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Abstract that depends upon its distance, velocity and acceleration.
The larger the distance to the target, the larger the energy
Dynamic real-time systems such as phased-array radarsneeded to track it. Once a beam transmission is initiated,
must manage multiple resources, satisfy energy constraintst cannot be preempted. The goal of the radar system is to
and make frequent on-line scheduling decisions. These sysuitilize its finite energy and time resources to maximize the
tems are hard to manage because task and system requality of the target tracks, to search for new targets, and to
quirements change rapidly (e.g. in radar systems, the tar- confirm new tracks.

gets/tasks in the sky are moving continuously) and must sat- Radar system software must make two basic decisions.
isfy a multitude of constraints. Their highly dynamic nature First, it must decide the fraction of its resources (energy
and stringent time constraints lead to complex cross-layer g time) to be allocated to each target. For a given re-
interactions in these systems. Therefore, the design of suckyqrce allocation, it must schedule the radar antenna(s) to
systems has long been a conservative and/or unpredictablgransmit the beams and receive the return echoes, both in a
mixture of pre-computed schedules, pessimistic resource a"non—preemptive fashion. Since the targets move continually,
locations, cautious energy usage and operator intuition. In sometimes evasively, the resource allocation and schedul-
this paper, we present an integrated approach that simul- jhq decisions must be made frequently and in real-time.
taneously maximizes overall system utility, performs taskpye to the multi-dimensional nature of radar resource al-
scheduling and satisfies multi-resource constraints. Using |gcation [12], the problem of optimally determining the re-

a phased-array radar system, we show that our approach soyrce allocations to maximize total system utility is NP-

can reconfigure settings dl0 tracks at every).7 sec in - pard [7]. Given the high computational complexity and the
real-t|me,_ and performs within 0.1% of the achievable opti- need for real-time decision-making, phased-array radar sys-
mal solution. tems have traditionally employed a combination of conser-

vative heuristics, table lookups, and/or operator intuition to
make the required resource allocation and scheduling deci-

1. Introduction slons.
In our approach, we develop an integrated framework
In this paper, we consider an integrated framework for that performs near-optimal resource allocation and sched-
QoS optimization and scheduling for dynamic real-time ules the radar front-ends dynamically in real-time. We show
systems having multiple resource constraints. A good ex-that such decisions can be made nearly optimally, while
ample of such systems is a phased-array radar system. Unmaintaining schedulability and satisfying the resource con-
like traditional radar systems, a phased-array radar can elecstraints of the system. We concentrate primarily on the radar
tronically steer energy beams in a desired direction. To ef-resources as these are generally more scarce compared with
fectively track a target, it must be scanned at a frequencysystem computing resources. Unlike traditional radar sys-
tems, we use two layered components: a QoS optimization
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tions) on another. The templates’ space requirements limit
the number that can be used, and “service classes” de-
signed offline determine how QoS operating points are
assigned to discrete sets of task configurations across an ex-
M 7 pected operating range. Goddard et. al. [3] addressed
the real-time scheduling of radar tracking algorithms us-
; ing a data-flow model.
The rest of this paper is organized as follows. Section 2
(a) Radar Angle (b) Radar Dwell presents our model .of the radar system, its associated re-
Ranges sources and constraints. Section 3 describes our radar dwell
interleaving scheme. Section 4 presents our integrated re-
Figure 1. Radar System Model source managemept model. In Sectign 5, we presgnt aneval-
uation of our experimental results. Finally, in Section 6, we
summarize our concluding remarks and provide a brief de-
tion goal is to maximize the total utility derived by all scription of our future work.
tasks in the system while meeting resource constraints. In
general, this optimization problem is NP-hard, thus a Q- 2. Radar Model
RAM solution will not be optimal; however, the solutions
are close to optimal over a wide range of conditions. Fur-  We assume the same radar model as used in [2]. It con-
thermore, the Q-RAM solutions can be found very effi- sists of a single ship with radar antennas oriented at°90
ciently. We presented scalableQ-RAM technique for a  to each other as shown in Figure 1(a). We also assume that
radar tracking scenario in [2]. In principle, this approach each antenna is capable of tracking targets o204 arc.
can work with a very large number of targets, target con- This means that there are regions of the sky that are capable
figurations, and cooperative radar systems. It also allowsof being tracked by only one radar antenna, as well as re-
for changing the weights associated with each of the tar-gions that can be tracked by two antennas. The antennas are
get types. We assume the results presented in [2]. assumed to share a large pool of processors used for track-

Ensuring Schedulabilityin general, Q-RAM assumes the ing and signal processing algorithms, and a common power
use of simple inequality resource constraints. For example,SOUrce to supply energy to the antennas.
the total instantaneous usage of any single resource must
be less than or equal to 100%. In a phased-array radar sys2.1. Radar Task Model
tem, the situation is much more complicated. It is possi-
ble that a Q-RAM-generated resource allocation may not Each radar task consists of a front-end “dwell” sub-task
be schedulable, jitter constraints can be violated even wherat the antenna and a back-end signal processing sub-task
all resource utilizations are less than 100%, and further-at the processors. A dwell is defined as a single instance
more complex constraints on the use of radar energy overof transmitting a radar beam, waiting for the signal to be
time must be satisfied. Consequently, the QoS allocator (Q-reflected, and receiving the reply. A typical radar dwell is
RAM) and the task scheduler need to be tightly integrated. illustrated in Figure 1(b). It is characterized in terms of a
In this paper, we present a solution that integrates the Q-transmit powerA;, a transmit pulse widtly;, a wait time
RAM framework with radar schedulability test that can suc- tw; and a receive timer;. Generally,tx; = tr; and the
cessfully handle even highly dynamic tracking scenarios. Wwait time is based on the round-trip time of the radar signal
Many recent studies have focused on phased-array(€.g., about Imsfor a target 100 miles away). In practice,
radar systems. For example, Kuo et al. in [6] proposed athe radar transmission is actually composed of a high fre-
reservation-based approach for real-time radar schedulduency series of pulses. Higher the number of pulses, typi-
ing. This approach allows the system to guarantee thecally higher is the tracking precision. Also, while the radar
performance requirement when the schedulability condi- may dissipate some power while receiving, this power is
tion holds. However, Kuo et al. do not consider the en- much smaller than the transmit power. For purposes of sim-
ergy constraint. Shih et al. in [13, 12] use a template-basedplicity, we assume that the receive power is negligible com-
scheduling algorithm in which a set of templates is con- pared to the transmit power.
structed offline, and tasks are fit into the templates at A radar task is periodic with a strict jitter constraint. For
run-time. The templates consider both the timing and example, for a task with period;, the start of each dwell
power constraints. They consider interleaving dwells to al- must be exactlyT; milliseconds from the start of the previ-
low beam transmissions (or receptions) on one target
to be interleaved with beam transmissions (or recep-1 In practice, if two successive dwells are not separated exactl; by

T;

Ixi twi i




ous dwell. In this paper, we make the seemingly conserva-and resource requirements. Examples of environmental di-

tive choice of using only harmonic periods for radar tasks, mensions for a tracking task include the distance to the tar-

since the harmonics satisfy the stringent periodic jitter con- get, the type of the target and its speed.

straints in a pipe-line scheduling of radar antenna and CPU  For each point in the QoS spa@g of each task, there is

(a pin-wheel scheduling problem [9]). a utility valuew; representing the benefit to tasks of operat-
Since the radar is unused during the waiting period of ing at that quality level. The QoS for a task is a function of

a dwell, a typical utilization of the radar witlv periodic the selected point in the operational spdge(also called

tasks (dwells) is given by: the set-point) and the current point in the environmental
space. The objective of the QoS optimizer is to choose a
N L R L
U — tx; + tr; 1 point in ®; for each task so as to maximize the sum of the
T T, @) utility values over all tasks. The details on the scalable op-

o=t timization algorithm for radar tracks can be found in [2].

In order_to_ appropriately track a target, t.he d\_/vell_nee_ds o |5 this paper, we will consider two primary types of
have a sufficient number of pulses (target illumination time) a5ks: tracking tasks and search tasks. For a tracking task,
with a sufficient amount of power/;) on the pulses to tra-  he tracking error is its only QoS dimension, with task util-
verse across air, illuminate the target and return back af-j jncreasing as its tracking error decreases (or, more pre-
ter reflection. Based on the received pulses, an appropriatgisely, as the reciprocal of tracking error increases). For
signal processing algorithm must be used in order t0 prop-gearch tasks, the number of beams within the angular region
erly estimatethe target range, velocity, acceleration, type, of the radar determines the quality of searching. Hence, the
etc. Since a target can maneuver to avoid being tracked, the, ,mber of beams is the QoS dimension for the search task,

estimates are valid only for the duration of the illumina- i, 4 higher number of beams yielding a higher utility. The
tion time. Based on these data, the time-instant of the neXtexpressions for tracking error and utilities are given in Ap-

dwell for the task must be determined. Therefore, the track- di

: L - pendix A.
ing task needs to be repeated periodically with a smaller pe-

riod providing better estimates. In the absence of any jit-

ter, the tracking period is equal to the temporal distance @ @ ©

between two consecutive dwells. For a large temporal dis-

tance, the estimated error can be too high such that the dwell tasks
will miss the target. On the other hand, a small temporal
distance will require higher resource utilization. Hence, the 0-a Resoure e

. . . . Alloc ator
radar needs to track the targets with higher importance with
better tracking precision than the ones with lower impor- l
tance [2]. JV

Resourc e

2'2. Radar QOS Model Admission Control/Sc heduler

In [2], we developed a Q-RAM model for the radar track- Figure 2. Q-RAM & Scheduler

ing problem. The model defines the problem in terms of a

per-task QoS spacé€)(), an operational spacé(), an envi-

ronmental spacef(;) and a shared resource spafg.(Each

of these spaces is defined by a set of dimensiQusS di- 2.3. QoS and Scheduling

mensiongepresent the aspects of tracking quality that are

of direct interest to the user such as the tracking error on a  As mentioned earlier, a given resource allocation ob-
target.Operational dimensionszpresent the aspects of the tained from Q-RAM may not result in a schedulable task
task over which the radar system has control. For exam-set. If the tasks are not schedulable, Q-RAM must reduce
ple, in the case of a radar tracking task the operational di-the resource utilization bounds in order to obtain a schedula-
mensions include the dwell period, the dwell time and the ble task set. The interaction between Q-RAM and the sched-
transmit power. While the operational dimensions affect the uler admission control is shown in Figure 2. We discuss this
tracking quality, they are not of direct interest to the user. in more detail in Section 4 for phased-array radars.
Environmental dimensionare the aspects of the task that ~ The Q-RAM optimization must be performed at regu-
we do not control, but that affect the mapping between QoSlar intervals (known as the reconfiguration rate) as a back-
ground process in a dynamic scenario where the task set is
lower tracking quality will result. If the jitter is higher than a (small)  not fixed and tasks are continuously arriving and departing
threshold, an entire track may be lost. from the system [4]. It accepts all newly arrived tasks, per-




exponential sliding window, pulses transmitted more re-
cently have a larger impact on the average power value than
less recently transmitted pulses. Also, the rate that the av-
erage power decreases is proportional to the average
power value meaning that immediately after transmit-
ting a pulse, we have a relatively high but steadily decreas-
ing cooling rate. The use of an exponentially weighted
average over a sliding window has two benefits: it is memo-
Qutput Task Setting ryless, and it closely models thermal cooling which is often
the motivation for the constraint.

In order to define the short-term average power, we
first define an instantaneous power dissipatiop(as This
function isO when the radar is not transmitting add while
Figure 3. Dynamic Q-RAM Optimization pulsei is being transmitted. We then define the average
power at time for a time constant by
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forms optimization along with the existing tasks, and pro- 1ot

duces the resource allocation settings for all of them as il- P.(t) = ,/ p(z)e@D/7dy. 3)
lustrated by Figure 3. Therefore, the scalability of Q-RAM T J—oo

operation determines how often we can optimize the sys-

tem in a dynamic environment. Figure 4(a) shows an example of the average power value

for a set of pulses along with the exponential sliding win-
dow at timety. The shaded bars represent the transmit-
ted radar energy, and the dotted line represents the slid-
In addition to timing constraints, radars also have power Ing ,W'”‘?'OW at t_|met0. The short-.te_rm average power con-
straint is considered to be satisfied if (3) never exceeds

constraints. Violating a power constraint can lead to over- bound® This bound i lled th hresh
heating and even permanent damage to the radar. A radarPme DOUNGP; mex. This bound is callec thpower thresh-

can have both long-term and short-term constraints. For ex-21d OVer alook-back periodr. Alternatively, the expression
ample, there may be a long-term constraint of operating Zth = F'rmax7 IS defined as th&nergy thresholaf the
below an average power of 1 kW, and a (less stringent) SYS®M- o

short-term constraint of operating below an exponentially Now, we define a timing parameter called ttwol-down

weighted moving average power b5 kW in any200 ms timetc; that precedes a dwell of each taskhe cool-down
window. time for a task is the time required fdr,(¢) to fall from
o _ ) P max 10 @ value just low enough that at the end of the
2.4.1. L.ong-Term Ppwer Utilization Bound_lf .PmafX is transmit phase of a dwelP () will be restored taP, ;.
the maximum sustained long-term power dissipation for a 55 shown in Figure 4(b). The cool-down time is a function
radar, then we define the long-term power utilization for a of the transmit timey, and the average powr, of a dwell,
set of V tasks to be the time constant and the short-term average power con-
straint P, ... This factor allows the power constraints to

A; tXi, ) be converted into simple timing constraints.

T We will now derive the cool—doertima;i for a task:.

That is, the long-term power is given by the fraction of \vai %Hlssstﬂme that for this taSktitﬁ ];Tm'f‘x' glset?; 0. |

time each task is transmitting, multiplied by the trans- €l [”s be the average power at the beginning of the cool-
down period,P;j, be the average power at the end of the

mit power for that task. Dividing byP,.,.. gives a utiliza- , —
tion value which cannot exceed 1. To handle long-term €00l-down period, andgyt be the average power at the
constraints in Q-RAM, we simply treat power as a re- €nd of the transmit. We waiits = Poyt = Prmax. We can

source, and denote the amount of that resource conEXPress’ip interms ofPsas

sumed by task by —*— A; %

2.4. Radar Power Constraints

1
ﬁm ax
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Up =
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Piﬂ = Pseitci/‘r, (4)
2.4.2. Short-Term Power Utilization Bound We will _ _
now derive a short-term power utilization bound. Short- @ndPoytin terms ofPj, as
term power requirements are defined in terms of an expo-
nential sliding window [1] with time constant. With an Pout= Pjpe ™™ + A;(1 — e7™%/7). (5)
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Figure 4. Transformation of Short-term Power Constraints to Time Domain

SubstitutingP, ,ax for Poyt into (5) and solving forfin, to the current average power. This implies that at the end of
we obtain; each transmit period for each successive dwell, the average
P — Au(1 — e—txi/f) powgrwill increase until it converges 1. .. T@s means
e . (6) that in the steady-stat_e, th_e average power wilPhe, ., at

e the end of the transmit period for every dwell. The schedule
We can now substitut®, ... for Ps into (4) and set the S must be optimal since moving a dwell any sooner would
forward and backward definitions (4) and (6) B}, to be resultin anincrease ift;, for that dwell and increasBgt
equal and solve fotg; to yield the expression for the cool- aboveP. ... Moving a dwell any later would trade-off the

Fin =

down time, efficient cooling immediately after the transmit when aver-
B A1 — etxilT) age power is aP, ., for less efficient cooling before the
te; = —7In X . (7 transmit resulting in a violation after the next dwell. This
Py maxe™Xi/™ shows that the schedulemust be optimal and that it must
We now present the following theorem: have a point where average power is equaPiQuax. [
Theorem 1. For any set ofN periodic radar tasks that do Based on (8), we model the short-term average power

not violate the short-term average power constraint and sat- constraint in the Q-RAM optimization framework by treat-
isfy A; > Prmax, 1 < i < N, the total short-term average ing power as a pseudo-resource with a maximum value of 1

power utilization, and treating each radar task as if it consurﬂé‘ﬁﬁ units
N of that resource, witlhc, computed using (7). Hence, we re-
Z lci + txz ®) fer to the expression in (8) as tlkeol-down utilizationU,.
P of the system.
) Itis interesting to note that if we take the limitas— co
must satisfyl/; <1. in (7), it can be shown that:
Proof. Assume that we have a set of tasks for whith= A
1. From (7), it can be shown that any decreas jn, ax will tei = (5— )txi- 9)

T max

causefc; to increase, and caugé. to exceedl. If we can
show that wher/. = 1, the optimal schedule must include If we then substitute the above into (8), we obtain
a point where the average power(t) equalsP, ,ax, then

this implies that the theorem must hold. Now, assume that
we have a schedul§ where tasks are scheduled such that
each dwell transmit periotk; is preceded by an idle time
of t¢; with the cool-down time for each dwell beginning ex- We see that this equation has the same form as the long-term
actly at the end of the previous dwell’'s transmit. Now let power utilization given in (2).

Ps be the average power at the beginning of the cool-down

period preceding a dwell transmit. It can be shown from 3. Scheduling Considerations

(4) and (5) that ifPs < P, max, then thePgy; for that

dwell must satisfyPs < Pgyt < Pumax @S shown in Fig- Our model of each radar dwell task consistd ghases:

ure 4(c) due to the fact that the cooling rate is proportional cool-down time{c), transmission timetf), waiting time

t
Ur—oo = Xl (10)

T max i=1
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Figure 5. Interleaving of radar dwells

(tw), and receiving timetf), as shown in Figure 5(a). The
durationstx andtr are non-preemptive, since a radar can
only perform a single transmission or a single reception at
a time. Howeverjc of one task can be overlapped with

or tyy of another task, since the radar can cool down dur-
ing the waiting and the receiving period.

Allowing the entire duration of a dwell (from transmis-
sion start to reception end) to be a non-preemptive job
wastes resources and decreases the schedulability of th
system [13]. Task dwells can, however, be interleaved to

dwell of the smallest size into a dwell with the smallest fea-
sible waiting time.

3.2. Improper Nesting of Dwells

Two dwells are said to be improperly nested when one
dwell only partially overlaps with another (e.qg. as illustrated
in Figure 5(c)). Suppose that tagK1 is improperly inter-
feaved with taski’’2, whereW1 starts first. Taski’1 is
called theleading taskand taski?’2 is called thetrailing

improve schedulability. Dwells can be interleaved in two task Based on the phasing illustrated in Figure 5(c), the

ways: (1) properly nested interleaving and (2) improperly
nested interleaving. An optimal construction of interleaved

necessary conditions for the interleaving to occur are given
in (13) and (14),

schedules using a branch-and-bound method has been de-

scribed in [12] and [13]. In this paper, we focus on fast and
inexpensive construction of dwell inter-leavings in the pres-
ence of dynamically changing task-sets. The inter-leavings
that we construct may not necessarily be optimal in the
sense of [13], but they will be schedulable.

3.1. Proper Nesting of Dwells

Two dwells are said to be properly nested if one dwell fits
inside the waiting timet{y) of another. Figure 5(b) demon-
strates this scheme where dw#ll, fits in the waiting time
of dwell W;. The necessary condition for this interleaving
is given by Equation (11).

thl Z (th2 + tXwQ + th2 + trw2)' (11)

We define a phase offset for a proper interleaving as
given in (12). For instance, we can schedule the cool-down
time of the dwellWW, right after the transmission time of
Wy. Thus, the value of the phase offset determines how
tightly two nested tasks fit together. Our aim is to minimize
this offset,

Op = thl - (thQ + tXwQ + thQ + trw2)' (12)

The proper nesting procedure is detailed in Algorithm 1
in Appendix B. The core of the scheme deals with fitting a

thl > th2 + tX’va (13)
thQ + tXwQ + tW1u2 > thl + trwl' (14)

We define a phase offset for this case given by
0; =ty + txwa + th2 - (thl + trwl)' (15)

Our improper nesting scheme is given in Algorithm 2
in Appendix B. It starts with the task with the largest wait-
ing time (w), and attempts to interleave it with the task with
the largest possiblgy smaller than that of the original task
based on the conditions stated in (13) and (14). The algo-
rithm repeats the process until it reaches the task with the
smallesttyy that can no longer be interleaved, or all tasks
are interleaved to form a single virtual task.

3.3. Dwell Scheduler

The responsibilities of the radar dwell scheduler are as
follows.

e Obtain period and dwell-time information

(te, tx, tw, tr) from Q-RAM for each task.

e Interleave tasks with the same period using proper
and/or improper nesting to create a fewer number of
virtual tasks.
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e Perform a non-preemptive harmonic schedulabil-
ity test for the virtual tasks.

Next, we describe our schedulability test.

3.3.1. Schedulability TestAs mentioned earlier, in order
to satisfy jitter requirements, only relatively harmonic peri-
ods are used for the dwellsWVe define the following terms:

e N; = Number of tasks with a peridfi;

e (;, = Total run-time of thej!" task under period;

e N = Total number of periods

o T >T;,Vi<j

The response timég, of the tasks for a given peridf;
is given by:

2

j=i—1

- f

j>1

-‘ Cj k

1

tR
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<
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Il

run-time of higher priority tasks

N;
> Ci
k=1
run-time of tasks with period;

+ +

B; (16)
~~
Blocking term

The blocking termB; is defined as the maximum run-time
Cy,, among tasks with lower priority, as defined in (17).

The runtime of atask is given ly;, = tc;, +tx,, +tw;, +
trj.» Where the parametets;, etc. may be virtual parame-
ters if the dwells are nested.

4. Iterative Resource Allocation

The entire resource allocation process is detailed in Fig-
ure 6 in the form of a flow-chart. The tracking and search-
ing tasks obtained from the environment are fed into
the QoS optimizerQ-RAM Q-RAM determines the re-
source settings of the tasks and attempts to maximize global
utility. The Scheduler Admission Control in-
terleaves the radar tasks as densely as possible, and then
runs the efficient schedulability test. If the task set is
not schedulable, theRadar Utilization Limit

Adjustment  function repeats the Q-RAM and schedula-
bility tests by varying the Q-RAM radar utilization bound
using a binary search. That is, if an interleaved task set is
not schedulable, the utilization bounds on the radar anten-
nas are reduced, and vice versa. This iteration is stopped
when it reaches a schedulable task-set, and the utility val-
ues obtained in two successive iterations differ only by a
small value (such a&.1%).

As already mentioned, each radar task (virtual or otherwise)®- EXperimental Results
is considered non-preemptive under the schedulability test,

and

B; = maz(C,, ), Vi <m < Np,1 <n <N,

Maximum task size among all tasks of lower priority
(17)
For a task-set to be schedulable, we must satisfy
(18)

Recall that using nesting, we combine multiple tasks into
a smaller number of virtual dwell tasks within each period.

tRi <T;,Vi € Np.

2 As we show in the next section, our model of radar system does not

show significant degradation in the accrued utility due to the restrict-
ing use of harmonic periods

This section is divided int8 parts. We first describe our
assumed radar configuration in detail. Next, we present a set
of experiments to study the impact of using only harmonic
periods in QoS optimization. We compare two different har-
monic period distributions against a wide choice of periods.
Finally, we run the entire resource allocation process as de-
scribed in Figure 6 using various interleaving schemes for
radar scheduling and compare their performances.

5.1. Experimental Configuration

We assume a radar model as pictured in Figure 1(a).
Radar tasks are classified into tracking tasks, high priority
search tasks, and low-priority search tasks. The ranges that



| Parameter | Type \ Range \
Distance All (30, 400] km
Acceleration All [0.001g, 6¢]
Noise All [kTB,,,103kT B, ®

1 (helicopter)

[60,160] km/hr

mization. We consider only tracking tasks for simplicity. We
study the impact of harmonic periods across a wide range of
system configurations. Specifically, we vary the amount of
the two primary resources in the system, namely energy lim-
its and available time. We achieve this by varying two fac-
tors:

speed 2 (fighter-jet) | [160,960] km/hr e Energy threshold (E,;,): Lowering Ey;, increases the
3 (missile) | [800, 3200] km/hr cool-down time for each quality set-point of a radar task,
Angle All [0°,360°] and therefore the increases the cool-down utilization re-
Table 1. Environmental Dimensions quirement.Ey, is _defmed_ at the end of _Sectlon 2.4.2.
° Transmission-time tracking constant
(Tx-factor ): This factor directly influences the require-
Tasks | Number of | Period (ms) = ment of trapsmsspn time. A hlghé’m—factor _ raises
beams Power (kw) | Time (ms) | the transmission time for a particular quality set-point.
Hi-Priority | [15, 60] 800 5.0 0.5 This, in turn, increases both the radar utilization as well as
TSEakf_Ch : RE R ] the cool-down utilization requirements for a given qual-
racking 1 100, 1600] | [0.001,16.0] | [0.02,50.0] | - ) ; . : ;
Co-Priority | TI0, 30] 1500 35 0ot ity of any task.Tx fa.ctor is defined in Appendix A.
Search We use the settings from Tables 1, 2 and 3, randomly

generateb12 tasks (tracks) and develop their profiles. We
also varyTx-factor from 1 to 16 in a geometric fash-
ion, andE,;, from 20.J to 670.J keeping the look-back pe-
we use for periods, dwell time, dwell power and the num- fiod 7 constant a200ms[6]. We then perform QoS opti-
ber of dwells among them are given in Table 2. mization under three distributions of available periods be-

As mentioned earlier, tracking error is assumed to be thetween the ranggl00, 1600]ms:
only QoS dimension for each tracking task, and the number o A: Arithmetic distribution in steps ol0ms (to ap-
of beams is the QoS dimension for search tasks. The track{roximate a continuous range of available periods to choose
ing error, in turn, is assumed to be a function of environ- from),
mental dimensions (target distance target speed;, tar- e G2: Geometric distribution with a common ratio ®f
get acceleration;, target noisey;) and operational dimen- (100, 200, 400, - - -),
sions (dwell periodl’;, number of pulseg; in dwell trans- e G4: Geometric distribution with a common ratio of
mit time C;, pulse widthw, dwell transmit pulse powed,;, (100, 400, 1600).
tracking filter algorithm) [2]. For a search task, each beam
corresponds to a single dwell with certain valuesigfn;
andA;.

The assumed ranges of the environmental dimensions for
targets are shown in Table 1. The ranges of various opera-
tional dimensions for all types of tasks are shown in Ta-
ble 2. We assume three types of tracking filters, namely
Kalman, a8~ and least-squares, to account for computa-
tional resources. Their estimated run-times have been ex-
trapolated to equivalent run-times of3@0M H z proces-
sor as shown in Table 3 in Appendix A. This is because the
radar computing system is assumed to be a distributed sys- 0
tem consisting of a largd £8) number of300M H =z proces-
sors. We also assume that the overhead for a search task is
assumed to be the same as that of the Kalman filter.

We use 2.0G H z Pentium IV with256 M B of memory
for all our experiments.

Table 2. Period and Power Distribution
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Figure 7. Utility with Energy & Tx-factor  (X)

Figure 7 shows the plot of utility againgt;;, at var-
ious values ofTx-factor averaged over several ran-

Our first experiment studies the effect of using only har- domly generated tasks. As expected, wigp increases,
monic periods on the total utility obtained by the QoS opti- cool-down times decrease and higher utility is accrued since

5.2. The Effect of Harmonic Periods



higher energy levels are available. Ax-factor in-

over-constrained. Under these conditions, smart schemes

creases, higher transmission times are required for achievwill be better able to exploit available resources to maxi-

ing the same tracking error, and utility accrued is lowered
since the system runs out of time.

In fact, at aTx-factor of 16 and E,;, of around
100, not all tasks are admitted into the optimizer un@&
or G4. That is, some tasks do not even reach their mini-

mize overall utility. We vary the number of tasks frdmito

256 and perform the whole iterative resource allocation pro-
cess as shown in Figure 6. The period distribution is limited
to G2 (namely 100, 200, 400, 800 and 1600) based on our
earlier experiments. The process of QoS optimization and

mum QoS operating points. These conditions represent argeneration of schedule repeats until we arrive at a schedula-

over-constraineagystem, and occur forx-factor val-
ues abovel6 and Ey;, < 100. Likewise, the system be-
comesunder-constrainedor E;;, > 500.

Utility variation with tx-factor 4

ble task-set where the radar utilization has a precision of at
least0.1%.

Cooldown-Utilization variation with tx-factor 4
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Our next experiment deals with comparing performances

Let us only consider the general case when all tasks ot arigus interleaving schemes, under the condition that the
are admitted and can get at least a minimum (non-zero)gcpedulability test must be satisfied. We use the following

amount of tracking. Under these conditions, thaximum
utility drop for G2 relative to a wide choice of periods
(represented byd) is 12.35% at an E;;, value of 170.J
and aTx-factor value of16. Similarly, the maximum
drop for G4 is 24.5% at an E, value of 270J and a
Tx-factor value of of16. The average utility drops for
G2andG4 are2.22% and6.82% respectively and the cor-
responding standard deviations &rd and 38.83 respec-
tively across the entire range ©k-factor andE,,. We
limit periods to harmonics only to satisfy jitter constraints,
and these experiments show that the choic&®&atisfies
jitter constraints with only small drops in total utility ob-
tained.

Next, we perform the iterative (binary search) process of

resource allocation for tasks and analyze the performances

of different dwell interleaving schemes.

5.3. QoS Optimization and Scheduling

In this set of experiments, we maintain &n,;, value
of 250.J[6] and aTx-factor value of4 with the aim
of keeping the system to be neither under-constrained no

different interleaving schemes:

e Proper scheme: Perform Proper nesting of tasks
alone.

e Improper scheme:Perform Improper nesting of tasks
alone.

Utilization variation with tx-factor 4
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e Improper-proper scheme: Perform Improper nesting

followed by Proper nesting_ Run-time variation with tx-factor 4
e Proper-improper scheme: Perform Proper nesting 30 \ \ \ r
followed by Improper nesting. 251 .
For each task configuration and each interleaving __ b0l |
scheme, we determine the overall utility accrued, the exe- ‘é’
cution time and the radar utilizations. We finally average 2 151 a
the results across several runs. = 101 improper Nesting
Figure 8 shows the variation of utility accrued as the 05l Improper_z;ggg m::&igg::f
number of tracking tasks increases under our interleav- Proper-Improper Nesting — — -
ing schemes. From the figure, theproper-proper 0 0 10 150 200 20 a0
scheme provides the highest utility followed in descend- Number of Tracking Tasks

ing sequence byProper-Improper , Improper
and Proper . The difference in utility between
Improper-proper and Proper is 18.11% at 256
tasks. The drop in utility from Q-RAM with no interleav-

ing to Improper-proper  is 11.17% for the same num-  and the task-set can choose profiles from a set of discrete
ber of tasks. In other words, the need to schedule the rawprofiles generated off-lirfe The plot shows that all the in-
outputs of Q-RAM (operating with only 100% utiliza- terleaving schemes have rather comparable run-times, with
tion requirements and no scheduling constraints) leads to amproper being the fastest arRroper-Improper be-
drop of 11.17%. ing the slowest. As can be seen, with about 256 tasks, dy-
Next, we plot the variation of radar cool-down utilization namic interleaving can be performed in abQu§ sec -
((8)) under these schemes in Figure 9. We again observe thajith very little optimization carried out in our code. This
thelmproper-proper  scheme provides the best utiliza- shows thereconfiguration rateof the optimizer as defined
tion (close t073.11%) andProper scheme performs the in Section 2.3 can be once ih5 seconds for 256 tasks.
worst (on averagds.64%). We also observe that the radar In other words, the radar system can re-evaluate the en-
utilization actually drops for large task sets (e.g. froR3 tire system and re-optimize eveRy seconds. In practice,
tasks ta256 tasks). This is because we admit all tasks in the the number of tasks is unlikely to exceed 100 tasks. In that
systems at their minimum QoS level before performing any case, the reconfiguration rate is increased to roughly once
optimization or allocation. This reduces the radar utilization in 0.7 seconds. In addition, our experimental results show
of the system as the tasks are non-preemptive and we admithat this can be drastically reduced to the ordet@f ms
tasks whose minimum QoS itself requires high radar utiliza- if we reduce the radar utilization precision by or more.
tion. Our conclusion that themproper-proper is the
best interleaving scheme is further substantiated in the plotg  Conclusion and Future Work
of radar utilization((1)) in Figure 10, as it gives higher uti-
lizations than the other schemes. Figure 10 also shows that We developed an integrated QoS resource management
the cool-down utilization plays a bigger role in determin- and scheduling framework, which can rapidly adapt to dy-
ing the utilization of the system than the radar utilization in namic changes in the environment. This framework relaxes
our model. the need for maximizing (or minimizing) an objective func-
Our experiments show that task-sets are best interleavedion only using strict inequalities as resource constraints.
by improper nesting followed by proper nesting. They also We accomplish this by introducing an efficient schedula-
show that improper nesting only performs more efficiently bility test on system resources, and repeating the optimiza-

Figure 11. Resource Allocation Run-time

than proper nesting only. tion a small number of times using a binary search tech-
nigue. We apply our approach to a phased-array radar sys-
5.4. Interleaving Execution Times tem, which introduces additional requirements. First, these

systems also have stringent long-term and short-term en-

Finally, we measured the execution time consumed by €79y constraints. Second, tasks in these systems must sat-
resource allocation as the number of tasks changes and plotSy zero-jitter requirements. Third, radar tasks have multi-
ted the results in Figure 11. The execution time includes theP!€ Non-preemptive phases. We transformed the energy con-
Q-RAM optimization followed by the schedulability anal- Straintinto a timing constraint py defining a concept cal!ed
ysis on4 radars. The execution times presented do not in- cool-downtime. We then restricted ourselves to choosing
clude the task profile generation time (which occurs only
once) since it does not depend on the interleaving schemé*t The analysis of discrete profile generation has been studied in [2].




only harmonic periods in order to satisfy jitter requirements,

and showed that such a restriction leads to only small drops Filter C‘?iTnpelztrﬁg)on Ki | K K Ke
in the overall utility of the system. Finally, we interleave

the phases of different radar tasks so as to minimize the | Katlman | 8'0002529 828 gi 13000(7)~10 [17 12]
time utilization. We found that “improper nesting” of tasks cast-squares 0 0004 0.80 0'2 0'0 [1’ 16]
followed by “proper nesting” yields the best results. Our aBy : : : : [1,16]

future work will involve distributed QoS optimization and
scheduling across larger-scale systems such as networked
radar systems.

Table 3. Filter Constants
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Where

o, = standard deviation in distance measurement

o, = standard deviation in speed measurement

A = wavelength of the radar signal

B., =bandwidth of the radar signal

M = bandwidth amplification factor by modulation

d = estimated displacement of the target in tifie

K = position tracking constant

K> = period tracking constant

K3 = acceleration tracking constant

K¢ = transmission time tracking constaii¢factor ).
The values of the constants are are presented in Table 3. The utility of

this tracking error is given by (24).



Ule;) = wi(1— e~ 7/) (24)

where~ is a constant to map the tracking error into a utility value and
is a weight function of the form:

Ui

K
Wi t(ri"!‘Kr

). (25)

providing an estimate of the importance of a particular target. A héerm
represents the importance based on the target type, and the right-most term

Algorithm 2 Improper Nesting Algorithm

represents the time-to-intercept (i.e., the time that would be required for a

target to reach the ship if flying directly toward it).

are shown in Table 4.

B. Algorithms for Interleaving Schemes

Algorithm 1 Proper Nesting Algorithm

Require: n > 1
ny < n {n = Number of inputted tasks;, = number of virtual
taskg

1:

2: Create a sorted list of the tasks in increasing ordet@f{(tx + tw +
tr)
3: Create a sorted list of the tasks in increasing ordepof
4: loop
5. if ny > 1then
6: Choose the task, with smallesttc + tx + tw + tr
7 Find the task, with smallest possibléy that can properly nest
Tq INItS tywy
8: if no taskr,, is foundthen
9: break from the loop
10: else
11: Fit r, insider,, by proper nesting (Figure 3) to form a single
virtual task
12: Remove the original two tasks from the sorted lists and insert
the new virtual task into them
13: Ny < Ny — 1
14: end if
15: else
16: break from the loop
17: endif
18: end loop

The utility distributions relative to the number of beams for search tasks Require: n > 1

1: ny < n {n = Number of inputted tasks;, = number of virtual

taskg
2: Create a sorted list of the tasks in increasing ordegpof
3: loop
4: if ny > 1then
5: start with a task, with biggesttyy
6: while a task is founalo
7 Find a taskr,,», with biggest possibleyy smaller than that of
Tw that can be théeading taskn improper nesting withr,,
8: if Twn is foundthen
9: compute the nesting offset ag
10: end if
11: Find a taskr,,; with biggest possibléy smaller than that of
Tw that can be thérailing taskin improper nesting withr,,,
12: if T is foundthen
13: compute the nesting offset as
14: end if
15: if bothT,,,, andr,,; are founcthen
16: if on, < 0; then
17: Merger,, andtn, by improper nesting with-,,, as the
leading task
18: else
19: Merger,, andr,,; by improper nesting with,; as the
trailing task
20: end if
21: Ny — Ny — 1
22: Remove the merged two tasks from the sorted list and insert
the new virtual task into it
23: else ifonly 7, is foundthen
24: Merger,, andry,y, by improper nesting with,, as the
leading task
25: Ny — Ny — 1
26: Remove the merged two tasks from the sorted list and insert
the new virtual task into it
27: else ifonly 7,; is foundthen
28: Merger,, andr,,; by improper nesting with,,; as the trail-
ing task
29: Ny «— Ny — 1
30: Remove the merged two tasks from the sorted list and insert
the new virtual task into it
31: else
32: Go to the task with next lowegy
33: end if
34: end while
35: else
36: break from the loop
37: endif

38: end loop




