Chapter 12
The Poisson Process



Where we’re heading ...

Goal of the next 3 chapters:

How to model and simulate computer systems

Chapter 12: The Poisson Process —how to model an arrival process

(jobs arriving to a data center, requests arriving to a web server, etc.)

Chapter 13: Generating r.v.s for simulation — methods for generating instances
of different distributions

Chapter 14: Event-driven simulation — simulating systems with queues and
networks of queues

"Introduction to Probability for Computing", Harchol-Balter '24 2



Chapter 12 outline

The Poisson process is intimately related to the Exponential distribution.
Before discussing the Poisson process, we must revisit the Exponential.

STEP 1: Revisiting the Exponential distribution

 Relating the Exponential distribution to the Geometric

[ More properties of the Exponential distribution

STEP 2: The celebrated Poisson Process

L First definition vs. Second definition

 Properties of the Poisson Process
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Review of the Exponential distribution

D.efn: A r.\i.lis E?(ponentially dis;rib.;lted 1) The p.d.f. and tail
with rate A, written X ~ Exp(4), i N Sith clre o By &

— F R . S
e if x>0 5 cgr;stantc factor,
e **, with each

fx(x) = —= 0 £ 2 < 0 Jehro ------- -+ unit increase in x.

Fy(x) = fx frdt=1—e* if x>0

Fx(x) =e ™ if x>0




Review of the Exponential distribution

X ~ Exp(A)
1 1 , Var(X)
E[X] = Z Var(X) = e Cx = EIX]Z 1

d Memoryless Property
PIX>s+t| X>s}= P{X>t} (Failure

rate

(J Constant Failure Rate

P{Xe(t,t+6)| X>t}= B0 _ s

Fx(t)
Constant
indpt of t




Relating Exponential distribution to Geometric

The Exponential and Geometric are the only memoryless distributions. How are they related?

Geometric(p) is the Exp(A) is the
number of flips time until
until see first head. success.

How to
relate

these? )
Range is 0 to co.

f f

discrete continuous



Relating Exponential distribution to Geometric

Flip coin every 6—step, where § — 0.

e

g Coin has very small probability, A6, of heads.
| >
0
Y ~ Geom(p = A8) Y* = time associated
where flip every §—step with Y.
| |

discrete continuous
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Relating Exponential distribution to Geometric

0 5 25 36 "
_
Timeis Y™
Claim: Y* ~ Exp(4)
Y ~ Geom(p = A6) Y* = time associated
where flip every §—step With\ Y.
!

discrete continuous
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Relating Exponential distribution to Geometric

Claim: Y* ~ Exp(4)

; >
0
S
TimeisY”
Q: Does E[Y "] check out?
E|Y*] = (avg.# flips until H) - (time per flip)
1
= = (6)
_ 1
= - 9
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Relating Exponential distribution to Geometric

Claim: Y* ~ Exp(4)

| >
0
L
TimeisY™
Q: Whatis P{Y" > t}?
t
t t 1\é
P{Y" >t} = P{> 5 failures} =(1—-15)5 = (1 _T)
A5
1 %/‘l t
— (1 _T> — (e—l)ﬂt — e—/lt
1S
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Relating Exponential distribution to Geometric

Claim: Y* ~ Exp(4)

Timeis Y™

SOP{Y*>t}=eM mp Y*~Exp(l)

Theorem 12.1: Let X ~ Exp(A). Then X represents the time to get a H,
given we flip every d-step, and a flip is successful with probability A6, where 6 — 0.
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A new view of asymptotic notation

Rather than
n — oo

we have
6 —>0

Q: Which of these are 0(6)?

f=26°
. f =62
f=6V6
. =6

o 0 T o

A: (a), (b), (c)



Properties of Exponential

Theorem 12.3: Given Xy ~ Exp(41), X, ~ Exp(A,), X1 L X,,

M

P{X1<X2}=/11+/12

Pf. (traditional algebraic proof)

P{X; < X,}= fooo P{X; <X, | X; =x}- fx, (x)dx

0o _ f
= [} P01 < Xy | Xy = 2} Dpe~%ax
@)
O ° Al

P = fooo P{X; < x} e *2¥dx = fooo(l — e M%) . Qe M2 Xdx = 1+ 4,




Properties of Exponential

Theorem 12.3: Given X; ~ Exp(41), X, ~ Exp(4,), X; 1 X,

M

A+ A

P{X, <X} =

Pf: (0-step proof)

[ Success of type 1 occurs with probability 4,6 on each §-step.
] Success of type 2 occurs with probability 4,6 on each §-step.

Q: Whatis P{X; < X,} saying?

A: Given that a success of type 1 or type 2 has occurred,
what is the probability that it is a success of type 17?



Properties of Exponential

Theorem 12.3: Given X; ~ Exp(41), X, ~ Exp(4,), X; 1 X,

A
P{X; < X,} = -

A+ A,
Pf: (S-st f) = 410
+ 1075ER PIOO /' ~ 468 + 226 — 0(8)
P{Xl < XZ} — P{type 1 | type 1or type 2} What happens
/11 to this
_ P{type 1} = NG as & — 0
P{type 1 or 2} @ A+ A, = 5
1 5 call this product?
— 1 / A
116 + 1,6 — (1,6)(1,6) > as 6§ > 0

A+ A,



Properties of Exponential

Theorem 12.5: Given X; ~ Exp(4,), Xo~ Exp(4,), X; L X,.

Let X = min(X{,X,). ThenX ~ Exp(4; + 1,).

Pf. (traditional algebraic proof)

P{X >t} = P{min(X{,X,) > t}

= P{X; >t and X, >t}

Co. = P{X; >t} P{X, >t}

— e Mt . p~hat — p=(A11+12) ) X ~ Exp(A; + 1,).



Properties of Exponential

Theorem 12.5: Given X; ~ Exp(4,), Xo~ Exp(4,), X; L X,.

Let X = min(X{,X,). ThenX ~ Exp(4; + 1,).

Pf: (0-step proof)

J
0‘0

A trial occurs every d—step

The trial is “successful of type 1” with probability 4,6

The trial is “successful of type 2” with probability 4,0

We are looking for the time until there is a success of either type
A trial is “successful” (either type) with probability

e

*

J
0‘0

*e

*%

e

*%

5
1.6 + 1,6 — (1,8)(A,8) = & (/11 + A, - %)
0(8)
o)

L)

*

So time until success ~ Exp (/11 + A, — ) 2> Exp (1, +1,)asd - 0

L)



Example

Our system has 2 potential points of failure (assume these are independent):

(’ Time to failure is Exponentially-distributed with mean 500

| -/fﬁl Time to failure is Exponentially-distributed with mean 1000

Q: What is the time until there is a system failure Time ~ Exp < 1 + 1 )
of either type? 500 1000
1
Q: Whatis P{system failure caused by power supply}? - 00 :
500 T 1000
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The Poisson Process (P.P.)

The Poisson process is the most widely used model for the arrivals into a system

= “arrival time” or “event time”

| | PEEY | PR ~—P time

» P.P. is analytically tractable

» P.P. occurs in nature whenever look at aggregate stream from a large
number of independent users (as is typical for mail server, web server,
data center, etc.)



Before we start ... recall the Poisson distribution

X ~ Poisson(A)

e~ L)l

Q: Whatis py(i)? py(i) = wherei =0,1,2,3, ...

il
Q: Whatis E[X]? Whatis Var(X)? EX]|=Var(X) =1

px()

Ll Like a Normal,
- _ 0.15 but starts at 0.
Q: What is the shape of the Poisson?

0.05 ‘
0 |I i

0 5 10 15
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2 Properties of the Poisson process

1. Independent Increments

These two properties
— define the
Poisson Process

2. Stationary Increments

21
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Independent Increments

X = “arrival time” or “event time”

F—e—¢ 00— = %—>  time

Ny = # events in blue interval

Nyink = # events in pink interval

If blue and pink intervals

are non-overlapping Npiue L Npink

22
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Independent Increments

= “arrival time” or “event time”

— — ——— | = —» time

to 1 ) t3 ()

N(t) = # events occurring by time t

Defn 12.7: An event sequence has independent increments if the numbers of
events that occur in disjoint time intervals are independent. Specifically, for all
to <ty <t, <<ty

N(t1) = N(to) L N(t2) = N(t) L .. L N(tn) — N(tp-1)



Independent Increments

X =“arrival time” or “event time”

F————— ¢ | - - 5—p  time
Lo tq t; L3 Ly

For discussion: Which of these event sequences have independent increments?

1. Births of children "= = = =
DO D

7Y

2. People entering a store I !*5!

3. Goals scored by a particular soccer player =
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Stationary Increments

= “arrival time” or “event time”

|.r | PV VI 1 PR | i
( N + ( 1 ] —» tme

Defn 12.9: An event sequence has stationary increments if the number of
events during a time period depends only on the length of the time period and not on
its starting point. That is:

N(t+s)—N(s)
has the same distribution for all s.



Poisson Process: First definition

The rate of an event sequence refers to the
average number of events per unit time.

4

= “arrival time” or “event time’

| | | £ 3z 3 — —» time
0

First definition of the Poisson Process:

A Poisson Process with rate A is a sequence of events s.t.

1. N(0)=0

2. The process has independent increments

3. The number of events in any interval of length t is Poisson distributed with

mean At.

e—/’lt ) (ﬂt)n

Vs, t = 0, P{N(t+s)—N(s) =n}= y n=20,12,..




A:  Third item implies
stationary increments.

Q: Why only
independent
increments?

| | | £ 3z 3 — —» time
0

First definition of the Poisson Process:

A Poisson Process with rate A is a sequence of events s.t.

1. N(0)=0

2. The process has independent increments

3. The number of events in any interval of length t is Poisson distributed with

mean At.

e—/’lt ) (ﬂt)n

Vs, t = 0, P{N(t+s)—N(s) =n}= y n=20,12,..




Q: What do we A:
know about N(t) ~ Poisson(At)

N(t)?

| | | £ 3z 3 — —» time
0

First definition of the Poisson Process:

A Poisson Process with rate A is a sequence of events s.t.

1. N(0)=0

2. The process has independent increments

3. The number of events in any interval of length t is Poisson distributed with

mean At.

e—/’lt ) (ﬂt)n

Vs, t = 0, P{N(t+s)—N(s) =n}= y n=20,12,..




: Why is A A:
A E[N(t)]_)at_/1

called the “rate”
of the process? t t

Avg.rate of events =

| | | £ 3z 3 — —» time
0

First definition of the Poisson Process:

A Poisson Process with rate A is a sequence of events s.t.
1. N(0)=0
2. The process has independent increments
3. The number of events in any interval of length t is Poisson distributed with
mean At.
e—/’lt ) (ﬂt)n

Vs, t=0,  P{N(t+s)—N(s) =n}=——1

n=01,2,..



Q: What does an event process with both
stationary and independent increments look like?

A: At any point in time, the process probabilistically restarts itself.

» Independent Increments =» From any point on, the process is
independent of all that occurred previously.

» Stationary Increments = When the process restarts itself, it has the
same distribution as the original process

So the process has no memory!



Poisson Process: Second definition

The rate of an event sequence refers to the
average number of events per unit time.

= “arrival time” or “event time”

| | | | ~ — —» time

\ J1 J\ J

0 Y Y Y
Exp(4)  Exp(d) Exp(4)

Second definition of the Poisson Process:

A Poisson Process with rate A is a sequence of events s.t.
1. N(0)=0
2. The sequence of inter-event times are i.i.d. Exp(A) random variables.



Poisson Process: Second definition

| | | | | | | | | | | » time
o) 20 30 46 50 60 70 80 96 106 116

J\ j\ J

Exp(Q) Exp(1) Exp(4)

Every 6-step, flip a coin with probability A6 of heads.
The sequence of heads forms a Poisson process!

32
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Definition 1 = Definition 2

Let T4, T, T3, ...be the inter-event times of a sequence of events.

wrs: T;~ Exp(A)

PF:

—At | 0
P{t; >t} =P{N(t) =0} = ¢ O'(/lt) — oAt
P{t, ;1 >t | Xin 13 =5} = P{0 events in (s,s + t)| 27;:1 T; = S}

= P{0 eventsin (s,s +t)} .-°

e s



Definition 2 =2 Definition 1

0 o 20 36 406 56

Exp(1) Exp(1)

WTS: N(t) ~ Poisson(At), and also stationary increments

N(t) = Number of successes by time t

Q: What do we know about

~ Binomial (#flips, probability of success of each flip) Binomial(n, p) for large

¢ n and tiny p?
~ Binomial (3,,15)
; A: By Exercise 3.8,
— Poisson (5 : ,15) as 5§ = 0 Binomial(n,p) — Poisson(np)
= Poisson(At) 34
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Number Poisson Arrivals during a Random Time

Jobs arrive to a system according to a Poisson process with rate A.

Let AS = # arrivals occur during random time S (assume S is independent of the arrival process)

Q: Whatis E[A¢]?
Q: How is A4,
.. L
Let A, = # arrivals occur during t distributed:

A; ~ Poisson(At) = E|A;] = At

E[As] = f E[Ag|S = t] - fo(t)de
t=0
= b E[A:]- fs(t)dt = i At - fs(t)dt = A E[S]
Jt:o t=0



Merging Independent Poisson processes

Theorem 12.13 (Poisson Merging): Given two independent Poisson processes, where
process 1 has rate A; and process 2 has rate 1,, the merge of these is a single Poisson
process with rate 1; + 1,.

PP. (1) % X X >

PP. (1) ——————— x— >

Merge X X x x—X % >
Proof: Alternate Proof:

Time to next event of merged process N (t) ~ Poisson(4,t) N, (t) ~ Poisson(A,t)

= min(Exp(/h), Exp()lz)) ~ Exp(1; + 1,) Nmerge(t) = Ny (t) + Ny (t) ~ Poisson(A;t + A,t)



Poisson Splitting

Theorem 12.14 (Poisson Splitting): Given a Poisson process with rate A, suppose each
event is independently classified “type A” with probability p and “type B” with
probability 1 — p. Then the A’s form a Poisson process with rate Ap and the B’s form a
Poisson process with rate A(1 — p), and these processes are independent

@ @

PP. (4) X X X X >
A’s only % % >
A A
B’s only X % >

B B

Hard to believe because time between A’s doesn’t look Exponentially distributed!




Poisson Splitting

Intuition:

Second coin

First coin

I | I | I I I : ’
SUC?@SS
Single coin @ @ eoeo @ @ @ eoeo
| | | | | | | —>
0 ) 20 :

time = Exp(4p)
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Type A success
happens only when
both coins are heads!

Time to next type A is
time until Heads for coin
with probability (Ap)é.

.. Time ~ Exp(Ap)

See your textbook
for full proof. 38



Uniformity

Theorem 12.15 (Uniformity): Given that one event of a Poisson process has occurred
by time t, that event is equally likely to have occurred anywhere in [0, t].

Proof: Let T, be the time of that one event:

P{T; <s & N(t) =1} P{leventin[0,s] & Oeventsin [s,t]}
P{N(t) = 1) - e~ At (At)1
1!
_ P{1eventin[0,s]} - P{0 eventsin [s, t]}
- e=At . (At)

P{T;<s | N(t) =1} =

=25 . )s . = At=9) . (A(t — S))O _ f
= e~ M )t

Theorem 12.15 (Uniformity -- Generalization): If k events of a Poisson process occur
by time t, the k events are distributed independently and uniformly in [0, t].
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