Chapter 11

Laplace Transforms



There are different types of transforms

Back in Chapter 6 we covered a type of generating function called the z-transform.

The z-transform is particularly well suited to discrete, integer-valued random
variables.

In this chapter we introduce a new generating function called the Laplace transform,
which is well suited to common continuous random variables.

The structure of this chapter will closely mimic that of Chapter 6.



Motivation

Let X ~ Exp(A)

What is E[X3]?

co

E[X3] =f t3 . e Mdt
0

Seems complicated to evaluate!

The Laplace transform will make this very easy!
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The Laplace transform as an onion

Onion represents Laplace transform of r.v. X

Lower moments are in the outer layers = less effort/tears
Higher moments are deeper inside = more effort/tears
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Laplace transform of continuous r.v.

Defn: Let X be a non-negative continuous r.v. with p.d.f. fx(t).
Then the Laplace transform of X is

co

X(s) = E[e™5X] = f e St (t)dt

0

Assume s is a constant where s = 0.

Note: The Laplace transform can be defined for any r.v., or even for just a function f(t),
where t = 0. However convergence is only guaranteed when X is a non-negative r.v. and
s = 0.




Pop Quiz

Defn: Let X be a non-negative continuous r.v. with p.d.f. fx(t).
Then the Laplace transform of X is

co

%(s) = E[e~¥] = f ¢S £ (£)dt

0

Assume s is a constant where s = 0.

Q: What is X(0)?

A: X(0) = E[e %%] =1



Example of Onion Building

X ~ Exp(A)

Create the onion!
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E[X]
E[X?]
E[X°]
——E [X']

X(s) = E[e5¥]

= f ooe‘st fy(®)dt
0



Example of Onion Building

X=3

. E[x]
Create the onion! ‘ _EY
——E[Xx']

X(s) = E[e™5%] X(s) = Efe™]

=E[€_3S] Zfo B_Sth(t)dt

_ B8
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Example of Onion Building

X ~ Uniform(a,b), wherea,b = 0

Create the onion!

'b—a
1 1
— . —sa —Sb
b—a s (e ¢ )
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E[X]
E[X?]
E[X°]
——E [X']

X(s) = E[e5¥]

= f ooe‘st fy(®)dt
0



Convergence of Laplace transform

Theorem 11.7: X(s) is bounded for any non-negative continuous r.v. X, assuming s > 0.

Proof: et <1, VvVt >0
= (e71)< 1 Vs >0
= e S< 1, Vt,s =0

00) 00)

e St i, ()dt < f 1-f(t)dt =1

0

:>)?(S)=f

0




Getting moments: Onion peeling

Theorem 11.8: (Onion Peeling) Let X be a non—-negative, continuous r.v.
with p.d.f. fx(t), t = 0.Then,

X'(s)|,_, = —E[X]

X'(s)| _, = E[X?]
X"(s)|._, = —E[X°]
XIIII(S) ) — E[X4]

If can’t evaluate at s = 0, instead consider limitas s = 0 (use L'Hospital’s Rule).



Proof of onion peeling theorem

(st)* (st)®>  (st)*
TR TR TR

e St =1—(st) +

(Taylor Series Expansion)

2 3 4
e f(6) =f(t)—(st)f(t)+(52t!) f(t)—(sgt!) f(t)+(S:!) f@) =
00 00 o0 o 5 . .
jo e St f(t)dt =JO f(t)dt—jo (St)f(t)dt_l_jo (Sztl) f(t)dt—jo (S;) (et +
2 3 4 5

X(s)=1—sE[X]+ %E[XZ] — %E[X3] + %E[X‘*] — %E[X5] + -



Proof of onion peeling theorem

. s? N gy SE o SP o S° ’
£(s) = 1 —sE[X] + 2'E[x | =5 EIX°] + - EIX*] — o EIXS] + — E[X°] -~
_ s? s3 st s>
X'(s) = — E[X] + sE[X?] —EE[XB] +§E[X4] —EE[XS] +§E[X6]
X'(0) = — E[X] \/
§2 §3 o4
X" (s) = E[X?] —sE[X3] + Z'E[X4] —;E[XS] b 1 — E[X°] -
X"(0) = E[X?] \/
s? s3
X”’(S) _ [XS] + SE[X4] E[XS] + _E[X6]

2! 3!
X"(0) = [X3]\/ .
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Example of onion peeling

X ~ Exp(1) X(s) = A_)Il_ =AA+s)™*

Q: Peel the onion to get E[X], E[X?], E[X?], E[X*],...

X'(s) = (A +5)2 — E[X] = %

. 2

X"(s) =22(1 +s)73 = E[X?] = =

X"(s)= =312+ s)7 = E[X7] =%
= E[X*] = %
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Linearity of Transforms

Theorem 11.10: (Linearity) Let X and Y be independent continuous r.v.s.
Let

Z=X+Y
Then the Laplace transform of Z is:

Z(s)=X(s)-Y(s)
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E[e_SZ] — E[e—S(X+Y)]
— E[e‘SX . e—SY]

[e~5¥] - Ee™"]



Conditioning with Transforms

Theorem 11.11: Let X, A, and B be continuous r.v.s. where

14 w.p. D
X_{B w.p. 1—p

Then,

X(s)=p-A(s) + (1 —p)-B(s)
Proof: X(S) = E[e™]
=E[le™SX|X =A] -p+ E[e”S*|X = B]- (1 — p)
=E[e 4] -p+ E[e™B]- (1 —p)

=p-A(s) + (1 —p) - B(s)



Conditioning

Theorem 11.12:

Let Y be a continuous r.v. and let Xy be a continuous r.v. that dependes on'Y.

Let fy (y) denote the p.d.f. of Y.
Then:

xa@=j_z@yﬁWMy

y=0

E[e™*|Y = y] - fy(y)dy
y=OO
= [ Bl fray

=j 5,() - fr(dy
y=0
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