
Chapter 12
The Poisson Process

1"Introduction to Probability for Computing", Harchol-Balter '24



2

Where we’re heading …

Goal of the next 3 chapters:

"Introduction to Probability for Computing", Harchol-Balter '24

Chapter 13:  Generating r.v.s for simulation – methods for generating instances
                         of different distributions

How to model and simulate computer systems

Chapter 12:  The Poisson Process – how to model an arrival process
                        (jobs arriving to a data center, requests arriving to a web server, etc.)

Chapter 14:  Event-driven simulation – simulating systems with queues and
                         networks of queues
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Chapter 12 outline
The Poisson process is intimately related to the Exponential distribution.
Before discussing the Poisson process, we must revisit the Exponential.

"Introduction to Probability for Computing", Harchol-Balter '24

STEP 1:  Revisiting the Exponential distribution

STEP 2:  The celebrated Poisson Process

 Relating the Exponential distribution to the Geometric

More properties of the Exponential distribution

 First definition vs. Second definition

 Properties of the Poisson Process
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Review of the Exponential distribution
Defn: A r.v. is Exponentially distributed
with rate 𝜆𝜆, written 𝑿𝑿 ∼ 𝑬𝑬𝑬𝑬𝑬𝑬 𝝀𝝀 , if

𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆 if 𝑥𝑥 ≥ 0
 
0 if 𝑥𝑥 < 0

𝑓𝑓𝑋𝑋 𝑥𝑥 =

𝐹𝐹𝑋𝑋 𝑥𝑥 = �
−∞

𝑥𝑥
𝑓𝑓𝑋𝑋 𝑡𝑡 𝑑𝑑𝑑𝑑 = 1 − 𝑒𝑒−𝜆𝜆𝜆𝜆  if 𝑥𝑥 ≥ 0 

The p.d.f. and tail 
both drop off by a 
constant factor, 
𝑒𝑒−𝜆𝜆𝜆𝜆, with each 
unit increase in 𝑥𝑥.

𝐹𝐹𝑋𝑋 𝑥𝑥 = 𝑒𝑒−𝜆𝜆𝜆𝜆 if 𝑥𝑥 ≥ 0
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Review of the Exponential distribution
𝑋𝑋 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆

𝑬𝑬 𝑋𝑋 = 𝑽𝑽𝑽𝑽𝑽𝑽(𝑋𝑋) = 𝐶𝐶𝑋𝑋2 =
𝑽𝑽𝑽𝑽𝑽𝑽(𝑋𝑋)
𝑬𝑬 𝑋𝑋 2 =1

𝜆𝜆
1
𝜆𝜆2

1

   Memoryless Property
𝐏𝐏 𝑋𝑋 > 𝑠𝑠 + 𝑡𝑡 𝑋𝑋 > 𝑠𝑠} = 𝑷𝑷{𝑋𝑋 > 𝑡𝑡}

   Constant Failure Rate
𝐏𝐏 𝑋𝑋 ∈ (𝑡𝑡, 𝑡𝑡 + 𝛿𝛿) 𝑋𝑋 > 𝑡𝑡} = 

𝑓𝑓𝑋𝑋(𝑡𝑡) ⋅ 𝛿𝛿
𝐹𝐹𝑋𝑋(𝑡𝑡)

 =  𝜆𝜆𝜆𝜆

Failure
  rate

Constant
indpt of 𝑡𝑡 
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Relating Exponential distribution to Geometric
The Exponential and Geometric are the only memoryless distributions. How are they related?

Geometric(𝑝𝑝) is the 
number of flips
until see first head.

𝑝𝑝

Exp(𝜆𝜆) is the 
time until
success.

Range is 0 to ∞.

discrete continuous

How to
relate
these?



"Introduction to Probability for Computing", Harchol-Balter '24
7

Relating Exponential distribution to Geometric

discrete

Flip coin every 𝛿𝛿–step, where 𝛿𝛿 → 0.

Coin has very small probability, 𝜆𝜆𝛿𝛿, of heads.  

𝑌𝑌 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝 = 𝜆𝜆𝜆𝜆
where flip every 𝛿𝛿–step

continuous

𝑌𝑌∗ = time associated 
with 𝑌𝑌.
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Relating Exponential distribution to Geometric

discrete

𝑌𝑌 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝 = 𝜆𝜆𝜆𝜆
where flip every 𝛿𝛿–step

𝑌𝑌∗ = time associated 
with 𝑌𝑌.

Time is 𝑌𝑌∗ 

Claim:  𝑌𝑌∗ ∼ 𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆

continuous
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Relating Exponential distribution to Geometric

Time is 𝑌𝑌∗ 

Claim:  𝑌𝑌∗ ∼ 𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆

Q:  Does 𝑬𝑬 𝑌𝑌∗  check out? 

𝑬𝑬 𝑌𝑌∗ =  𝑎𝑎𝑎𝑎𝑎𝑎. # 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝐻𝐻 ⋅ (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

= 1
𝜆𝜆𝜆𝜆
⋅ (𝛿𝛿)

= 1
𝜆𝜆
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Relating Exponential distribution to Geometric

Time is 𝑌𝑌∗ 

Claim:  𝑌𝑌∗ ∼ 𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆

Q:  What is 𝑷𝑷{𝑌𝑌∗ > 𝑡𝑡} ? 

𝑷𝑷 𝑌𝑌∗ > 𝑡𝑡 = 

= 𝑒𝑒−1 𝜆𝜆𝜆𝜆 = 𝑒𝑒−𝜆𝜆𝜆𝜆

𝑷𝑷 >
𝑡𝑡
𝛿𝛿

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1 − 𝜆𝜆𝜆𝜆
𝑡𝑡
𝛿𝛿 = 1 −

1
1
𝜆𝜆𝜆𝜆

𝑡𝑡
𝛿𝛿

= 1 −
1
1
𝜆𝜆𝜆𝜆

1
𝜆𝜆𝜆𝜆 ⋅ 𝜆𝜆⋅𝑡𝑡
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Relating Exponential distribution to Geometric

Time is 𝑌𝑌∗ 

Claim:  𝑌𝑌∗ ∼ 𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆

So 𝑷𝑷 𝑌𝑌∗ > 𝑡𝑡 = e−𝜆𝜆𝜆𝜆 𝑌𝑌∗ ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜆𝜆)

Theorem 12.1: Let 𝑋𝑋 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜆𝜆).   Then 𝑋𝑋 represents the time to get a H, 
given we flip every 𝛿𝛿-step, and a flip is successful with probability 𝜆𝜆𝜆𝜆, where 𝛿𝛿 → 0 .  
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A new view of asymptotic notation

Q:  Which of these are 𝑜𝑜 𝛿𝛿 ?

Defn:
lim
𝛿𝛿→0

𝑓𝑓
𝛿𝛿

= 0𝑓𝑓 = 𝑜𝑜 𝛿𝛿 if

Rather than 
𝑛𝑛 → ∞

we have
𝛿𝛿 → 0

a.   𝑓𝑓 = 𝛿𝛿3
b.   𝑓𝑓 = 𝛿𝛿2

c.   𝑓𝑓 = 𝛿𝛿 𝛿𝛿
 

d.   𝑓𝑓 = 𝛿𝛿

A:  (a), (b), (c)
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Properties of Exponential
Theorem 12.3:   Given 𝑋𝑋1 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜆𝜆1),  𝑋𝑋2 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜆𝜆2),  𝑋𝑋1 ⊥ 𝑋𝑋2,  

𝑷𝑷 𝑋𝑋1 < 𝑋𝑋2 =
𝜆𝜆1

𝜆𝜆1 + 𝜆𝜆2

Pf:  (traditional algebraic proof)

𝑷𝑷 𝑋𝑋1 < 𝑋𝑋2 = ∫0
∞𝑷𝑷 𝑋𝑋1 < 𝑋𝑋2 | 𝑋𝑋2 = 𝑥𝑥 ⋅ 𝑓𝑓𝑋𝑋2 𝑥𝑥 𝑑𝑑𝑑𝑑 

= ∫0
∞𝑷𝑷 𝑋𝑋1 < 𝑋𝑋2 | 𝑋𝑋2 = 𝑥𝑥 ⋅ 𝜆𝜆2𝑒𝑒−𝜆𝜆2𝑥𝑥𝑑𝑑𝑑𝑑 

= ∫0
∞𝑷𝑷 𝑋𝑋1 < 𝑥𝑥 ⋅ 𝜆𝜆2𝑒𝑒−𝜆𝜆2𝑥𝑥𝑑𝑑𝑑𝑑 

𝑋𝑋1 ⊥ 𝑋𝑋2

= ∫0
∞(1 − 𝑒𝑒−𝜆𝜆1𝑥𝑥) ⋅ 𝜆𝜆2𝑒𝑒−𝜆𝜆2𝑥𝑥𝑑𝑑𝑑𝑑 =

𝜆𝜆1
𝜆𝜆1 + 𝜆𝜆2

after 
integration
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Properties of Exponential
Theorem 12.3:   Given 𝑋𝑋1 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜆𝜆1), 𝑋𝑋2 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜆𝜆2), 𝑋𝑋1 ⊥ 𝑋𝑋2,  

𝑷𝑷 𝑋𝑋1 < 𝑋𝑋2 =
𝜆𝜆1

𝜆𝜆1 + 𝜆𝜆2

Pf:  (δ-step proof)  

 Success of type 1 occurs with probability 𝜆𝜆1𝛿𝛿 on each 𝛿𝛿-step.
 Success of type 2 occurs with probability 𝜆𝜆2𝛿𝛿 on each 𝛿𝛿-step.   

Q:  What is 𝑷𝑷 𝑋𝑋1 < 𝑋𝑋2  saying?

A:  Given that a success of type 1 or type 2 has occurred, 
      what is the probability that it is a success of type 1?
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Properties of Exponential
Theorem 12.3:   Given 𝑋𝑋1 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜆𝜆1), 𝑋𝑋2 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜆𝜆2), 𝑋𝑋1 ⊥ 𝑋𝑋2,  

𝑷𝑷 𝑋𝑋1 < 𝑋𝑋2 =
𝜆𝜆1

𝜆𝜆1 + 𝜆𝜆2

Pf:  (δ-step proof)  

𝑷𝑷 𝑋𝑋1 < 𝑋𝑋2 = 𝐏𝐏 type 1 type 1 or type 2} 

=
𝜆𝜆1𝛿𝛿

𝜆𝜆1𝛿𝛿 + 𝜆𝜆2𝛿𝛿 − 𝜆𝜆1𝛿𝛿 (𝜆𝜆2𝛿𝛿)

What do we 
call this product?

=
𝜆𝜆1𝛿𝛿

𝜆𝜆1𝛿𝛿 + 𝜆𝜆2𝛿𝛿 − o 𝛿𝛿

=
𝐏𝐏{type 1}

𝐏𝐏{type 1 or 2}
 =

𝜆𝜆1

𝜆𝜆1 + 𝜆𝜆2 −
o(𝛿𝛿)
𝛿𝛿

What happens
to this

as 𝛿𝛿 → 0

→
𝜆𝜆1

𝜆𝜆1 + 𝜆𝜆2
 as 𝛿𝛿 → 0
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Properties of Exponential
Theorem 12.5:   Given 𝑋𝑋1 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜆𝜆1), 𝑋𝑋2∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜆𝜆2),  𝑋𝑋1 ⊥ 𝑋𝑋2.  

Let 𝑋𝑋 = min(𝑋𝑋1,𝑋𝑋2).      Then 𝑋𝑋 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆1 + 𝜆𝜆2 .

Pf:  (traditional algebraic proof)

𝑷𝑷 𝑋𝑋 > 𝑡𝑡 = 𝑷𝑷{min 𝑋𝑋1,𝑋𝑋2 > 𝑡𝑡}

𝑋𝑋1 ⊥ 𝑋𝑋2
= 𝑷𝑷{𝑋𝑋1 > 𝑡𝑡 and 𝑋𝑋2 > 𝑡𝑡}

= 𝑷𝑷{𝑋𝑋1 > 𝑡𝑡} ⋅ 𝑷𝑷{𝑋𝑋2 > 𝑡𝑡}

= 𝑒𝑒−𝜆𝜆1𝑡𝑡 ⋅ 𝑒𝑒−𝜆𝜆2𝑡𝑡 = 𝑒𝑒−(𝜆𝜆1+𝜆𝜆2) 𝑋𝑋 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆1 + 𝜆𝜆2 .
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Properties of Exponential
Theorem 12.5:   Given 𝑋𝑋1 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜆𝜆1), 𝑋𝑋2∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜆𝜆2),  𝑋𝑋1 ⊥ 𝑋𝑋2.  

Let 𝑋𝑋 = min(𝑋𝑋1,𝑋𝑋2).      Then 𝑋𝑋 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆1 + 𝜆𝜆2 .

𝜆𝜆1𝛿𝛿 + 𝜆𝜆2𝛿𝛿 − 𝜆𝜆1𝛿𝛿 𝜆𝜆2𝛿𝛿

Pf:  (δ-step proof)  
 A trial occurs every 𝛿𝛿–step
 The trial is “successful of type 1” with probability 𝜆𝜆1𝛿𝛿 
 The trial is “successful of type 2” with probability 𝜆𝜆2𝛿𝛿
 We are looking for the time until there is a success of either type
 A trial is “successful” (either type) with probability

= 𝛿𝛿 𝜆𝜆1 + 𝜆𝜆2 −
𝑜𝑜(𝛿𝛿)
𝛿𝛿

 So time until success ∼ 𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆1 + 𝜆𝜆2 −
𝑜𝑜(𝛿𝛿)
𝛿𝛿

  𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆1 + 𝜆𝜆2  as 𝛿𝛿 → 0
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Example
Our system has 2 potential points of failure (assume these are independent):

Time to failure is Exponentially-distributed with mean 1000 

Q:  What is  𝑷𝑷 system failure caused by power supply ?

Q:  What is the time until there is a system failure 
      of either type?

Time to failure is Exponentially-distributed with mean 500 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸
1

500
+

1
1000

1
500

1
500 + 1

1000
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The Poisson Process (P.P.)

 P.P. is analytically tractable

 P.P. occurs in nature whenever look at aggregate stream from a large 
number of independent users (as is typical for mail server, web server, 
data center, etc.)

The Poisson process is the most widely used model for the arrivals into a system

timex xx x xxxx

x = “arrival time” or “event time”
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Before we start … recall the Poisson distribution

Q:  What is 𝑝𝑝𝑋𝑋 𝑖𝑖 ? 

𝑋𝑋 ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆)

𝑝𝑝𝑋𝑋 𝑖𝑖 = 𝑒𝑒−𝜆𝜆⋅𝜆𝜆𝑖𝑖

𝑖𝑖! where 𝑖𝑖 = 0,1, 2, 3, …

Q:  What is 𝑬𝑬 𝑋𝑋 ?  What is 𝑽𝑽𝒂𝒂𝒂𝒂(𝑋𝑋)? 𝑬𝑬 𝑋𝑋 = 𝑽𝑽𝒂𝒂𝒂𝒂 𝑋𝑋 = 𝜆𝜆 

Q:  What is the shape of the Poisson?
Like a Normal,
but starts at 0.
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2 Properties of the Poisson process

1. Independent Increments

2. Stationary Increments 

These two properties 
define the 
Poisson Process
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Independent Increments

x = “arrival time” or “event time”

x timexx x xxxx
0

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = # 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

⇒  𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ⊥  𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 If blue and pink intervals
are non-overlapping

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = # 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖



"Introduction to Probability for Computing", Harchol-Balter '24
23

Independent Increments

x = “arrival time” or “event time”

x timexx x xxxx

Defn 12.7:   An event sequence has independent increments if the numbers of 
events that occur in disjoint time intervals are independent.   Specifically, for all 
𝑡𝑡0 < 𝑡𝑡1 < 𝑡𝑡2 < ⋯ < 𝑡𝑡𝑛𝑛:

𝑁𝑁 𝑡𝑡1 − 𝑁𝑁 𝑡𝑡0  ⊥  𝑁𝑁 𝑡𝑡2 − 𝑁𝑁 𝑡𝑡1   ⊥  … ⊥  𝑁𝑁 𝑡𝑡𝑛𝑛 − 𝑁𝑁 𝑡𝑡𝑛𝑛−1

𝑡𝑡0 𝑡𝑡1 𝑡𝑡2 𝑡𝑡3 𝑡𝑡4

𝑁𝑁 𝑡𝑡 = # 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡
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Independent Increments

x = “arrival time” or “event time”

x timexx x xxxx
𝑡𝑡0 𝑡𝑡1 𝑡𝑡2 𝑡𝑡3 𝑡𝑡4

For discussion: Which of these event sequences have independent increments?

1. Births of children

2. People entering a store

3. Goals scored by a particular soccer player 
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Stationary Increments

x = “arrival time” or “event time”

x timexx x xxxx
0

Defn 12.9:   An event sequence has stationary increments if the number of 
events during a time period depends only on the length of the time period and not on 
its starting point.  That is:

𝑁𝑁 𝑡𝑡 + 𝑠𝑠 − 𝑁𝑁 𝑠𝑠
has the same distribution for all 𝑠𝑠.



"Introduction to Probability for Computing", Harchol-Balter '24
26

Poisson Process:  First definition

x = “arrival time” or “event time”

x timexx x xxxx
0

First definition of the Poisson Process: 
  
A Poisson Process with rate 𝝀𝝀 is a sequence of events s.t.
1.  𝑁𝑁 0 = 0
2.  The process has independent increments
3.  The number of events in any interval of length 𝑡𝑡 is Poisson distributed with 

mean 𝜆𝜆𝜆𝜆. 

∀𝑠𝑠, 𝑡𝑡 ≥ 0,  𝑷𝑷 𝑁𝑁 𝑡𝑡 + 𝑠𝑠 − 𝑁𝑁 𝑠𝑠 = 𝑛𝑛 =
𝑒𝑒−𝜆𝜆𝜆𝜆 ⋅ 𝜆𝜆𝜆𝜆 𝑛𝑛

𝑛𝑛!
 𝑛𝑛 = 0, 1, 2, …

The rate of an event sequence refers to the 
average number of events per unit time.  
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x timexx x xxxx
0

First definition of the Poisson Process: 
  
A Poisson Process with rate 𝝀𝝀 is a sequence of events s.t.
1.  𝑁𝑁 0 = 0
2.  The process has independent increments
3.  The number of events in any interval of length 𝑡𝑡 is Poisson distributed with 

mean 𝜆𝜆𝜆𝜆. 

∀𝑠𝑠, 𝑡𝑡 ≥ 0,  𝑷𝑷 𝑁𝑁 𝑡𝑡 + 𝑠𝑠 − 𝑁𝑁 𝑠𝑠 = 𝑛𝑛 =
𝑒𝑒−𝜆𝜆𝜆𝜆 ⋅ 𝜆𝜆𝜆𝜆 𝑛𝑛

𝑛𝑛!
 𝑛𝑛 = 0, 1, 2, …

Q: Why only 
independent 
increments?

A: Third item implies
stationary increments.   
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x timexx x xxxx
0

First definition of the Poisson Process: 
  
A Poisson Process with rate 𝝀𝝀 is a sequence of events s.t.
1.  𝑁𝑁 0 = 0
2.  The process has independent increments
3.  The number of events in any interval of length 𝑡𝑡 is Poisson distributed with 

mean 𝜆𝜆𝜆𝜆. 

∀𝑠𝑠, 𝑡𝑡 ≥ 0,  𝑷𝑷 𝑁𝑁 𝑡𝑡 + 𝑠𝑠 − 𝑁𝑁 𝑠𝑠 = 𝑛𝑛 =
𝑒𝑒−𝜆𝜆𝜆𝜆 ⋅ 𝜆𝜆𝜆𝜆 𝑛𝑛

𝑛𝑛!
 𝑛𝑛 = 0, 1, 2, …

Q: What do we
know about 

𝑁𝑁 𝑡𝑡 ?

A:
𝑁𝑁 𝑡𝑡 ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆𝜆𝜆)
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x timexx x xxxx
0

First definition of the Poisson Process: 
  
A Poisson Process with rate 𝝀𝝀 is a sequence of events s.t.
1.  𝑁𝑁 0 = 0
2.  The process has independent increments
3.  The number of events in any interval of length 𝑡𝑡 is Poisson distributed with 

mean 𝜆𝜆𝜆𝜆. 

∀𝑠𝑠, 𝑡𝑡 ≥ 0,  𝑷𝑷 𝑁𝑁 𝑡𝑡 + 𝑠𝑠 − 𝑁𝑁 𝑠𝑠 = 𝑛𝑛 =
𝑒𝑒−𝜆𝜆𝜆𝜆 ⋅ 𝜆𝜆𝜆𝜆 𝑛𝑛

𝑛𝑛!
 𝑛𝑛 = 0, 1, 2, …

Q: Why is 𝜆𝜆
called the “rate”
of the process?

𝐴𝐴𝐴𝐴𝐴𝐴. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝐸𝐸[𝑁𝑁 𝑡𝑡 ]

𝑡𝑡
=
𝜆𝜆𝜆𝜆
𝑡𝑡

= 𝜆𝜆.

A:
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Q: What does an event process with both 
      stationary and independent increments look like?

A:  At any point in time, the process probabilistically restarts itself.

 Independent Increments  From any point on, the process is   
independent of all that occurred previously.

 Stationary Increments  When the process restarts itself, it has the 
same distribution as the original process

So the process has no memory!  
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Poisson Process:  Second definition

x = “arrival time” or “event time”

x timexx x xxx
0

Second definition of the Poisson Process: 
  
A Poisson Process with rate 𝝀𝝀 is a sequence of events s.t.
1.  𝑁𝑁 0 = 0
2.  The sequence of inter-event times are i.i.d. 𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆  random variables. 

The rate of an event sequence refers to the 
average number of events per unit time.  

𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆  𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆  𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆  
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Poisson Process:  Second definition

time

𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆

0 𝛿𝛿 2𝛿𝛿 3𝛿𝛿 4𝛿𝛿 5𝛿𝛿 6𝛿𝛿 7𝛿𝛿 8𝛿𝛿 9𝛿𝛿 10𝛿𝛿 11𝛿𝛿

𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆

𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆  𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆  𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆  

Every 𝛿𝛿-step, flip a coin with probability 𝜆𝜆𝛿𝛿 of heads.  
The sequence of heads forms a Poisson process!
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Definition 1  Definition 2 

Let 𝜏𝜏1, 𝜏𝜏2, 𝜏𝜏3, …be the inter-event times of a sequence of events.    

WTS: 𝜏𝜏𝑖𝑖∼ 𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆

𝑷𝑷 𝜏𝜏𝑛𝑛+1 > 𝑡𝑡 ∑𝑖𝑖=1 
𝑛𝑛 𝜏𝜏𝑖𝑖 = 𝑠𝑠

𝑷𝑷 𝜏𝜏1 > 𝑡𝑡

= 𝑷𝑷{0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 (𝑠𝑠, 𝑠𝑠 + 𝑡𝑡)}

= 𝑒𝑒−𝜆𝜆𝜆

indpt incr.

stat.  incr.

PF: 
= 𝑷𝑷 𝑁𝑁 𝑡𝑡 = 0 = e−𝜆𝜆𝜆𝜆=

𝑒𝑒−𝜆𝜆𝜆𝜆 ⋅ 𝜆𝜆𝜆𝜆 0

0!

= 𝑷𝑷 0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑠𝑠, 𝑠𝑠 + 𝑡𝑡  ∑𝑖𝑖=1 
𝑛𝑛 𝜏𝜏𝑖𝑖 = 𝑠𝑠}



"Introduction to Probability for Computing", Harchol-Balter '24
34

Definition 2  Definition 1 
By Defn 2:  

x timexx
0 𝛿𝛿 2𝛿𝛿 3𝛿𝛿 4𝛿𝛿

𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆

5𝛿𝛿 6𝛿𝛿

𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆

7𝛿𝛿 8𝛿𝛿 9𝛿𝛿

𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆

𝛿𝛿 2𝛿𝛿

𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆

𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆  𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆  𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆  

𝑁𝑁 𝑡𝑡 = Number of successes by time t

∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 #flips , probability of success of each flip

WTS: N t ∼ Poisson λt ,  and also stationary increments

∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝑡𝑡
𝛿𝛿 , 𝜆𝜆𝜆𝜆

Q:  What do we know about
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑛𝑛, 𝑝𝑝  for large  
𝑛𝑛 and tiny 𝑝𝑝?

A:  By Exercise 3.8, 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑛𝑛, 𝑝𝑝 → 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑛𝑛𝑛𝑛→ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑡𝑡
𝛿𝛿 ⋅ 𝜆𝜆𝜆𝜆  as 𝛿𝛿 → 0

= 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝜆𝜆𝜆𝜆
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Number Poisson Arrivals during a Random Time
Jobs arrive to a system according to a Poisson process with rate 𝜆𝜆.

Q:  What is 𝑬𝑬 𝐴𝐴𝑆𝑆 ?

Let 𝐴𝐴𝑆𝑆 = # arrivals occur during random time 𝑆𝑆   (assume 𝑆𝑆 is independent of the arrival process)   

Let 𝐴𝐴𝑡𝑡 = # arrivals occur during 𝑡𝑡

𝐴𝐴𝑡𝑡 ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝜆𝜆𝜆𝜆  ⇒  𝑬𝑬 𝐴𝐴𝑡𝑡 = 𝜆𝜆𝜆𝜆

𝑬𝑬 𝐴𝐴𝑆𝑆 = �
𝑡𝑡=0

∞
𝑬𝑬 𝐴𝐴𝑆𝑆 𝑆𝑆 = 𝑡𝑡] ⋅  𝑓𝑓𝑆𝑆 𝑡𝑡 𝑑𝑑𝑑𝑑 

= �
𝑡𝑡=0

∞
𝑬𝑬[𝐴𝐴𝑡𝑡] ⋅  𝑓𝑓𝑆𝑆 𝑡𝑡 𝑑𝑑𝑑𝑑 = �

𝑡𝑡=0

∞
𝜆𝜆𝜆𝜆 ⋅  𝑓𝑓𝑆𝑆 𝑡𝑡 𝑑𝑑𝑑𝑑 = 𝜆𝜆 𝑬𝑬[𝑆𝑆]

Q:  How is 𝐴𝐴𝑡𝑡      
distributed?
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Merging Independent Poisson processes
Theorem 12.13 (Poisson Merging):   Given two independent Poisson processes, where 
process 1 has rate 𝜆𝜆1 and process 2 has rate 𝜆𝜆2, the merge of these is a single Poisson 
process with rate 𝜆𝜆1 + 𝜆𝜆2.  

2 proofs 
at least!

Proof: Alternate Proof:

= min 𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆1 ,𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆2 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜆𝜆1 + 𝜆𝜆2)

Time to next event of merged process 𝑁𝑁1 𝑡𝑡 ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆1𝑡𝑡) 𝑁𝑁2 𝑡𝑡 ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆2𝑡𝑡)

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡 = 𝑁𝑁1 𝑡𝑡 + 𝑁𝑁2(𝑡𝑡) ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆1𝑡𝑡 +  𝜆𝜆2𝑡𝑡)
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Poisson Splitting
Theorem 12.14 (Poisson Splitting):   Given a Poisson process with rate 𝜆𝜆, suppose each 
event is independently classified “type A” with probability 𝑝𝑝 and “type B” with 
probability 1 − 𝑝𝑝. Then the A’s form a Poisson process with rate 𝜆𝜆𝑝𝑝 and the B’s form a 
Poisson process with rate 𝜆𝜆(1 − 𝑝𝑝), and these processes are independent

Hard to believe because time between A’s doesn’t look Exponentially distributed!
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Poisson Splitting
Intuition:

Type A success 
happens only when
both coins are heads!

Time to next type A is 
time until Heads for coin
with probability (𝜆𝜆𝜆𝜆)𝛿𝛿.

∴ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜆𝜆𝜆𝜆)

See your textbook
for full proof.
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Uniformity
Theorem 12.15 (Uniformity):   Given that one event of a Poisson process has occurred 
by time 𝑡𝑡, that event is equally likely to have occurred anywhere in [0, 𝑡𝑡]. 

Theorem 12.15 (Uniformity -- Generalization):   If 𝑘𝑘 events of a Poisson process occur 
by time 𝑡𝑡, the 𝑘𝑘 events are distributed independently and uniformly in [0, 𝑡𝑡]. 

Proof:

𝑷𝑷 𝑇𝑇1 < 𝑠𝑠 𝑁𝑁 𝑡𝑡 = 1}

Let 𝑇𝑇1 be the time of that one event:

=
𝑷𝑷{𝑇𝑇1 < 𝑠𝑠 & 𝑁𝑁 𝑡𝑡 = 1}

𝑷𝑷{𝑁𝑁 𝑡𝑡 = 1}
=
𝑷𝑷{1 event in 0, 𝑠𝑠  & 0 events in [𝑠𝑠, 𝑡𝑡]}

𝑒𝑒−𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆 1

1!

=
𝑷𝑷 1 event in 0, 𝑠𝑠 ⋅ 𝑷𝑷{0 events in [𝑠𝑠, 𝑡𝑡]} 

𝑒𝑒−𝜆𝜆𝜆𝜆 ⋅ (𝜆𝜆𝜆𝜆)

=
𝑒𝑒−𝜆𝜆𝜆𝜆 ⋅ 𝜆𝜆𝜆𝜆 ⋅ 𝑒𝑒−𝜆𝜆(𝑡𝑡−𝑠𝑠) ⋅ 𝜆𝜆 𝑡𝑡 − 𝑠𝑠 0 

𝑒𝑒−𝜆𝜆𝜆𝜆 ⋅ 𝜆𝜆𝜆𝜆
=
𝑠𝑠
𝑡𝑡
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