Chapter 1
Some Mathematical Basics



Review of Simple Series

S=14+x+x°+x3+--+x"

Q: WhatisS ?
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Review of Simple Series

S=14+x+x°+x3+--+x"

(1—-x)S = 1+/+/2+¥3+...+fn

_/_/2_/3+,,,_i(n_xn+1

= 1 — xn+1
_ L n+l
S = 1 - * (assuming x # 1)
— X
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Review of Simple Series

S=14+x+x*+x3+-, where |x| < 1

Q: WhatisS?
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Review of Simple Series

S=14+x+x*+x3+--, where |x| < 1

S=1lm (1+x+x%+x3+--+x"

n—0o

1 — xn+1

= lim
11— 00 1 —x

1

(because |x| < 1)
1—x
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Review of Simple Series

S=1+4+2x+3x*+4x> + -+ nx"?

Q: Whatis S ?
(Assume x = 1)
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Review of Simple Series

S=142x+3x*+4x3+--+nx"1! (x # 1)

d
S = a(1+x+x2+x3+---+x")

d 1 _xn+1

dx( 1—x )

1-x)-(-(n+Dx™) - A —x"H) - (-1
(1 —x)?

1—(n+ Dx™ +nxnt?
(1—x)?
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Review of Simple Series

S=14+2x+3x*+4x3+ -, where |x| < 1

Q: WhatisS?
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Review of Simple Series

S=14+2x+3x*+4x3+ -, where |x| < 1

S =i(1+x+x2+x3+---)
dx

_d 1
Cdx\1—x

1
(1 —x)?
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Review of Double Integrals

y=00 rx=y
Q: Derive: f f e Ydxdy
y=0 Jx=0
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Review of Double Integrals

y=00 rx=y
Q: Derive: f f e Ydxdy
y=0 Jx=0

y=00 rx=y y=00 x=y
J f e Vdxdy = f xe‘y‘ dy

Do inner Y=o
integral B _
first ~ ye rdy
y=0
= 1 (via integration by parts)
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Review of Double Integrals

y=00 rx=y
Q: Derive: f f e Ydxdy by first reversing the order of integration

v=0 x=0
Original integration space Equivalent integration space
Y Y
A A .
I“ ‘ ‘ | It
,- X=00 ,Yy=00

— 1k ) j j e Vdydx
— x=0 YJYy=x
r » X : > X

y ranges from 0 to oo. x ranges from 0 to co.

For each particular value of vy, For each particular value of x,

we let x range from 0 to y. we let vy range from x to oo.
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Review of Double Integrals

y=00

X=y

x=0

e Ydxdy by first reversing the order of integration

y=X




Fundamental Theorem of Calculus (FTC)

Theorem 1.8: (FTC) Let f (t) be a continuous function defined on the interval [a, b].
Then, for any x, wherea < x < b,

d X
- f F(Odt = £(x)

Furthermore, for any differentiable function g(x),

g(x)

d
— fde = f(gx)) - g'(x)

dx J,



Fundamental Theorem of Calculus (FTC)

d X
- f F(Odt = £(x)

Intuition: X
Let Box(x) =j f(t)dt
a
- Box(x + A) — Box(x)
EBox(x) = kl{)r(l) n
xX+A X
_ [, f@®)dt — [ f(t)dt
= AS0 A
A
T F®ar fe0-A
= lim ~ lim
A—0 A—0 A

=f(x)

Box(x) is the area under f(t)
betweent =a andt = x.
We seek the rate

at which this area changes

for a small change in x.




Fundamental Theorem of Calculus (FTC)

g(x) g(x)

[ fwde=fl9) g Por=[ o

dxa a

A
2 Box(x) = lim Box(x + A) — Box(x) _ b ff(ﬁ )f(t)dt — fc‘lg(x)f(t)dt
dx 0  AS0 A AS0 A

g(x+A)
o Jow SO

A—0 A

. flg(x)) - (glx+A)—gx))
= |1Im

A—0 A

A) —
= f(9()) - lim = A) 92 fg)) - 9’0o




Understanding e

n—00o

-0 3 1y
e = lim (1+—>
n

Q: How should we interpret e ?

A: Suppose you have m dollars. You are promised 100% interest yearly.

Zm dollars after 1 year.

2
1 9
: : (1 + —) m=-m
» If interest is compounded every 6 mo, we have 2 4 dollars after 1 year.
3

» If interest is compounded annually, we have

1
» If interest is compounded every 4 mo, we have (1 T3) ™= 27™dollars after 1 year.

|
12

T dollars after 1 year.

17

» If interest is compounded continuously, we have( n
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Understanding e*

X n
Claim: lim (1 +—) = e”*

n—oo n

Proof:

n
leta =—-. Asn — oo, we have a — oo.

X
X

X n 1 ax 1 a
lim (1 + —) = lim (1 + —) = lim (1 + —) = et
n—oo n a— oo a a— oo a
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Review of Taylor/Maclaurin series

let0 < x < 1.

Q: Which is bigger, 1 + x or e*?
Q: Which is bigger, 1 — x ore™*?

A: Recall, we can express f(x) via its Taylor series expansion around x = O:

fx) =f(0)+ f’l(!O) x + f”z(!O) x? + f”;(!O) x3 4 .-

Y _ x x% x3 x* i}
et = +E+§+3!+4!-" e* >14+x
—> x  x2 x3 x4 —>
et =1l-—=+——5+——" e >1—x

1 20 31 4!



~ HarmonicNumber

Defn: The nth harmonic nhumber is denoted by H,,, where

Hy= 14 st sdbm oo
"7 23 4 n
' We will prove
Harmonic Number
Theorem: Inn+1) < H, <1+ In(n) this next...
Cor: _
H, = In(n) for highn
1 1

it = 1545 =



Proof of Harmonic Number Theorem

Area in blue
<
rectangles

Jmld S+ 1) € 14adadbamH
. Fx =D 273 no

Area in yellow
<
rectangles
1 1

! ! jnld In(n)
44 =H — —dx = In(n
2+3+ +Tl n < X
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Counting: Combinations versus Permutations

Suppose Baskin-Robins has n flavors of ice cream. Your cone has k < n scoops.
How many different cones can you make if each flavor can only be used once?

Q: Answer the question if the order of the flavors matters.
Q: Answer the question if the order of the flavors doesn’t matter.




Counting: Combinations versus Permutations

Suppose Baskin-Robins has n flavors of ice cream. Your cone has k < n scoops.
How many different cones can you make if each flavor can only be used once?

Q: Answer the question if the order of the flavors matters.
nn—-1)n-2)-(n—(k—-1)) =
(=D =2)+ (1= (= D) =
Q: Answer the question if the order of the flavors doesn’t matter.

ABC = ACB = BCA = BAC = CBA = CAB so divide
' #permutations
n.
(n—k)k! (Z) = "n choose k" by k!



Sums of combinations

a:Baluate: 5, = (o) + (1) +(5) + -~ + ()
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Sums of combinations

a:Baluate: 5, = (o) + (1) +(5) + -~ + ()

/TN N

All All All All
subsets subsets subsets subsets
of size 0 of size 1 of size 2 of sizen

51 = total number of subsets of n elements = 2™

\

Each element is
either “in” or “out”
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Sums of combinations

Q: Evaluate: 5, = (g) y* + (7;) xy™ 1 + (

A: This is the binomial expansion of (x + y)"

n
2

)xzyn—z 4o (
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Sums of combinations

Q: Evaluate: S; = (g) + (T)x + (g) x4 4+ -+ (n) x"

A: This is the binomial expansion of (x + 1)"
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Some useful bounds

Theorem 1.12:

() < (D)<

See book for
proof!

Theorem (Stirling):
n

\/%(E)"< n!<e\/ﬁ(§)

e



Asymptotic notation: big-O

Asymptotic notation is a way to summarize rate at which function f(n) grows with n.

4 O(g (n)) is the set of functions that grow no faster than g(n).

> 3n, v/n, lglg (n) € 0(n) _
we write
> n?, nlg(n) & 0(n) 3n = 0(n)
Defn: We say that f(n) = 0(g(n)) , pronounced as f(n) is big-O of g(n),
if there exists a constant ¢ = 0, s.t.,

oS0
1m

=C
n-o g(n)



Asymptotic notation: little-o

3 o(g(n)) is the set of functions that grow strictly slower than g(n).

> 24/n, 151glg (n) € o(n)

> g, n lglg (n), n3 & o(n) we write

vn = o(n)

Defn: We say that f(n) = o(g(n)), pronounced as f(n) is little-o of g(n), if

o )
im

=0
n-o g(n)

Cor: Wesaythat f(n) = o(1)if lim f(n) =0.
Nn—o>00



Asymptotic notation: big-Omega

d Q(g(n)) is the set of functions that grow no slower than g(n).

> g,nlg n, n3 € Q(n)

Defn: We say that f(n) = Q(g(n)), pronounced as f(n) is big-Omega of g(n), if

(A
noo g(n)

> 0




Asymptotic notation: little-omega

d a)(g(n)) is the set of functions that grow strictly faster than g(n).

7’12 3
> 7,nlgn, n° € w(n)

Defn: We say that f(n) = w(g(n)), pronounced as f(n) is little-omega of g(n), if

)
n-w g(n)




Asymptotic notation: big-Theta

d @(g(n)) is the set of functions that grow at the same rate as g(n).

> 15n, SE O(n)
> nlgn, 15yn, n* & 0(n we write
g Vn (n) In = 0(n)

Defn: We say that f(n) = ©(g(n)), pronounced as f(n) is Theta of g(n), if

f(n) =0(g(n)) and f(n) =Q(g())
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