
Chapter 1
Some Mathematical Basics
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Review of Simple Series

Q:  What is 𝑆𝑆 ?

𝑆𝑆 = 1 + 𝑥𝑥 + 𝑥𝑥2 + 𝑥𝑥3 + ⋯+ 𝑥𝑥𝑛𝑛

"Introduction to Probability for Computing", Harchol-Balter '24
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Review of Simple Series

𝑆𝑆 = 1 + 𝑥𝑥 + 𝑥𝑥2 + 𝑥𝑥3 + ⋯+ 𝑥𝑥𝑛𝑛

1 − 𝑥𝑥 𝑆𝑆

−𝑥𝑥 − 𝑥𝑥2 − 𝑥𝑥3 + ⋯− 𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛+1

=  1 − 𝑥𝑥𝑛𝑛+1

𝑆𝑆 =
1 − 𝑥𝑥𝑛𝑛+1

1 − 𝑥𝑥

=  1 + 𝑥𝑥 + 𝑥𝑥2 + 𝑥𝑥3 + ⋯+ 𝑥𝑥𝑛𝑛
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(assuming 𝑥𝑥 ≠ 1)
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Review of Simple Series

Q:  What is 𝑆𝑆 ?

𝑆𝑆 = 1 + 𝑥𝑥 + 𝑥𝑥2 + 𝑥𝑥3 + ⋯ ,  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑥𝑥 < 1
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Review of Simple Series

𝑆𝑆 = 1 + 𝑥𝑥 + 𝑥𝑥2 + 𝑥𝑥3 + ⋯ ,  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑥𝑥 < 1

𝑆𝑆 = lim
𝑛𝑛→∞

 (1 + 𝑥𝑥 + 𝑥𝑥2 + 𝑥𝑥3 + ⋯+ 𝑥𝑥𝑛𝑛)

= lim
𝑛𝑛→∞

1 − 𝑥𝑥𝑛𝑛+1

1 − 𝑥𝑥

=  
1

1 − 𝑥𝑥
(because 𝑥𝑥 < 1) 

"Introduction to Probability for Computing", Harchol-Balter '24
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Review of Simple Series

Q:  What is 𝑆𝑆 ?

𝑆𝑆 = 1 + 2𝑥𝑥 + 3𝑥𝑥2 + 4𝑥𝑥3 + ⋯+ 𝑛𝑛𝑛𝑛𝑛𝑛−1

(Assume 𝑥𝑥 ≠ 1)
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Review of Simple Series
𝑆𝑆 = 1 + 2𝑥𝑥 + 3𝑥𝑥2 + 4𝑥𝑥3 + ⋯+ 𝑛𝑛𝑛𝑛𝑛𝑛−1

𝑆𝑆 =
𝑑𝑑
𝑑𝑑𝑑𝑑

(1 + 𝑥𝑥 + 𝑥𝑥2 + 𝑥𝑥3 + ⋯+ 𝑥𝑥𝑛𝑛)

=  
1 − 𝑥𝑥 ⋅ − 𝑛𝑛 + 1 𝑥𝑥𝑛𝑛 − 1 − 𝑥𝑥𝑛𝑛+1 ⋅ (−1)

1 − 𝑥𝑥 2

=
𝑑𝑑
𝑑𝑑𝑑𝑑

1 − 𝑥𝑥𝑛𝑛+1

1 − 𝑥𝑥

=  
1 − 𝑛𝑛 + 1 𝑥𝑥𝑛𝑛 + 𝑛𝑛𝑥𝑥𝑛𝑛+1

1 − 𝑥𝑥 2

(𝑥𝑥 ≠ 1)

"Introduction to Probability for Computing", Harchol-Balter '24
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Review of Simple Series

Q:  What is 𝑆𝑆 ?

𝑆𝑆 = 1 + 2𝑥𝑥 + 3𝑥𝑥2 + 4𝑥𝑥3 + ⋯ ,  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑥𝑥 < 1
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Review of Simple Series

𝑆𝑆 = 1 + 2𝑥𝑥 + 3𝑥𝑥2 + 4𝑥𝑥3 + ⋯ ,  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑥𝑥 < 1

9

𝑆𝑆 =
𝑑𝑑
𝑑𝑑𝑑𝑑

(1 + 𝑥𝑥 + 𝑥𝑥2 + 𝑥𝑥3 + ⋯ )

=
𝑑𝑑
𝑑𝑑𝑑𝑑

1
1 − 𝑥𝑥

=  
1

1 − 𝑥𝑥 2

"Introduction to Probability for Computing", Harchol-Balter '24
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Review of Double Integrals

Q:  Derive:  �
𝑦𝑦=0

𝑦𝑦=∞
�
𝑥𝑥=0

𝑥𝑥=𝑦𝑦
𝑒𝑒−𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

"Introduction to Probability for Computing", Harchol-Balter '24
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Review of Double Integrals

Q:  Derive:  

�
𝑦𝑦=0

𝑦𝑦=∞
�
𝑥𝑥=0

𝑥𝑥=𝑦𝑦
𝑒𝑒−𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

�
𝑦𝑦=0

𝑦𝑦=∞
�
𝑥𝑥=0

𝑥𝑥=𝑦𝑦
𝑒𝑒−𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

=  �
𝑦𝑦=0

𝑦𝑦=∞
�𝑥𝑥𝑒𝑒−𝑦𝑦
𝑥𝑥=0

𝑥𝑥=𝑦𝑦
𝑑𝑑𝑑𝑑

 
Do inner 
integral

first =  �
𝑦𝑦=0

𝑦𝑦=∞
𝑦𝑦𝑒𝑒−𝑦𝑦𝑑𝑑𝑑𝑑

 

=  1 (via integration by parts)  

"Introduction to Probability for Computing", Harchol-Balter '24
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Review of Double Integrals

Q:  Derive:  �
𝑦𝑦=0

𝑦𝑦=∞
�
𝑥𝑥=0

𝑥𝑥=𝑦𝑦
𝑒𝑒−𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 by first reversing the order of integration

Original integration space

𝑦𝑦 ranges from 0 to ∞.
For each particular value of 𝑦𝑦, 
we let 𝑥𝑥 range from 0 to 𝑦𝑦. 

Equivalent integration space

𝑥𝑥 ranges from 0 to ∞.
For each particular value of 𝑥𝑥, 
we let 𝑦𝑦 range from 𝑥𝑥 to ∞. 

�
𝑥𝑥=0

𝑥𝑥=∞
�
𝑦𝑦=𝑥𝑥

𝑦𝑦=∞
𝑒𝑒−𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

"Introduction to Probability for Computing", Harchol-Balter '24
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Review of Double Integrals

Q:  Derive:  �
𝑦𝑦=0

𝑦𝑦=∞
�
𝑥𝑥=0

𝑥𝑥=𝑦𝑦
𝑒𝑒−𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 by first reversing the order of integration

�
𝑥𝑥=0

𝑥𝑥=∞
�
𝑦𝑦=𝑥𝑥

𝑦𝑦=∞
𝑒𝑒−𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  �

𝑥𝑥=0

𝑥𝑥=∞
�−𝑒𝑒−𝑦𝑦
𝑦𝑦=𝑥𝑥

𝑦𝑦=∞
𝑑𝑑𝑑𝑑

 

=  �
𝑥𝑥=0

𝑥𝑥=∞
0 + 𝑒𝑒−𝑥𝑥 𝑑𝑑𝑑𝑑

 

�= −𝑒𝑒−𝑥𝑥
𝑥𝑥=0

𝑥𝑥=∞

"Introduction to Probability for Computing", Harchol-Balter '24

=  1 
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Fundamental Theorem of Calculus (FTC)

Theorem 1.8:  (FTC) Let 𝑓𝑓(𝑡𝑡) be a continuous function defined on the interval [𝑎𝑎, 𝑏𝑏]. 
Then, for any 𝑥𝑥, where 𝑎𝑎 < 𝑥𝑥 < 𝑏𝑏,

𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑎𝑎

𝑥𝑥
𝑓𝑓 𝑡𝑡 𝑑𝑑𝑑𝑑 = 𝑓𝑓(𝑥𝑥)

Furthermore, for any differentiable function 𝑔𝑔 𝑥𝑥 , 

𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑎𝑎

𝑔𝑔(𝑥𝑥)
𝑓𝑓 𝑡𝑡 𝑑𝑑𝑑𝑑 = 𝑓𝑓 𝑔𝑔 𝑥𝑥 ⋅ 𝑔𝑔𝑔(𝑥𝑥)

"Introduction to Probability for Computing", Harchol-Balter '24
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Fundamental Theorem of Calculus (FTC)
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑎𝑎

𝑥𝑥
𝑓𝑓 𝑡𝑡 𝑑𝑑𝑑𝑑 = 𝑓𝑓(𝑥𝑥)

Intuition:
𝐵𝐵𝐵𝐵𝐵𝐵 𝑥𝑥 = �

𝑎𝑎

𝑥𝑥
𝑓𝑓 𝑡𝑡 𝑑𝑑𝑑𝑑

𝑑𝑑
𝑑𝑑𝑑𝑑

𝐵𝐵𝐵𝐵𝐵𝐵 𝑥𝑥 = lim
Δ→0

𝐵𝐵𝐵𝐵𝐵𝐵 𝑥𝑥 + Δ − 𝐵𝐵𝐵𝐵𝐵𝐵(𝑥𝑥)
Δ

𝐵𝐵𝐵𝐵𝐵𝐵 𝑥𝑥  is the area under 𝑓𝑓 𝑡𝑡  
between 𝑡𝑡 = 𝑎𝑎 and 𝑡𝑡 = 𝑥𝑥 .   
We seek the rate 
at which this area changes 
for a small change in 𝑥𝑥.

= lim
Δ→0

∫𝑎𝑎
𝑥𝑥+Δ 𝑓𝑓 𝑡𝑡 𝑑𝑑𝑑𝑑 − ∫𝑎𝑎

𝑥𝑥 𝑓𝑓 𝑡𝑡 𝑑𝑑𝑑𝑑
Δ

= lim
Δ→0

∫𝑥𝑥
𝑥𝑥+Δ 𝑓𝑓 𝑡𝑡 𝑑𝑑𝑑𝑑

Δ
≈ lim

Δ→0

𝑓𝑓 𝑥𝑥 ⋅ Δ
Δ

Since
 𝑓𝑓 𝑥𝑥 ≈ 𝑓𝑓(𝑥𝑥 + Δ)

= 𝑓𝑓(𝑥𝑥)

"Introduction to Probability for Computing", Harchol-Balter '24

Let



16

Fundamental Theorem of Calculus (FTC)
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑎𝑎

𝑔𝑔(𝑥𝑥)
𝑓𝑓 𝑡𝑡 𝑑𝑑𝑑𝑑 = 𝑓𝑓 𝑔𝑔 𝑥𝑥 ⋅ 𝑔𝑔𝑔(𝑥𝑥) 𝐵𝐵𝐵𝐵𝐵𝐵 𝑥𝑥 = �

𝑎𝑎

𝑔𝑔(𝑥𝑥)
𝑓𝑓 𝑡𝑡 𝑑𝑑𝑑𝑑

𝑑𝑑
𝑑𝑑𝑑𝑑

𝐵𝐵𝐵𝐵𝐵𝐵 𝑥𝑥 = lim
Δ→0

𝐵𝐵𝐵𝐵𝐵𝐵 𝑥𝑥 + Δ − 𝐵𝐵𝐵𝐵𝐵𝐵(𝑥𝑥)
Δ

= lim
Δ→0

∫𝑎𝑎
𝑔𝑔(𝑥𝑥+Δ)𝑓𝑓 𝑡𝑡 𝑑𝑑𝑑𝑑 − ∫𝑎𝑎

𝑔𝑔(𝑥𝑥)𝑓𝑓 𝑡𝑡 𝑑𝑑𝑑𝑑
Δ

= lim
Δ→0

∫𝑔𝑔(𝑥𝑥)
𝑔𝑔(𝑥𝑥+Δ) 𝑓𝑓 𝑡𝑡 𝑑𝑑𝑑𝑑

Δ

= 𝑓𝑓 𝑔𝑔 𝑥𝑥 ⋅ lim
Δ→0

 g 𝑥𝑥 + Δ − 𝑔𝑔 𝑥𝑥
Δ

≈ lim
Δ→0

𝑓𝑓 𝑔𝑔(𝑥𝑥) ⋅ (g 𝑥𝑥 + Δ − 𝑔𝑔 𝑥𝑥 )
Δ

= 𝑓𝑓 𝑔𝑔 𝑥𝑥 ⋅ 𝑔𝑔𝑔(𝑥𝑥)

"Introduction to Probability for Computing", Harchol-Balter '24
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Understanding 𝑒𝑒

𝑒𝑒 ≡ lim
𝑛𝑛→∞

1 +
1
𝑛𝑛

𝑛𝑛𝑒𝑒 ≈ 2.7183

Q:  How should we interpret 𝑒𝑒 ?

A:  Suppose you have 𝑚𝑚 dollars.  You are promised 100% interest yearly.

 If interest is compounded annually, we have _______________  dollars after 1 year.

 If interest is compounded every 6 mo, we have _______________ dollars after 1 year.

 If interest is compounded every 4 mo, we have _______________ dollars after 1 year.

 If interest is compounded continuously, we have _______________ dollars after 1 year.
"Introduction to Probability for Computing", Harchol-Balter '24

2𝑚𝑚

1 +
1
2

2

𝑚𝑚 =
9
4
𝑚𝑚

1 +
1
3

3

𝑚𝑚 =
64
27

𝑚𝑚

1 +
1
𝑛𝑛

𝑛𝑛

𝑚𝑚 → 𝑒𝑒 ⋅ 𝑚𝑚
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Understanding 𝑒𝑒𝑥𝑥

lim
𝑛𝑛→∞

1 +
𝑥𝑥
𝑛𝑛

𝑛𝑛
= 𝑒𝑒𝑥𝑥Claim:

Proof:

Let 𝑎𝑎 = 𝑛𝑛
𝑥𝑥

.   

lim
𝑛𝑛→∞

1 +
𝑥𝑥
𝑛𝑛

𝑛𝑛
= lim

𝑎𝑎→∞
1 +

1
𝑎𝑎

𝑎𝑎
𝑥𝑥

= 𝑒𝑒𝑥𝑥

As 𝑛𝑛 → ∞, we have 𝑎𝑎 → ∞.     

= lim
𝑎𝑎→∞

1 +
1
𝑎𝑎

𝑎𝑎𝑎𝑎

"Introduction to Probability for Computing", Harchol-Balter '24
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Review of Taylor/Maclaurin series

Q:  Which is bigger, 1 + 𝑥𝑥  or 𝑒𝑒𝑥𝑥? 

Let 0 < 𝑥𝑥 < 1.

𝑓𝑓 𝑥𝑥 = 𝑓𝑓 0 +
𝑓𝑓𝑓(0)

1!
𝑥𝑥 +

𝑓𝑓𝑓𝑓(0)
2!

𝑥𝑥2 +
𝑓𝑓𝑓𝑓𝑓(0)

3!
𝑥𝑥3 + ⋯

Q:  Which is bigger, 1 − 𝑥𝑥  or 𝑒𝑒−𝑥𝑥? 

A:  Recall, we can express 𝑓𝑓 𝑥𝑥  via its Taylor series expansion around 𝑥𝑥 = 0:

e𝑥𝑥 = 1 +
𝑥𝑥
1!

+
𝑥𝑥2

2!
+
𝑥𝑥3

3!
+
𝑥𝑥4

4!
⋯

e−𝑥𝑥 = 1 −
𝑥𝑥
1!

+
𝑥𝑥2

2!
−
𝑥𝑥3

3!
+
𝑥𝑥4

4!
−⋯

e𝑥𝑥 > 1 + 𝑥𝑥

e−𝑥𝑥 > 1 − 𝑥𝑥

"Introduction to Probability for Computing", Harchol-Balter '24
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Harmonic Number
Defn:  The 𝒏𝒏th harmonic number is denoted by 𝐻𝐻𝑛𝑛, where

𝐻𝐻𝑛𝑛 = 1 +
1
2

+
1
3

+
1
4

+ ⋯+
1
𝑛𝑛

Harmonic Number 
Theorem: ln 𝑛𝑛 + 1 < 𝐻𝐻𝑛𝑛 < 1 + ln(𝑛𝑛)

Cor: 𝐻𝐻𝑛𝑛 ≈ ln 𝑛𝑛 for high 𝑛𝑛

lim
𝑛𝑛→∞

𝐻𝐻𝑛𝑛 = 1 +
1
2

+
1
3

+ ⋯ = ∞

We will prove 
this next…

"Introduction to Probability for Computing", Harchol-Balter '24
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Proof of Harmonic Number Theorem

�
1

𝑛𝑛+1 1
𝑥𝑥
𝑑𝑑𝑑𝑑 = ln(𝑛𝑛 + 1)

Area under
red curve

Area in blue
rectangles <

Area under red curve
up to yellow end

Area in yellow
rectangles <

1 +
1
2

+
1
3

+ ⋯+
1
𝑛𝑛

= 𝐻𝐻𝑛𝑛<

�
1

𝑛𝑛 1
𝑥𝑥
𝑑𝑑𝑑𝑑 = ln(𝑛𝑛)<

1
2

+
1
3

+ ⋯+
1
𝑛𝑛

= 𝐻𝐻𝑛𝑛 − 1

"Introduction to Probability for Computing", Harchol-Balter '24
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Counting:  Combinations versus Permutations

Suppose Baskin-Robins has 𝑛𝑛 flavors of ice cream.   Your cone has 𝑘𝑘 < 𝑛𝑛  scoops.
How many different cones can you make if each flavor can only be used once?

Q: Answer the question if the order of the flavors matters.

Q: Answer the question if the order of the flavors doesn’t matter.

Permutations

Combinations

"Introduction to Probability for Computing", Harchol-Balter '24
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Counting:  Combinations versus Permutations

Suppose Baskin-Robins has 𝑛𝑛 flavors of ice cream.   Your cone has 𝑘𝑘 < 𝑛𝑛  scoops.
How many different cones can you make if each flavor can only be used once?

Q: Answer the question if the order of the flavors matters.

Q: Answer the question if the order of the flavors doesn’t matter.

Permutations

Combinations
𝑛𝑛 𝑛𝑛 − 1 𝑛𝑛 − 2 ⋯ 𝑛𝑛 − 𝑘𝑘 − 1 =

𝑛𝑛!
𝑛𝑛 − 𝑘𝑘 !

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶

𝑛𝑛!
𝑛𝑛 − 𝑘𝑘 !𝑘𝑘!

= 𝑛𝑛
𝑘𝑘 = "𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘𝑘

so divide 
#permutations 

by 𝑘𝑘! 

"Introduction to Probability for Computing", Harchol-Balter '24



Q: Evaluate:  𝑆𝑆1 = 𝑛𝑛
0  + 𝑛𝑛

1  + 𝑛𝑛
2  +  ⋯  + 𝑛𝑛

𝑛𝑛

24

Sums of combinations

"Introduction to Probability for Computing", Harchol-Balter '24
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Sums of combinations

Each element is
either “in” or “out”

Q: Evaluate:  𝑆𝑆1 = 𝑛𝑛
0  + 𝑛𝑛

1  + 𝑛𝑛
2  +  ⋯  + 𝑛𝑛

𝑛𝑛

𝑆𝑆1 = total number of subsets of 𝑛𝑛 elements = 2𝑛𝑛

All
subsets
of size 0

All
subsets
of size 1

All
subsets
of size 2

All
subsets
of size 𝑛𝑛 

"Introduction to Probability for Computing", Harchol-Balter '24
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Sums of combinations

Q: Evaluate:  𝑆𝑆2 = 𝑛𝑛
0 𝑦𝑦𝑛𝑛  + 𝑛𝑛

1 𝑥𝑥𝑦𝑦𝑛𝑛−1  + 𝑛𝑛
2 𝑥𝑥2𝑦𝑦𝑛𝑛−2  +  ⋯  + 𝑛𝑛

𝑛𝑛  𝑥𝑥𝑛𝑛

A: This is the binomial expansion of 𝑥𝑥 + 𝑦𝑦 𝑛𝑛

"Introduction to Probability for Computing", Harchol-Balter '24
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Sums of combinations

Q: Evaluate:  𝑆𝑆3 = 𝑛𝑛
0 + 𝑛𝑛

1 𝑥𝑥 + 𝑛𝑛
2 𝑥𝑥2  +  ⋯  + 𝑛𝑛

𝑛𝑛  𝑥𝑥𝑛𝑛

A: This is the binomial expansion of 𝑥𝑥 + 1 𝑛𝑛

"Introduction to Probability for Computing", Harchol-Balter '24



𝑛𝑛
𝑘𝑘

𝑘𝑘
< 𝑛𝑛

𝑘𝑘 < 𝑛𝑛𝑒𝑒
𝑘𝑘

𝑘𝑘
Theorem 1.12:

28

Some useful bounds

2𝜋𝜋𝜋𝜋 𝑛𝑛
𝑒𝑒

𝑛𝑛
< 𝑛𝑛! < 𝑒𝑒 𝑛𝑛 𝑛𝑛

𝑒𝑒

𝑛𝑛
Theorem (Stirling):

"Introduction to Probability for Computing", Harchol-Balter '24

See book for 
proof!
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Asymptotic notation: big-O

lim
𝑛𝑛→∞

𝑓𝑓(𝑛𝑛)
𝑔𝑔(𝑛𝑛) 

= 𝑐𝑐

Asymptotic notation is a way to summarize  rate at which function 𝑓𝑓 𝑛𝑛  grows with 𝑛𝑛.

 𝑂𝑂 𝑔𝑔 𝑛𝑛  is the set of functions that grow no faster than 𝑔𝑔(𝑛𝑛).

 3𝑛𝑛, 𝑛𝑛,  lg lg 𝑛𝑛 ∈ 𝑂𝑂 𝑛𝑛

 𝑛𝑛2, 𝑛𝑛 lg 𝑛𝑛  ∉ 𝑂𝑂 𝑛𝑛
we write 
3𝑛𝑛 = 𝑂𝑂 𝑛𝑛  

Defn:  We say that 𝑓𝑓 𝑛𝑛 = 𝑂𝑂(𝑔𝑔 𝑛𝑛 ) , pronounced as 𝑓𝑓 𝑛𝑛  is big-O of 𝑔𝑔 𝑛𝑛 , 
if there exists a constant 𝑐𝑐 ≥ 0, s.t., 

"Introduction to Probability for Computing", Harchol-Balter '24
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Asymptotic notation: little-o

 𝑜𝑜 𝑔𝑔 𝑛𝑛  is the set of functions that grow strictly slower than 𝑔𝑔(𝑛𝑛).

 2 𝑛𝑛,  15 lg lg 𝑛𝑛 ∈ 𝑜𝑜 𝑛𝑛


𝑛𝑛
2

, 𝑛𝑛  lg lg 𝑛𝑛 , 𝑛𝑛3 ∉ 𝑜𝑜 𝑛𝑛 we write 
𝑛𝑛 = 𝑜𝑜 𝑛𝑛  

lim
𝑛𝑛→∞

𝑓𝑓(𝑛𝑛)
𝑔𝑔(𝑛𝑛) 

= 0

Defn:  We say that 𝑓𝑓 𝑛𝑛 = 𝑜𝑜(𝑔𝑔 𝑛𝑛 ) , pronounced as 𝑓𝑓 𝑛𝑛  is little-o of 𝑔𝑔 𝑛𝑛 ,  if

Cor:  We say that 𝑓𝑓 𝑛𝑛 = 𝑜𝑜(1) if lim
𝑛𝑛→∞

 𝑓𝑓(𝑛𝑛) = 0.

"Introduction to Probability for Computing", Harchol-Balter '24
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Asymptotic notation: big-Omega

 Ω 𝑔𝑔 𝑛𝑛  is the set of functions that grow no slower than 𝑔𝑔(𝑛𝑛).


𝑛𝑛
2

,𝑛𝑛𝑛𝑛 𝑛𝑛, 𝑛𝑛3 ∈ Ω 𝑛𝑛

 𝑛𝑛, 15  lg lg 𝑛𝑛 , 25 ∉ Ω 𝑛𝑛 we write 
𝑛𝑛2 = Ω 𝑛𝑛  

lim
𝑛𝑛→∞

𝑓𝑓(𝑛𝑛)
𝑔𝑔(𝑛𝑛) 

> 0

Defn:  We say that 𝑓𝑓 𝑛𝑛 = Ω(𝑔𝑔 𝑛𝑛 ) , pronounced as 𝑓𝑓 𝑛𝑛  is big-Omega of 𝑔𝑔 𝑛𝑛 ,  if

"Introduction to Probability for Computing", Harchol-Balter '24
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Asymptotic notation: little-omega

 𝜔𝜔 𝑔𝑔 𝑛𝑛  is the set of functions that grow strictly faster than 𝑔𝑔(𝑛𝑛).


𝑛𝑛2

2
,𝑛𝑛𝑛𝑛 𝑛𝑛, 𝑛𝑛3 ∈ 𝜔𝜔 𝑛𝑛

 𝑛𝑛, 15 𝑛𝑛,  25𝑛𝑛 ∉ 𝜔𝜔 𝑛𝑛 we write 
𝑛𝑛2 = 𝜔𝜔 𝑛𝑛  

lim
𝑛𝑛→∞

𝑓𝑓(𝑛𝑛)
𝑔𝑔(𝑛𝑛) 

= ∞

Defn:  We say that 𝑓𝑓 𝑛𝑛 = 𝜔𝜔(𝑔𝑔 𝑛𝑛 ) , pronounced as 𝑓𝑓 𝑛𝑛  is little-omega of 𝑔𝑔 𝑛𝑛 ,  if

"Introduction to Probability for Computing", Harchol-Balter '24
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Asymptotic notation: big-Theta

 Θ 𝑔𝑔 𝑛𝑛  is the set of functions that grow at the same rate as 𝑔𝑔(𝑛𝑛).

 15𝑛𝑛, 𝑛𝑛
2
∈ Θ 𝑛𝑛

 𝑛𝑛𝑛𝑛 𝑛𝑛, 15 𝑛𝑛,  𝑛𝑛2 ∉ Θ 𝑛𝑛 we write 
2𝑛𝑛 = Θ 𝑛𝑛  

𝑓𝑓 𝑛𝑛 = 𝑂𝑂 𝑔𝑔 𝑛𝑛  and 𝑓𝑓 𝑛𝑛 = Ω(𝑔𝑔 𝑛𝑛 )

Defn:  We say that 𝑓𝑓 𝑛𝑛 = Θ(𝑔𝑔 𝑛𝑛 ) , pronounced as 𝑓𝑓 𝑛𝑛  is Theta of 𝑔𝑔 𝑛𝑛 ,  if

"Introduction to Probability for Computing", Harchol-Balter '24
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