Chapter 13
Generating Random Variables
for Simulation



We’ve seen many examples of distributions.
How do we generate instances of a given

distribution?

Two methods:

d Inverse Transform method Both assume we
already have

3 Accept-Reject method generator for U(0,1)



Inverse Transform Method

Requirement: To generate instances of r.v. X:

1. Need to know c.d.f. of X, thatis, Fy(x) = P{X < x}

2. Needto be able to easily invert Fy(x),i.e. get x from Fy(x)



Inverse Transform Method

Let u be our random instance of U(0,1). Want to map u to an instance x of the r.v. X.

U0.1)
g
y 11 T
Let g~ be the mapping
that takes u’s to x’s: wlo |
0 p > X

Q: What properties should g have?
» Avaluein |0, x| should be output with probability: Fx (x)

» Avaluein |0, x| is output with probability:  u

) U= Fy(x) e x=Frl W) ) g(-) = Fx(")
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Inverse Transform Method

Let u be our random instance of U(0,1). Want to map u to an instance x of the r.v. X.
U(0,1)

A

| TR

Let g~ be the mapping
that takes u’s to x’s: wlo |

0 x

Inverse Transform method to generate continuous r.v. X:

1. Generate randomu € U(0,1).
2. Return x such that Fy(x) = u.



Inverse Transform Method: Example

Q: Generate X ~ Exp(4), givenu € U(0,1).

Fy(x) =u
l—e ™ =u
e ™M™ =1-u

—Ax = In(1 — u)

Return x = —Zln(l —Uu)



Inverse Transform Method for Discrete R.V.

Same idea applies to discrete r.v.s.
Let u be our random instance of U(0,1). Want to map u to an instance x of the r.v. X.

U(,1) |
g function
(X W.P. Do A j : : shown
X1 W.DP. D1 1 ,,,,,,,,,,, ,,,,,,,,,, . in blue.
=19 P3 5 a
kxk W.p- pk p2 ........... |,___,_,_; _____
28 (et i
Warning: Need to start by arranging Do [
valuess.t. xp < x1 < Xy < -+- < Xy, i 5 ; | s
0 X0 X X9 X3
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Inverse Transform Method for Discrete R.V.

Inverse Transform method to generate
discrete r.v. X:

1. Generate randomu € U(0,1).

2. If 0 < u < p,, output _*o .
If po < u < py + py, output _*1 .
tpo + 1

IfZl 0o Pi <US Zl o Di, then output x,,
where 0 < ¥ < k

<u < pg+ pg+ py, output _X2 .

To be practical, requires closed-form
and invertible expression for Fy(x).

L)

g function
shown
in blue.




Inverse Transform Method for Discrete R.V.

Example: Generate instance x of X Solution: We want to determine x
given instance u of U(0,1). as a function of u.
(1 w.p. 0.1 e (i) = 0.1
y_ )2 wp. 01 al |
1 Fe(x) = PX <3} = ) py(® =x-(0)
L10 w.p. 0.1 i=1

Set u=Fy(x) = x-(0.1)

Hence x = [10u ] Note we

need
ceiling.

OOO




Inverse Transform Method for Discrete R.V.

Example:

Generate instances of X ~ Geometric(p)

Solution:

See Exercise 13.3 in your textbook.



Interview Question

Generate instance of X where:

(1 .D. =107k, =10°°-0.33
2 o 1076 - kl — 1076 - 1.63 R
X = 4 WP P2 = e L All of the constants,
3 W, p p3 — .%.O * k3 — 10 ‘ 075 k]_; k2; k3, " k106

are between (0, 2).

106 W.p. Pigs = 1076 - kyge = 107 - 1.02

Question: Suppose you know all the p;'s. How do you generate an instance of X?
Inverse Transform:
1. Compute all the partial sums. Store in an array A[1] to A[10°].
2. Given u, find approximate bin in array: x =~ [u - 10°],
then search around there for partial sum interval that contains u.




Interview Question

Generate instance of X where:

(1 w.p p;=10"°%-k; =107°-0.33

2 =106k, = 1076 - 1.63 alven:
X = WP P2 = e L All of the constants,
3 W, p p3 — .%.O * k3 — 10 ‘ 075 k]_; k2; k3, " k106

are between (0, 2).
\106 W.P. D106 = 107° . kige = 107%.1.02 0,2)

Question: Now suppose you don’t know the p;’'s. Can look up one at a time,

but takes time to look up each one, and they change over time.

Can’t get partial sums =2 Can’t use Inverse Transform Method
=» Need new approach!



Interview Question

Generate instance of X where:

(1 .D. =107k, =10°°-0.33
2 o 1076 - kl — 1076 - 1.63 R
X = 4 WP P2 = e L All of the constants,
3 W, p p3 — .%.O * k3 — 10 ‘ 075 k]_; k2; k3, " k106

are between (0, 2).

106 W.p. Pigs = 1076 - kyge = 107 - 1.02

Question: Now suppose you don’t know the p;’'s. Can look up one at a time,
but takes time to look up each one, and they change over time.

Intuition
behind

Accept/Reject
method

> Imaginerv. Y, wherep; = 107°, Vi
> Generate instance i of Y (easy to do). o 0O

> Now look up px(i). Returni asinstance of X if py (i) is high compared to py(i)?

2



A method with fewer requirements ...

Goal: To generate instances of rv. X

Inverse Transform Method Accept-Reject Method

1. Need to know closed-form Fy (x) 1. Need the p.m.f. of X (or p.d.f,, if continuous)

2. Need to know be able to easily 2. Need to know how to generate
invert Fy(x),i.e. get x from some otherr.v. Y, where X and
Fy(x) =u Y take on the same set of values,

l.e.,

px(i) >0 & py(i) >0
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A method with fewer requirements ...

Goal: To generate instances of rv. X

Accept-Reject Method

1. Need the p.m.f. of X (or p.d.f,, if continuous)

2. Need to know how to generate
some otherr.v. Y, where X and
Y take on the same set of values,
l.e.,

High-level idea:

We generate an instance of Y.

Then we some probability we return
that value as our instance of X (accept).
Otherwise, we reject that value and try
again.

px(i) >0 & py(i) >0
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Accept-Reject Method

Accept-Reject method to generate discrete r.v. X:

1. Find a discrete r.v. Y which we already know how to generate, where
px(D) >0 o py()) >0
2. Let ¢ > 1 be the smallest constant s.t.

I
pX(,) <, Vi st. p
py (i)

Relative likelihood
of i being an instance

of X versus an instance
3. Generate an instance of Y. Call this instance of V.

4. With probability] AcceptRatio(i) = fp’;((ii)) &!I The ¢ ensures

Else, reject i and return to step AcceptRatio < 1.




Accept-Reject Method: Correctness

Claim: P{X issettoi} = pyx(i)

Proof:  pracoftime i is generated & accepted = P{i is generated} - P{i is accepted | i is generated}
px (i) _ px (1)
¢ py (1) 5

= py (i) -

Frac of time any value is accepted = z Frac of time i is generated & accepted
i
_ z px (1) i 1
=2 . -
l

Frac of time i is generated and accepted C —| o, ()
: : X

Frac of time any value is accepted 1

C

P{X issettoi} =




Accept-Reject Method

Theorem: On average, only need to generate c values of Y before one is accepted.

This is easy. Use what we just proved!

Q| =

Frac of time any value is accepted =

= E|# values generated until one is accepted] = ¢



Back to the Interview Question

Generate instance of X where: Given: All the constants, k4, ky, k3, ..., kyg6
are between (0, 2).

(1 w.p. py=10"° -k, =107°-0.33
2 W.p. P = 10_6 . kz = 10_6 - 1.63

uestion: You don’t know the »;’'s. Can look
X — < 3 Wp p3 — 10_6 . k3 — 10_6 . 075 Q pl

up one at a time, but takes time to look up
106 w.p. pigs = 1076 kyge = 107 - 1.02 each one, and they change over time.

Solution: Accept-Reject!

1. LetY =[1,2,3,...,10°], each with probability 107° a

px (1)

2. Observe e <c, Vi
Y
3. Generate i: instance of Y. Look up px (i) only. How many lookups are
' ired | tation?
4. With probability Px® . ACCEPT RETURN X = i. required in expectation

c-py (1)
Else, Return to Step 3.




Accept-Reject Method: Continuous

Accept-Reject method to generate continuous r.v. X with p.d.f. fy(t):

1. Find a discrete r.v. Y which we already know how to generate, where
fx@®) >0 o fp(t)>0

2. Letc > 1 be the smallest constant s.t.

fx(t)
0 <c, Vt s.t. fy(t) > 0.

3. Generate aninstance t of Y.

fx(t)
cfy(t)’

4. With probability AcceptRatio(t) = accept t and return X = t.

Else, reject t and return to step 3.



Accept-Reject Method: Example 1

GOAL: Generaterv. X where f4(t) =20t(1—1¢t)3, 0<t<1

éf:‘ir)- Q: Given this image of fX(t) , what’s a good choice for Y ?

i)/ NG A fy() =1, 0<t<1 hassamerange and is easy to generate.
i e

0.5|f -------- D, T -1

>~ , . Q: Looking at the picture, how high is ¢ approximately ?
0 02 04 06 08 1

A: c = 2.

So only need 2 guesses to attempts on averge to generate X.



Accept-Reject Method: Example 1

GOAL: Generaterv. X where f4(t) =20t(1—1¢t)3, 0<t<1

0 More precisely:
¢ Bl Dol et

t
i ¢ = max {f )} = max 20t(1 — t)?
1 AT s e e, t t

05 e S

t

0 02 04 06 08 1

a 206(1—-1t)3) =0 © t=

T 64

I @ _ 0 <1> (§>3 135



Accept-Reject Method: Example 2

GOAL: Generaterv. N where N ~ Normal(0,1)

Y Suffices to generate X = |N| and then multiply X by — 1 with probability %

Pl ST S oo
Q: What'’s a good choice for r.v. Y with range 0 to ? S N N A
0.8
0.6 = Jx (@)
A: letY ~Exp(1). fy(t)=e™f 0<t<oo |1\ A0
0.2 ‘
> !

Q: From the picture, how high is ¢ approximately ? 0

A: c = 1.3.
So only need 1.3 guesses to attempts on averge to generate X.



Accept-Reject Method: Example 2

More precisely:

i {fx(t)} oz
C = IMdax = max |— e 2
P @) T r )

2
Suffices to maximize t — %

O—d t s =1—-t & t=1
o dt 2/ B

_ @) 2e Q=

_fY(l) _V n

C
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