, at aTx-factor of 16 and Eth of around
100, not all tasks are admitted into the optimizer underG2
or G4. That is, some tasks do not even reach their mini-
mum QoS operating points. These conditions represent an
over-constrainedsystem, and occur forTx-factor val-
ues above16 and Eth ≤ 100. Likewise, the system be-
comesunder-constrainedfor Eth ≥ 500.

60

80

100

120

140

160

180

0 50 100 150 200 250 300

U
til

ity

Number of Tracking Tasks

Utility variation with tx-factor 4

No Scheduling
Improper Nesting

Proper Nesting
Improper-proper Nesting
Proper-Improper Nesting

Figure 8. Utility Variation

Let us only consider the general case when all tasks
are admitted and can get at least a minimum (non-zero)
amount of tracking. Under these conditions, themaximum
utility drop for G2 relative to a wide choice of periods
(represented byA) is 12.35% at an Eth value of 170J
and aTx-factor value of16. Similarly, the maximum
drop for G4 is 24.5% at an Eth value of 270J and a
Tx-factor value of of16. The average utility drops for
G2 andG4 are2.22% and6.82% respectively and the cor-
responding standard deviations are9.4 and 38.83 respec-
tively across the entire range ofTx-factor andEth. We
limit periods to harmonics only to satisfy jitter constraints,
and these experiments show that the choice ofG2 satisfies
jitter constraints with only small drops in total utility ob-
tained.

Next, we perform the iterative (binary search) process of
resource allocation for tasks and analyze the performances
of different dwell interleaving schemes.

5.3. QoS Optimization and Scheduling

In this set of experiments, we maintain anEth value
of 250J [6] and aTx-factor value of 4 with the aim
of keeping the system to be neither under-constrained nor

over-constrained. Under these conditions, smart schemes
will be better able to exploit available resources to maxi-
mize overall utility. We vary the number of tasks from16 to
256 and perform the whole iterative resource allocation pro-
cess as shown in Figure 6. The period distribution is limited
to G2 (namely 100, 200, 400, 800 and 1600) based on our
earlier experiments. The process of QoS optimization and
generation of schedule repeats until we arrive at a schedula-
ble task-set where the radar utilization has a precision of at
least0.1%.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 50 100 150 200 250 300

U
til

iz
at

io
n

Number of Tracking Tasks

Cooldown-Utilization variation with tx-factor 4

Improper Nesting
Proper Nesting

Improper-proper Nesting
Proper-Improper Nesting

Figure 9. Avg Cool-down Utilization

Our next experiment deals with comparing performances
of various interleaving schemes, under the condition that the
schedulability test must be satisfied. We use the following4
different interleaving schemes:
• Proper scheme: Perform Proper nesting of tasks

alone.
• Improper scheme:Perform Improper nesting of tasks

alone.

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0 50 100 150 200 250 300

U
til

iz
at

io
n

Number of Tracking Tasks

Utilization variation with tx-factor 4

Improper Nesting
Proper Nesting

Improper-proper Nesting
Proper-Improper Nesting

Figure 10. Avg Radar Utilization

• Improper-proper scheme: Perform Improper nesting
followed by Proper nesting.
• Proper-improper scheme: Perform Proper nesting

followed by Improper nesting.
For each task configuration and each interleaving

scheme, we determine the overall utility accrued, the exe-
cution time and the radar utilizations. We finally average
the results across several runs.

Figure 8 shows the variation of utility accrued as the
number of tracking tasks increases under our interleav-
ing schemes. From the figure, theImproper-proper
scheme provides the highest utility followed in descend-
ing sequence by Proper-Improper , Improper
and Proper . The difference in utility between
Improper-proper and Proper is 18.11% at 256
tasks. The drop in utility from Q-RAM with no interleav-
ing to Improper-proper is 11.17% for the same num-
ber of tasks. In other words, the need to schedule the raw
outputs of Q-RAM (operating with only 100% utiliza-
tion requirements and no scheduling constraints) leads to a
drop of11.17%.

Next, we plot the variation of radar cool-down utilization
((8)) under these schemes in Figure 9. We again observe that
theImproper-proper scheme provides the best utiliza-
tion (close to73.11%) andProper scheme performs the
worst (on average48.64%). We also observe that the radar
utilization actually drops for large task sets (e.g. from128
tasks to256 tasks). This is because we admit all tasks in the
systems at their minimum QoS level before performing any
optimization or allocation. This reduces the radar utilization
of the system as the tasks are non-preemptive and we admit
tasks whose minimum QoS itself requires high radar utiliza-
tion. Our conclusion that theImproper-proper is the
best interleaving scheme is further substantiated in the plot
of radar utilization((1)) in Figure 10, as it gives higher uti-
lizations than the other schemes. Figure 10 also shows that
the cool-down utilization plays a bigger role in determin-
ing the utilization of the system than the radar utilization in
our model.

Our experiments show that task-sets are best interleaved
by improper nesting followed by proper nesting. They also
show that improper nesting only performs more efficiently
than proper nesting only.

5.4. Interleaving Execution Times

Finally, we measured the execution time consumed by
resource allocation as the number of tasks changes and plot-
ted the results in Figure 11. The execution time includes the
Q-RAM optimization followed by the schedulability anal-
ysis on4 radars. The execution times presented do not in-
clude the task profile generation time (which occurs only
once) since it does not depend on the interleaving scheme

0

0.5

1.0

1.5

2.0

2.5

3.0

0 50 100 150 200 250 300

R
un

-t
im

e(
s)

Number of Tracking Tasks

Run-time variation with tx-factor 4

Improper Nesting
Proper Nesting

Improper-proper Nesting
Proper-Improper Nesting

Figure 11. Resource Allocation Run-time

and the task-set can choose profiles from a set of discrete
profiles generated off-line4. The plot shows that all the in-
terleaving schemes have rather comparable run-times, with
Improper being the fastest andProper-Improper be-
ing the slowest. As can be seen, with about 256 tasks, dy-
namic interleaving can be performed in about2.5 sec -
with very little optimization carried out in our code. This
shows thereconfiguration rateof the optimizer as defined
in Section 2.3 can be once in2.5 seconds for 256 tasks.
In other words, the radar system can re-evaluate the en-
tire system and re-optimize every2.5 seconds. In practice,
the number of tasks is unlikely to exceed 100 tasks. In that
case, the reconfiguration rate is increased to roughly once
in 0.7 seconds. In addition, our experimental results show
that this can be drastically reduced to the order of100 ms
if we reduce the radar utilization precision by1% or more.

6. Conclusion and Future Work

We developed an integrated QoS resource management
and scheduling framework, which can rapidly adapt to dy-
namic changes in the environment. This framework relaxes
the need for maximizing (or minimizing) an objective func-
tion only using strict inequalities as resource constraints.
We accomplish this by introducing an efficient schedula-
bility test on system resources, and repeating the optimiza-
tion a small number of times using a binary search tech-
nique. We apply our approach to a phased-array radar sys-
tem, which introduces additional requirements. First, these
systems also have stringent long-term and short-term en-
ergy constraints. Second, tasks in these systems must sat-
isfy zero-jitter requirements. Third, radar tasks have multi-
ple non-preemptive phases. We transformed the energy con-
straint into a timing constraint by defining a concept called
cool-downtime. We then restricted ourselves to choosing

4 The analysis of discrete profile generation has been studied in [2].

only harmonic periods in order to satisfy jitter requirements,
and showed that such a restriction leads to only small drops
in the overall utility of the system. Finally, we interleave
the phases of different radar tasks so as to minimize the
time utilization. We found that “improper nesting” of tasks
followed by “proper nesting” yields the best results. Our
future work will involve distributed QoS optimization and
scheduling across larger-scale systems such as networked
radar systems.

References

[1] R. Baugh. Computer Control of Modern Radars. RCA
M&SR-Moorestown Library, 1973.

[2] S. Ghosh, J. Hansen, R. Rajkumar, and J. Lehoczky. Adap-
tive qos optimizations with applications to radar tracking.
Technical Report 18-03-04, Institute for Complex Engineer-
ing Systems, Carnegie Mellon University, 2004.

[3] S. Goddard and K. Jeffay. Analyzing the real-time proper-
ties of a dataflow execution paradigm using a synthetic aper-
ture radar application. InProceedings of the IEEE Real-
Time and Embedded Technology and Applications Sympo-
sium, June 1997.

[4] J. P. Hansen, J. Lehoczky, and R. Rajkumar. Optimization
of quality of service in dynamic systems. InProceedings of
the 9th International Workshop on Parallel and Distributed
Real-Time Systems (WPDRTS), April 2001.

[5] M. O. Kolawole. Radar Systems, Peak Detection and Track-
ing. Newnes Press, 2002.

[6] T. W. Kuo, Y. S. Chao, C. F. Kuo, C. Chang, and Y. Su. Real-
time dwell scheduling of component-oriented phased array
radars. InIEEE 2002 Radar Conferences, Apr 2002.

[7] C. Lee. On Quality of Service Management. PhD thesis,
Carnegie Mellon University, Aug. 1999.

[8] C. Lee, J. Lehoczky, R. Rajkumar, and D. Siewiorek. On
quality of service optimization with discrete qos options. In
Proceedings of the IEEE Real-Time Technology and Appli-
cations Symposium. IEEE, June 1998.

[9] K. Lin. Distributed pinwheel scheduling with end-to-end
timing constraints. InIEEE Real-Time Systems Symposium,
Dec 1995.

[10] M. Munu, I. Harrison, D. Wilkin, and M. Woolfson. Target
tracking algorithms for phased array radar.Radar and Sig-
nal Processing, IEE Proceedings-F, 139(5):336–342, Octo-
ber 1992.

[11] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A re-
source allocation model for qos management. InIEEE Real-
Time Systems Symposium, December 1997.

[12] C. Shih, S. Gopalakrishnan, P. Ganti, M. Caccamo, and
L. Sha. Scheduling real-time dwells using tasks with syn-
thetic periods. InProceedings of the IEEE Real-Time Sys-
tems Symposium, December 2003.

[13] C. Shih, S. Gopalakrishnan, P. Ganti, M. Caccamo, and
L. Sha. Template-based real-time dwell scheduling with en-
ergy constraint. InProceedings of the IEEE Real-Time and
Embedded Technology and Applications Symposium, May
2003.

Filter Computation K1 K2 K3 KC

Time(ms)
Kalman 0.022 0.60 0.4 1000.0 [1, 16]

Least-squares .00059 0.60 0.4 30.71 [1, 16]
αβγ 0.0004 0.80 0.2 0.0 [1, 16]

Table 3. Filter Constants

[14] D. Wilkin, I. Harrison, and M. Wooflson. Target tracking al-
gorithms for phased array radar.Radar and Signal Process-
ing, IEE Proceedings-F, 138(3):255–262, June 1991.

A. Tracking Error Computation

Type Number of beams Utility
15 20× 0.3

Hi-Priority 30 20× 0.7
45 20× 0.85
60 20× 0.95
10 2× 0.3

Lo-Priority 20 2× 0.7
30 2× 0.9

Table 4. Utility Distribution of Search Tasks

The tracking error is assumed to be a function of the environmental di-
mensions (target distanceri, target speedvi, target accelerationai, tar-
get noiseni) and the operational dimensions (dwell periodTi, number of
pulsesηi in dwell transmit timeCi, pulse widthw, dwell transmit pulse
powerAi, tracking filter algorithm) [2]. With the help of [5],[14] and [10],
we formulate a general expression of tracking error as presented in (19).
We do not claim this to be the precise expression.

εi =
{K1σr + K2(σvTi + K3ai ∗ T 2

i)}
(ri − d)

(19)

σr =
c

2Bw

√
Ai(Ci/KC)/(2Ti)

ni

(20)

σv =
λ

2(Ci/KC)
√

Ai(Ci/KC)/(2Ti)
ni

(21)

Bw =
M

w
(22)

d = viT +
1

2
aiT

2 (23)

Where
σr = standard deviation in distance measurement
σv = standard deviation in speed measurement
λ = wavelength of the radar signal
Bw = bandwidth of the radar signal
M = bandwidth amplification factor by modulation
d = estimated displacement of the target in timeT
K1 = position tracking constant
K2 = period tracking constant
K3 = acceleration tracking constant
KC = transmission time tracking constant (Tx-factor).
The values of the constants are are presented in Table 3. The utility of

this tracking error is given by (24).

U(εi) = wi(1− e−γ/εi) (24)

whereγ is a constant to map the tracking error into a utility value andwi

is a weight function of the form:

wi = Kt(
vi

ri + Kr
). (25)

providing an estimate of the importance of a particular target. TheKr term
represents the importance based on the target type, and the right-most term
represents the time-to-intercept (i.e., the time that would be required for a
target to reach the ship if flying directly toward it).

The utility distributions relative to the number of beams for search tasks
are shown in Table 4.

B. Algorithms for Interleaving Schemes

Algorithm 1 Proper Nesting Algorithm
Require: n > 1
1: nv ← n {n = Number of inputted tasks,nv = number of virtual

tasks}
2: Create a sorted list of the tasks in increasing order of (tc+ tx + tw +

tr)
3: Create a sorted list of the tasks in increasing order oftw
4: loop
5: if nv > 1 then
6: Choose the taskτa with smallesttc + tx + tw + tr
7: Find the taskτw with smallest possibletw that can properly nest

τa in its tw
8: if no taskτw is foundthen
9: break from the loop

10: else
11: Fit τa insideτw by proper nesting (Figure 3) to form a single

virtual task
12: Remove the original two tasks from the sorted lists and insert

the new virtual task into them
13: nv ← nv − 1
14: end if
15: else
16: break from the loop
17: end if
18: end loop

Algorithm 2 Improper Nesting Algorithm
Require: n > 1
1: nv ← n {n = Number of inputted tasks,nv = number of virtual

tasks}
2: Create a sorted list of the tasks in increasing order oftw
3: loop
4: if nv > 1 then
5: start with a taskτw with biggesttw
6: while a task is founddo
7: Find a taskτwn with biggest possibletw smaller than that of

τw that can be theleading taskin improper nesting withτw

8: if τwn is foundthen
9: compute the nesting offset ason

10: end if
11: Find a taskτwi with biggest possibletw smaller than that of

τw that can be thetrailing task in improper nesting withτw

12: if τwi is foundthen
13: compute the nesting offset asoi

14: end if
15: if bothτwn andτwi are foundthen
16: if on < oi then
17: Mergeτw andτwn by improper nesting withτwn as the

leading task
18: else
19: Mergeτw andτwi by improper nesting withτwi as the

trailing task
20: end if
21: nv ← nv − 1
22: Remove the merged two tasks from the sorted list and insert

the new virtual task into it
23: else ifonly τwn is foundthen
24: Mergeτw andτwn by improper nesting withτwn as the

leading task
25: nv ← nv − 1
26: Remove the merged two tasks from the sorted list and insert

the new virtual task into it
27: else ifonly τwi is foundthen
28: Mergeτw andτwi by improper nesting withτwi as the trail-

ing task
29: nv ← nv − 1
30: Remove the merged two tasks from the sorted list and insert

the new virtual task into it
31: else
32: Go to the task with next lowertw
33: end if
34: end while
35: else
36: break from the loop
37: end if
38: end loop

