Chapter 12 The Poisson Process

Where we're heading ...

Goal of the next 3 chapters:

How to model and simulate computer systems

Chapter 12: The Poisson Process – how to model an arrival process (jobs arriving to a data center, requests arriving to a web server, etc.)

Chapter 13: Generating r.v.s for simulation – methods for generating instances of different distributions

Chapter 14: Event-driven simulation – simulating systems with queues and networks of queues

Chapter 12 outline

The Poisson process is intimately related to the Exponential distribution. Before discussing the Poisson process, we must revisit the Exponential.

STEP 1: Revisiting the Exponential distribution

□ Relating the Exponential distribution to the Geometric

□ More properties of the Exponential distribution

STEP 2: The celebrated Poisson Process

□ First definition vs. Second definition

Properties of the Poisson Process

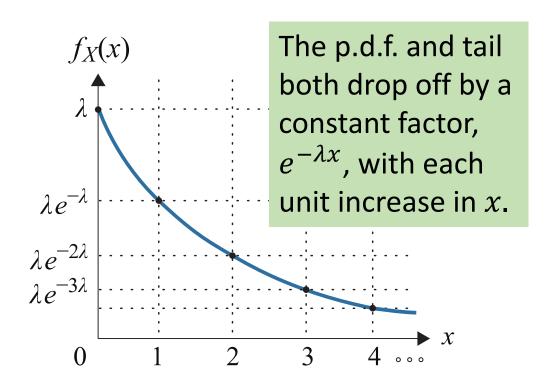
Review of the Exponential distribution

<u>Defn</u>: A r.v. is **Exponentially distributed** with rate λ , written $X \sim Exp(\lambda)$, if

$$f_X(x) = - \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

$$F_X(x) = \int_{-\infty}^x f_X(t)dt = 1 - e^{-\lambda x} \text{ if } x \ge 0$$

$$\overline{F_X}(x) = e^{-\lambda x}$$
 if $x \ge 0$

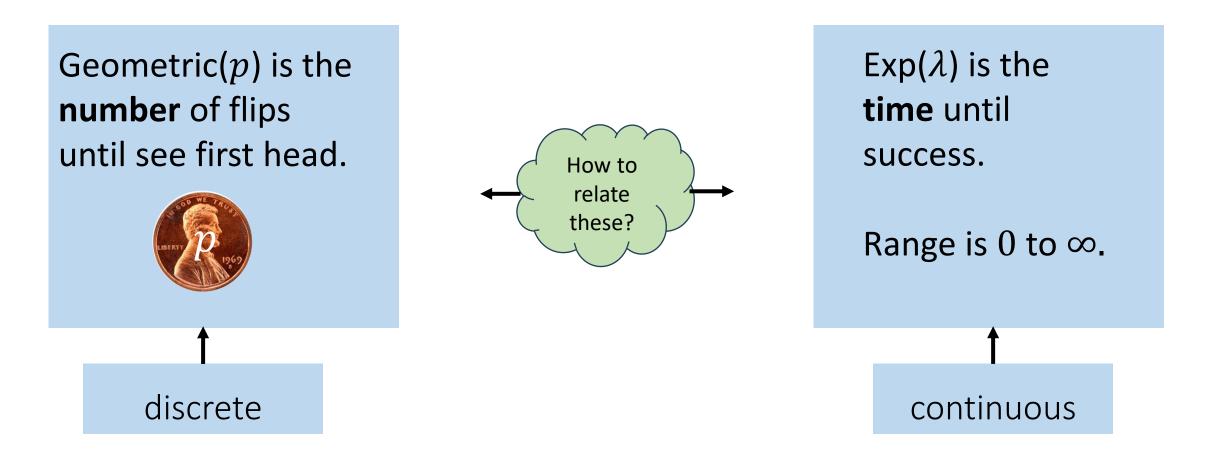


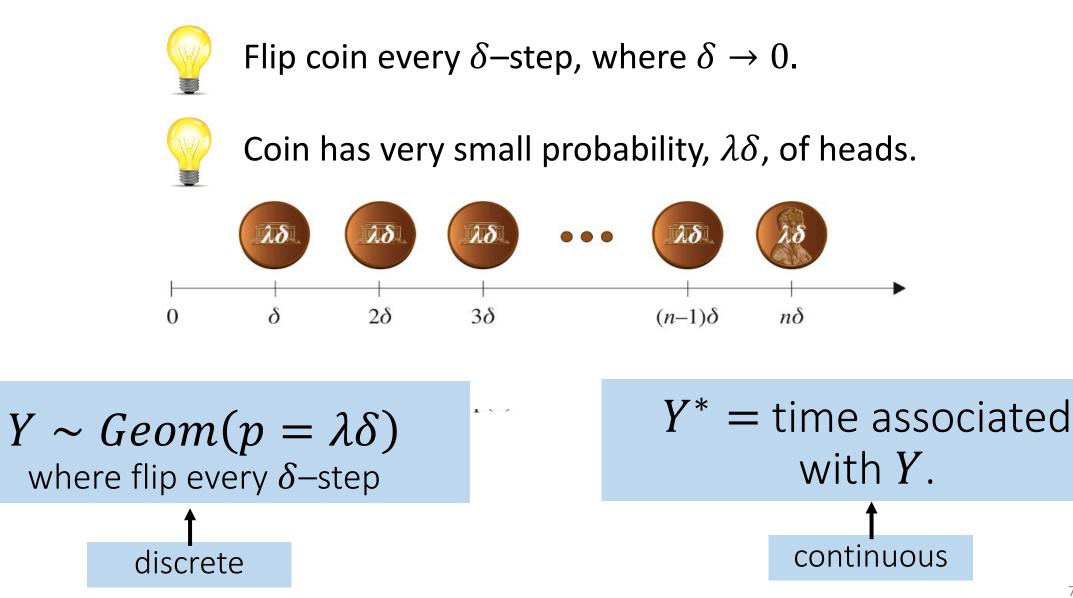
Review of the Exponential distribution

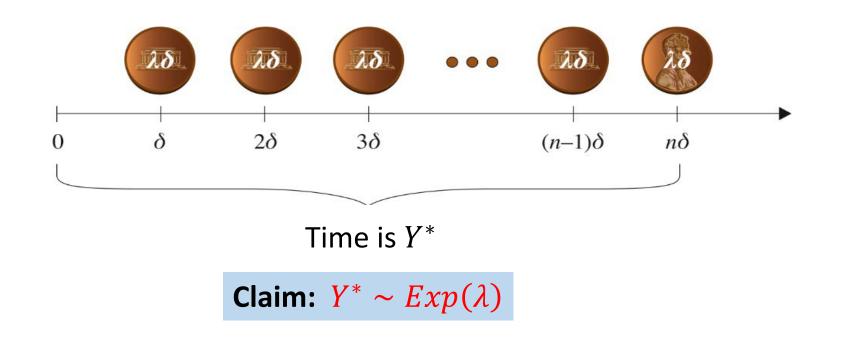
$$\frac{X \sim Exp(\lambda)}{E[X]} = \frac{1}{\lambda} \qquad Var(X) = \frac{1}{\lambda^2} \qquad C_X^2 = \frac{Var(X)}{E[X]^2} = 1$$

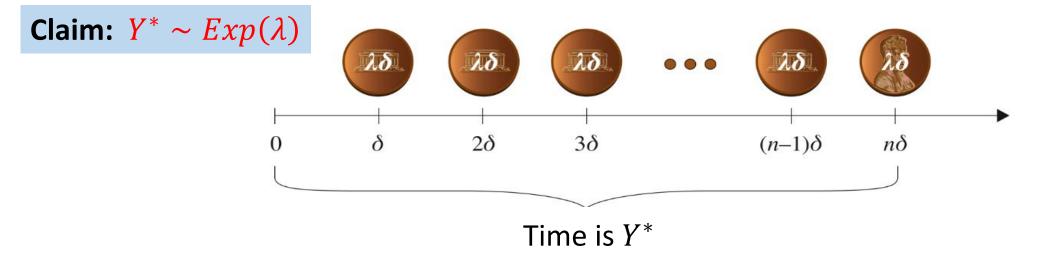
Memoryless Property
$$P{X > s + t \mid X > s} = P{X > t}$$
Failure
rateConstant Failure Rate $P{X \in (t, t + \delta) \mid X > t} = \frac{f_X(t) \cdot \delta}{\overline{F_X}(t)} = \lambda \delta$ $P{X \in (t, t + \delta) \mid X > t} = \frac{f_X(t) \cdot \delta}{\overline{F_X}(t)} = \lambda \delta$

The Exponential and Geometric are the only memoryless distributions. How are they related?



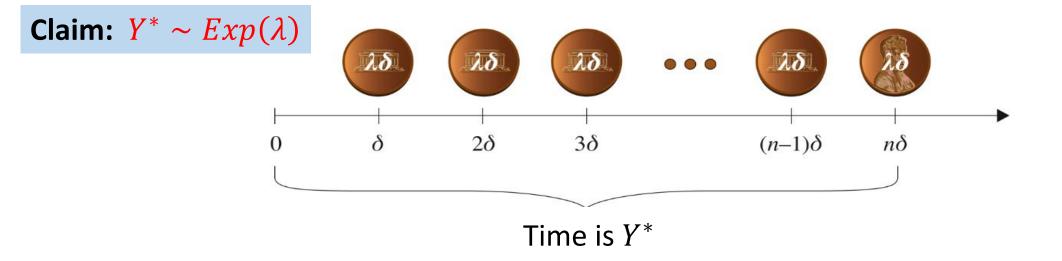






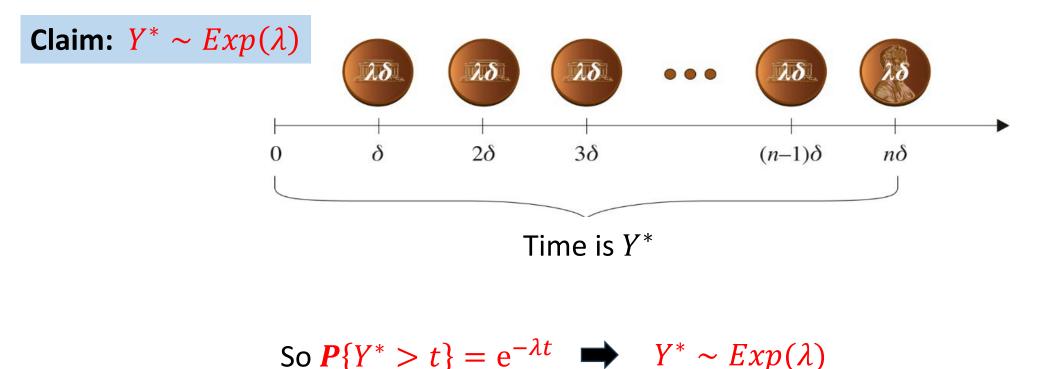
Q: Does $E[Y^*]$ check out?

$$E[Y^*] = (avg. \# flips until H) \cdot (time per flip)$$
$$= \frac{1}{\lambda\delta} \cdot (\delta)$$
$$= \frac{1}{\lambda}$$



Q: What is $P{Y^* > t}$?

$$\begin{split} \boldsymbol{P}\{Y^* > t\} &= \boldsymbol{P}\left\{ > \frac{t}{\delta} \ failures \right\} = (1 - \lambda \delta)^{\frac{t}{\delta}} = \left(1 - \frac{1}{\frac{1}{\lambda \delta}}\right)^{\frac{t}{\delta}} \\ &= \left(1 - \frac{1}{\frac{1}{\lambda \delta}}\right)^{\frac{1}{\lambda \delta} \cdot \lambda \cdot t} = (e^{-1})^{\lambda t} = e^{-\lambda t} \end{split}$$



Theorem 12.1: Let $X \sim Exp(\lambda)$. Then X represents the time to get a H, given we flip every δ -step, and a flip is successful with probability $\lambda\delta$, where $\delta \to 0$.

A new view of asymptotic notation

Defn:

$$f = o(\delta)$$
 if $\lim_{\delta \to 0} \frac{f}{\delta} = 0$
 \circ \circ \circ \circ \circ We have
 $\delta \to 0$

Q: Which of these are $o(\delta)$?

a.
$$f = \delta^3$$

b. $f = \delta^2$
c. $f = \delta \sqrt{\delta}$
d. $f = \sqrt{\delta}$

A: (a), (b), (c)

Theorem 12.3: Given
$$X_1 \sim Exp(\lambda_1)$$
, $X_2 \sim Exp(\lambda_2)$, $X_1 \perp X_2$,
 $P\{X_1 < X_2\} = \frac{\lambda_1}{\lambda_1 + \lambda_2}$

Pf: (traditional algebraic proof)

$$P\{X_{1} < X_{2}\} = \int_{0}^{\infty} P\{X_{1} < X_{2} \mid X_{2} = x\} \cdot f_{X_{2}}(x) dx$$

$$= \int_{0}^{\infty} P\{X_{1} < X_{2} \mid X_{2} = x\} \cdot \lambda_{2} e^{-\lambda_{2}x} dx$$

$$= \int_{0}^{\infty} P\{X_{1} < x\} \cdot \lambda_{2} e^{-\lambda_{2}x} dx = \int_{0}^{\infty} (1 - e^{-\lambda_{1}x}) \cdot \lambda_{2} e^{-\lambda_{2}x} dx \stackrel{\text{ofter integration}}{=} \frac{\lambda_{1}}{\lambda_{1} + \lambda_{2}}$$

Theorem 12.3: Given
$$X_1 \sim Exp(\lambda_1), X_2 \sim Exp(\lambda_2), X_1 \perp X_2$$
,
 $P\{X_1 < X_2\} = \frac{\lambda_1}{\lambda_1 + \lambda_2}$

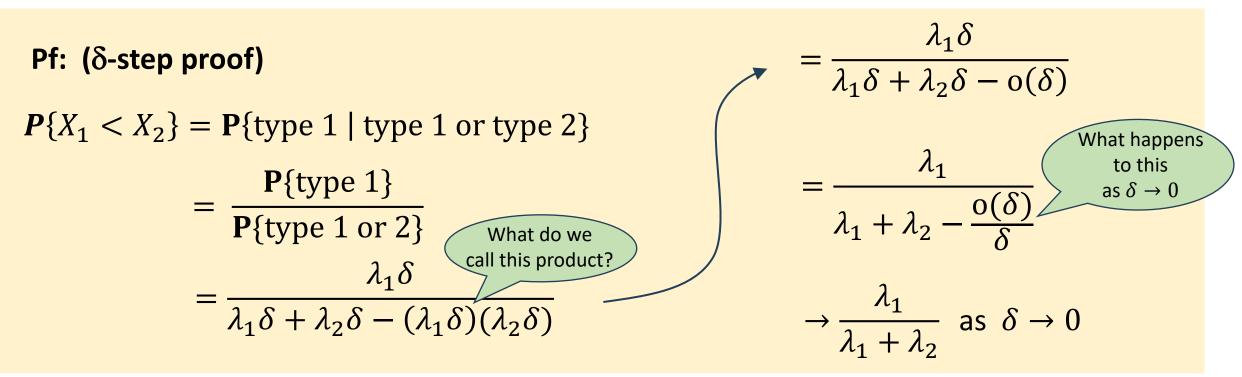
Pf: (δ -step proof)

□ Success of type 1 occurs with probability $\lambda_1 \delta$ on each δ -step. □ Success of type 2 occurs with probability $\lambda_2 \delta$ on each δ -step.

Q: What is $P{X_1 < X_2}$ saying?

A: Given that a success of type 1 or type 2 has occurred, what is the probability that it is a success of type 1?

Theorem 12.3: Given
$$X_1 \sim Exp(\lambda_1), X_2 \sim Exp(\lambda_2), X_1 \perp X_2$$
,
 $P\{X_1 < X_2\} = \frac{\lambda_1}{\lambda_1 + \lambda_2}$



<u>Theorem 12.5</u>: Given $X_1 \sim Exp(\lambda_1)$, $X_2 \sim Exp(\lambda_2)$, $X_1 \perp X_2$.

Let $X = \min(X_1, X_2)$. Then $X \sim Exp(\lambda_1 + \lambda_2)$.

Pf: (traditional algebraic proof)

 $P{X > t} = P{\min(X_1, X_2) > t}$

$$= P\{X_1 > t \text{ and } X_2 > t\}$$

••• = $P\{X_1 > t\} \cdot P\{X_2 > t\}$

$$= e^{-\lambda_1 t} \cdot e^{-\lambda_2 t} = e^{-(\lambda_1 + \lambda_2)} \implies X \sim Exp(\lambda_1 + \lambda_2).$$

<u>Theorem 12.5</u>: Given $X_1 \sim Exp(\lambda_1)$, $X_2 \sim Exp(\lambda_2)$, $X_1 \perp X_2$.

Let $X = \min(X_1, X_2)$. Then $X \sim Exp(\lambda_1 + \lambda_2)$.

Pf: (δ -step proof)

- * A trial occurs every δ -step
- ✤ The trial is "successful of type 1" with probability $\lambda_1 \delta$
- * The trial is "successful of type 2" with probability $\lambda_2 \delta$
- ✤ We are looking for the time until there is a success of either type
- ✤ A trial is "successful" (either type) with probability

$$\lambda_1 \delta + \lambda_2 \delta - (\lambda_1 \delta)(\lambda_2 \delta) = \delta \left(\lambda_1 + \lambda_2 - \frac{o(\delta)}{\delta}\right)$$

So time until success ~ $Exp\left(\lambda_1 + \lambda_2 - \frac{o(\delta)}{\delta}\right) \rightarrow Exp\left(\lambda_1 + \lambda_2\right)$ as $\delta \rightarrow 0$

Example

Our system has 2 potential points of failure (assume these are independent):

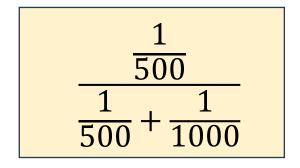
Time to failure is Exponentially-distributed with mean 500

Time to failure is Exponentially-distributed with mean 1000

Q: What is the time until there is a system failure of either type?

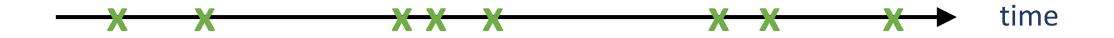
$$Time \sim Exp\left(\frac{1}{500} + \frac{1}{1000}\right)$$

Q: What is *P*{system failure caused by power supply}?



The Poisson Process (P.P.)

The Poisson process is the most widely used model for the arrivals into a system



- > P.P. is analytically tractable
- P.P. occurs in nature whenever look at aggregate stream from a large number of independent users (as is typical for mail server, web server, data center, etc.)

Before we start ... recall the Poisson distribution

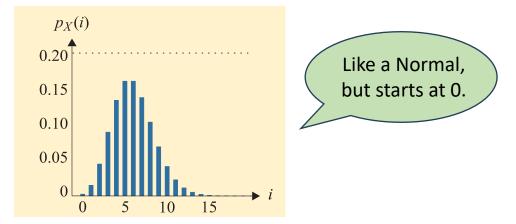
 $X \sim Poisson(\lambda)$

Q: What is
$$p_X(i)$$
? $p_X(i) = \frac{e^{-\lambda} \cdot \lambda^i}{i!}$ where $i = 0, 1, 2, 3, ...$

Q: What is E[X]? What is Var(X)?

$$\boldsymbol{E}[X] = \boldsymbol{V}\boldsymbol{a}\boldsymbol{r}(X) = \lambda$$

Q: What is the shape of the Poisson?



2 Properties of the Poisson process

1. Independent Increments

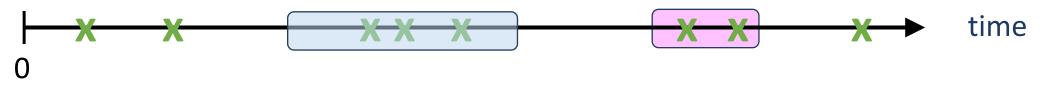
2. Stationary Increments

These two properties

define the Poisson Process

Independent Increments

X = "arrival time" or "event time"

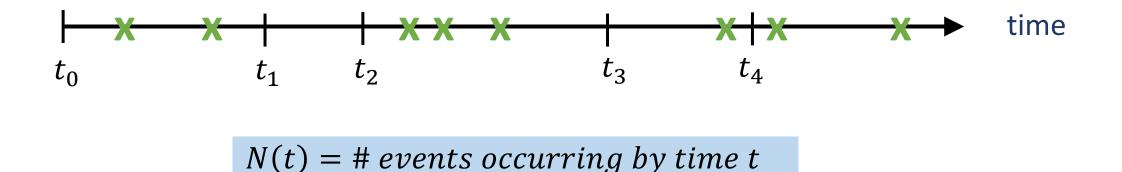


 $N_{blue} = \#$ events in blue interval $N_{pink} = \#$ events in pink interval

If blue and pink intervals are non-overlapping $\Rightarrow N_{blue} \perp N_{pink}$

Independent Increments

X = "arrival time" or "event time"

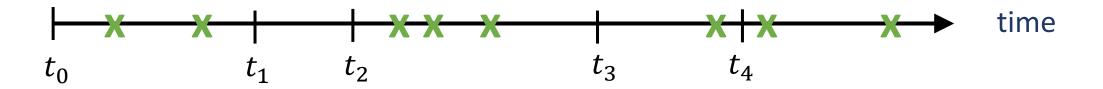


<u>Defn 12.7</u>: An event sequence has **independent increments** if the numbers of events that occur in disjoint time intervals are independent. Specifically, for all $t_0 < t_1 < t_2 < \cdots < t_n$:

$$N(t_1) - N(t_0) \perp N(t_2) - N(t_1) \perp ... \perp N(t_n) - N(t_{n-1})$$

Independent Increments

X = "arrival time" or "event time"



<u>For discussion</u>: Which of these event sequences have independent increments?

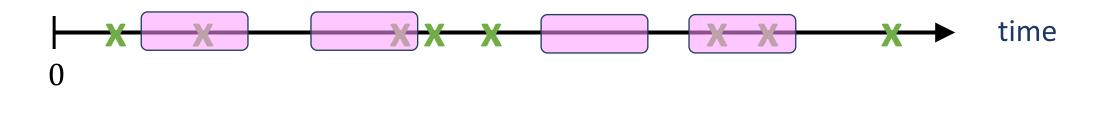
1. Births of children

2. People entering a store

3. Goals scored by a particular soccer player

Stationary Increments

X = "arrival time" or "event time"



<u>Defn 12.9</u>: An event sequence has **stationary increments** if the number of events during a time period depends only on the length of the time period and not on its starting point. That is:

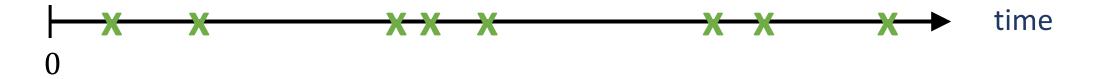
$$N(t+s) - N(s)$$

has the same distribution for all *s*.

Poisson Process: First definition

The **rate** of an event sequence refers to the average number of events per unit time.

X = "arrival time" or "event time"

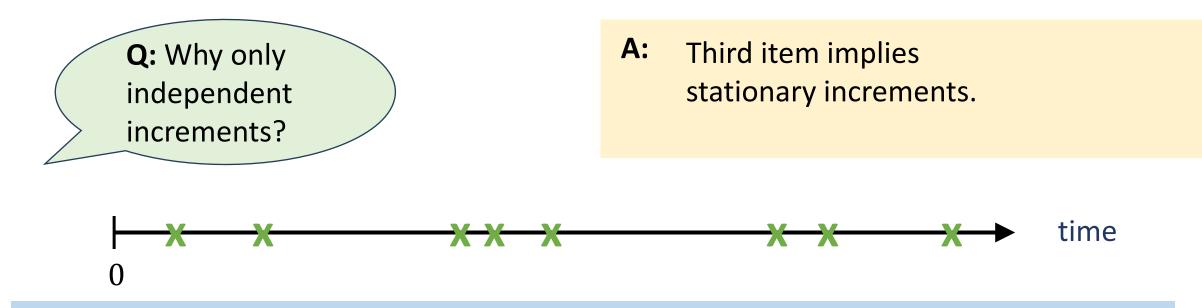


First definition of the Poisson Process:

1.
$$N(0) = 0$$

- 2. The process has independent increments
- 3. The number of events in any interval of length t is Poisson distributed with mean λt .

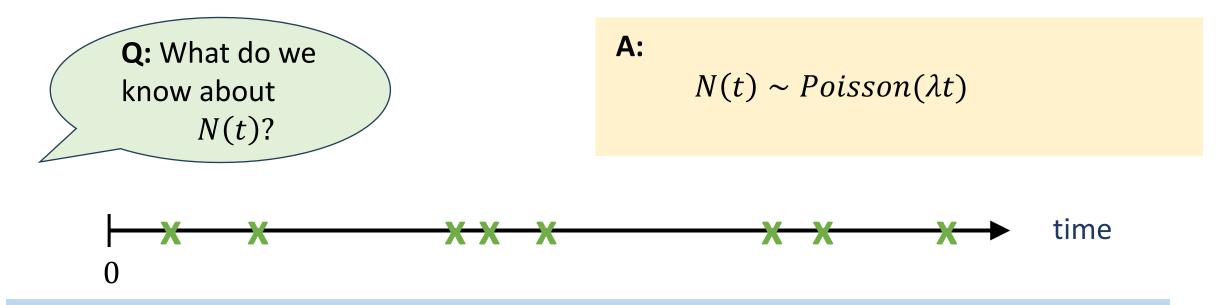
$$\forall s, t \ge 0, \qquad \mathbf{P}\{N(t+s) - N(s) = n\} = \frac{e^{-\lambda t} \cdot (\lambda t)^n}{n!} \qquad n = 0, 1, 2, \dots$$



First definition of the Poisson Process:

- 1. N(0) = 0
- 2. The process has independent increments
- 3. The number of events in any interval of length t is Poisson distributed with mean λt .

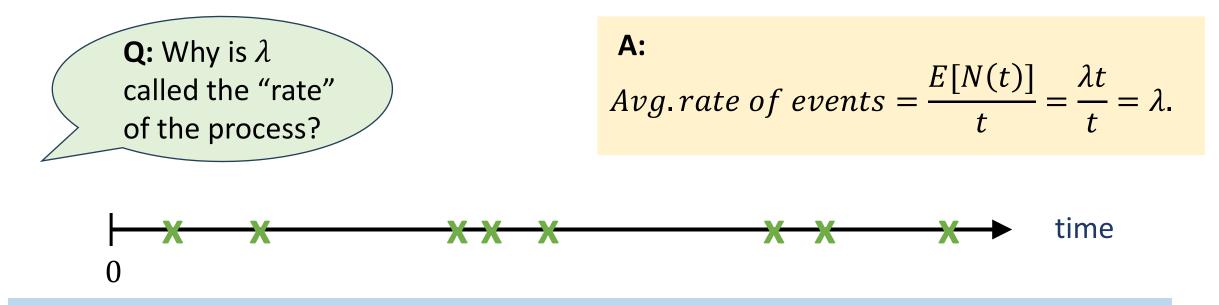
$$\forall s, t \ge 0, \qquad \mathbf{P}\{N(t+s) - N(s) = n\} = \frac{e^{-\lambda t} \cdot (\lambda t)^n}{n!} \qquad n = 0, 1, 2, \dots$$



First definition of the Poisson Process:

- 1. N(0) = 0
- 2. The process has independent increments
- 3. The number of events in any interval of length t is Poisson distributed with mean λt .

$$\forall s, t \ge 0, \qquad P\{N(t+s) - N(s) = n\} = \frac{e^{-\lambda t} \cdot (\lambda t)^n}{n!} \qquad n = 0, 1, 2, \dots$$



First definition of the Poisson Process:

- 1. N(0) = 0
- 2. The process has independent increments
- 3. The number of events in any interval of length t is Poisson distributed with mean λt .

$$\forall s, t \ge 0, \qquad \mathbf{P}\{N(t+s) - N(s) = n\} = \frac{e^{-\lambda t} \cdot (\lambda t)^n}{n!} \qquad n = 0, 1, 2, \dots$$

Q: What does an event process with *both* stationary and independent increments look like?

A: At any point in time, the process probabilistically restarts itself.

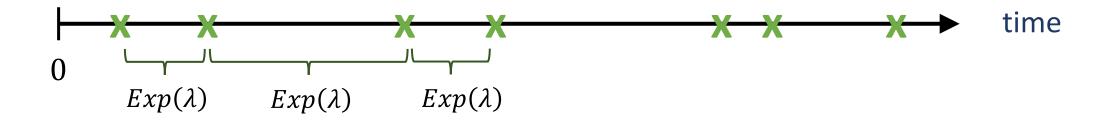
- Independent Increments From any point on, the process is independent of all that occurred previously.

So the process has no memory!

Poisson Process: Second definition

The **rate** of an event sequence refers to the average number of events per unit time.

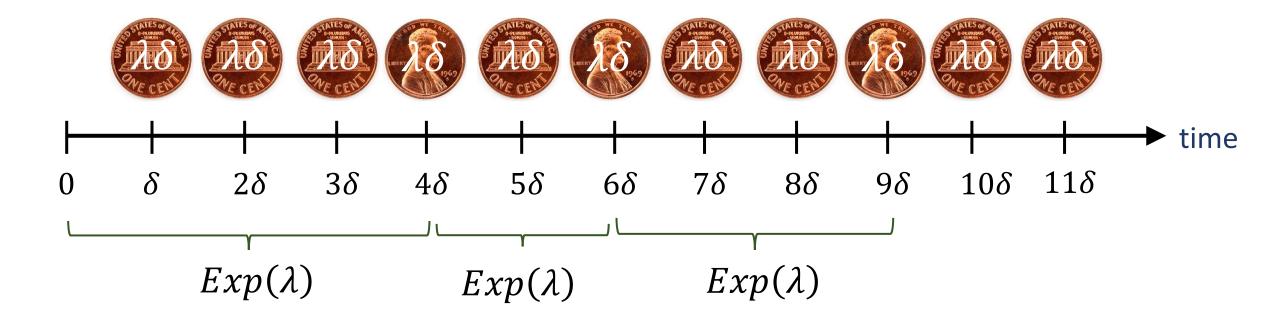
X = "arrival time" or "event time"



Second definition of the Poisson Process:

- 1. N(0) = 0
- 2. The sequence of inter-event times are i.i.d. $Exp(\lambda)$ random variables.

Poisson Process: Second definition



Every δ -step, flip a coin with probability $\lambda\delta$ of heads. The sequence of heads forms a Poisson process!

Definition $1 \rightarrow Definition 2$

Let τ_1, τ_2, τ_3 , ... be the inter-event times of a sequence of events.

wts: $\tau_i \sim Exp(\lambda)$

PF:

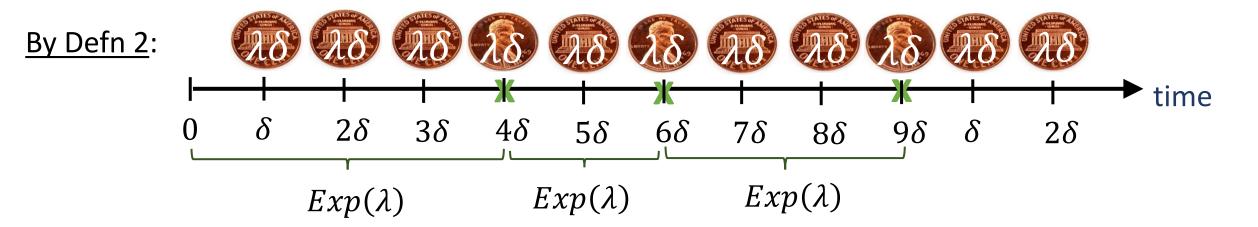
$$P\{\tau_{1} > t\} = P\{N(t) = 0\} = \frac{e^{-\lambda t} \cdot (\lambda t)^{0}}{0!} = e^{-\lambda t}$$

$$P\{\tau_{n+1} > t \mid \sum_{i=1}^{n} \tau_{i} = s\} = P\{0 \text{ events in } (s, s+t) \mid \sum_{i=1}^{n} \tau_{i} = t \in \mathbb{R}\}$$

$$| \sum_{i=1}^{n} \tau_i = s \} = P\{0 \text{ events in } (s, s+t) | \sum_{i=1}^{n} \tau_i = s \}$$

$$= P\{0 \text{ events in } (s, s+t) \}$$

Definition 2 \rightarrow Definition 1



WTS: $N(t) \sim Poisson(\lambda t)$, and also stationary increments

N(t) = Number of successes by time t

~ *Binomial* (#flips , probability of success of each flip)

~ Binomial
$$\left(\frac{t}{\delta}, \lambda\delta\right)$$

 $\rightarrow Poisson\left(\frac{t}{\delta} \cdot \lambda\delta\right)$ as $\delta \to 0$

 $= Poisson(\lambda t)$

"Introduction to Probability for Computing", Harchol-Balter '24

Q: What do we know about

Binomial(n, p) for large

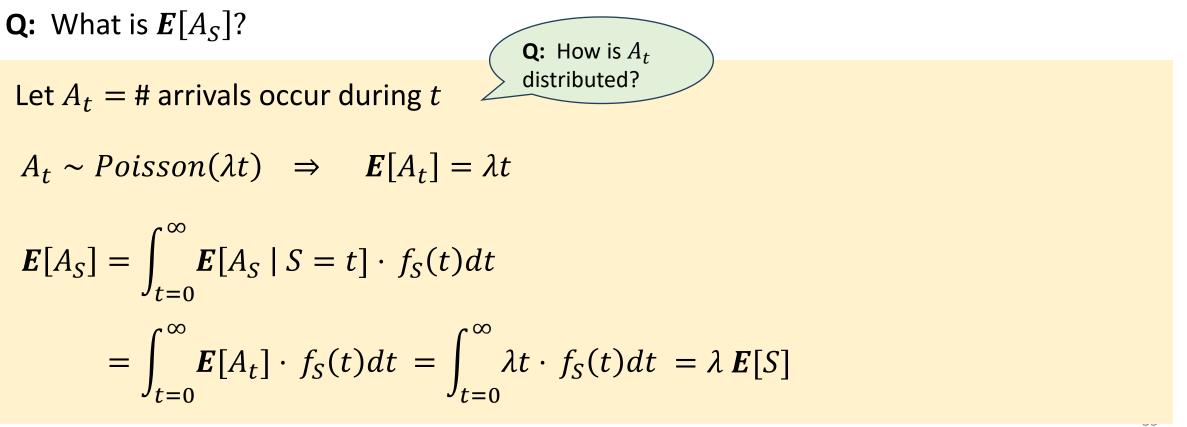
A: By Exercise 3.8,

n and tiny *p*?

Number Poisson Arrivals during a Random Time

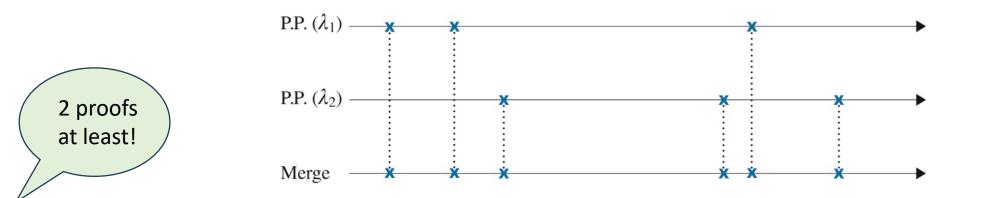
Jobs arrive to a system according to a Poisson process with rate λ .

Let $A_S = #$ arrivals occur during random time S (assume S is independent of the arrival process)



Merging Independent Poisson processes

Theorem 12.13 (Poisson Merging): Given two independent Poisson processes, where process 1 has rate λ_1 and process 2 has rate λ_2 , the merge of these is a single Poisson process with rate $\lambda_1 + \lambda_2$.



Proof:

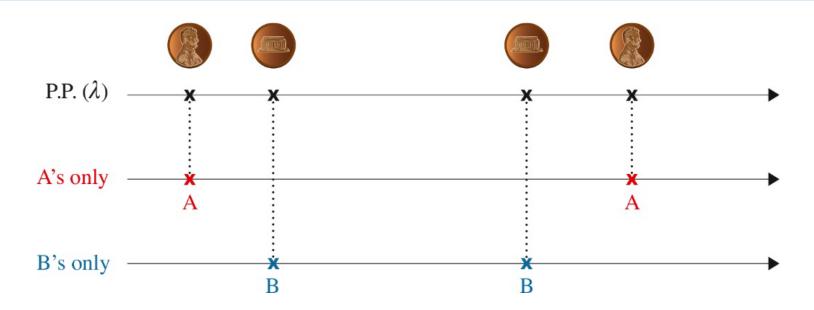
Time to next event of merged process

 $= \min(Exp(\lambda_1), Exp(\lambda_2)) \sim Exp(\lambda_1 + \lambda_2)$

Alternate Proof: $N_1(t) \sim Poisson(\lambda_1 t)$ $N_2(t) \sim Poisson(\lambda_2 t)$ $N_{merge}(t) = N_1(t) + N_2(t) \sim Poisson(\lambda_1 t + \lambda_2 t)$

Poisson Splitting

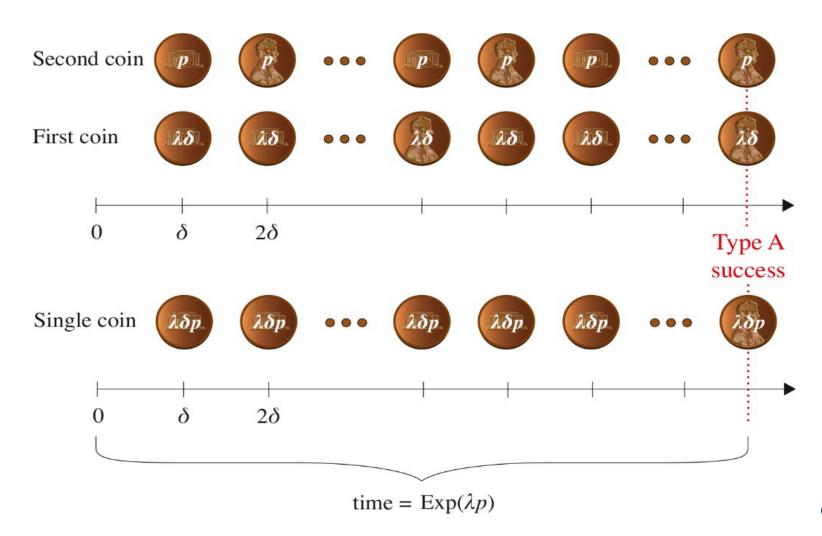
Theorem 12.14 (Poisson Splitting): Given a Poisson process with rate λ , suppose each event is independently classified "type A" with probability p and "type B" with probability 1 - p. Then the A's form a Poisson process with rate λp and the B's form a Poisson process with rate $\lambda (1 - p)$, and these processes are independent



Hard to believe because time between A's doesn't look Exponentially distributed!

Poisson Splitting

Intuition:

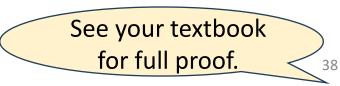


[&]quot;Introduction to Probability for Computing", Harchol-Balter '24

Type A success happens only when **both** coins are heads!

Time to next type A is time until Heads for coin with probability $(\lambda p)\delta$.

```
\therefore Time ~ Exp(\lambda p)
```



Uniformity

Theorem 12.15 (Uniformity): Given that one event of a Poisson process has occurred by time t, that event is equally likely to have occurred anywhere in [0, t].

Proof: Let T_1 be the time of that one event:

$$P\{T_1 < s \mid N(t) = 1\} = \frac{P\{T_1 < s \& N(t) = 1\}}{P\{N(t) = 1\}} = \frac{P\{1 \text{ event in } [0, s] \& 0 \text{ events in } [s, t]\}}{\frac{e^{-\lambda t} (\lambda t)^1}{1!}}$$
$$= \frac{P\{1 \text{ event in } [0, s]\} \cdot P\{0 \text{ events in } [s, t]\}}{e^{-\lambda t} \cdot (\lambda t)}$$
$$= \frac{e^{-\lambda s} \cdot \lambda s \cdot e^{-\lambda(t-s)} \cdot (\lambda(t-s))^0}{e^{-\lambda t} \cdot \lambda t} = \frac{s}{t}$$

Theorem 12.15 (Uniformity -- Generalization): If k events of a Poisson process occur by time t, the k events are distributed independently and uniformly in [0, t].