Chapter 13 Generating Random Variables for Simulation

We've seen many examples of distributions. How do we generate instances of a given distribution?

Two methods:

Inverse Transform method

Accept-Reject method

Both assume we already have generator for $U(0,1)$

Inverse Transform Method

Requirement: To generate instances of r.v. X :

- 1. Need to know c.d.f. of X, that is, $F_X(x) = P\{X \leq x\}$
- 2. Need to be able to easily invert $F_X(x)$, i.e. get x from $F_X(x)$

Inverse Transform Method

Let u be our random instance of $U(0,1)$. Want to map u to an instance x of the r.v. X.

Q: What properties should *g* have?

A value in $[0, x]$ should be output with probability: $F_X(x)$

A value in $[0, x]$ is output with probability: \underline{u}

$$
u = F_X(x) \qquad \longrightarrow x = F_X^{-1}(u) \qquad \longrightarrow g(\cdot) = F_X(\cdot)
$$

Inverse Transform Method

Let u be our random instance of $U(0,1)$. Want to map u to an instance x of the r.v. X.

Inverse Transform method to generate continuous r.v. X:

- 1. Generate random $u \in U(0,1)$.
- 2. Return x such that $F_X(x) = u$.

Inverse Transform Method: Example

Q: Generate $X \sim Exp(\lambda)$, given $u \in U(0,1)$.

 $F_X(x) = u$ $1 - e^{-\lambda x} = u$ $e^{-\lambda x} = 1 - u$ $-\lambda x = \ln(1-u)$ $x = -\frac{1}{3}$ Return $x = -\frac{1}{\lambda} \ln(1 - u)$

Same idea applies to **discrete** r.v.s.

Let u be our random instance of $U(0,1)$. Want to map u to an instance x of the r.v. X.

$X =$	$\begin{bmatrix} x_0 & w & p & p_0 \\ x_1 & w & p & p_1 \\ \vdots & & & & \\ x_k & w & p & p_k \\ \end{bmatrix}$	$\begin{bmatrix} g \text{ function} \\ \text{shown} \\ \text{in blue} \\ \text{in blue} \\ \text{in blue} \end{bmatrix}$																																												
Warning: Need to start by arranging values s.t. $x_0 < x_1 < x_2 < \cdots < x_k$	p_1	p_2	p_3	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8	p_9	p_9	p_0	p_0	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8	p_9	p_9	p_0	p_0	p_1	p_2	p_3	p_6	p_7	p_8	p_9	p_9	p_9	p_9	p_0	p_0	p_1	p_2	p_3	p_7	p_8	p_9	p_9

Inverse Transform method to generate discrete r.v. X:

Generate random $u \in U(0,1)$.

2. If $0 < u \leq p_0$, output $\frac{x_0}{a}$. If $p_0 < u \le p_0 + p_1$, output $\frac{x_1}{x_1}$. If $p_0 + p_1 < u \le p_0 + p_1 + p_2$, output $\frac{x_2}{x_1}$.

If $\sum_{i=0}^{l^2-1} p_i < u \leq \sum_{i=0}^{l^2} p_i$, then output x_{l^2} , where $0 \leq \ell \leq k$

To be practical, requires closed-form and invertible expression for $F_X(x)$.

Example: Generate instance x of X given instance u of $U(0,1)$.

$$
X = \begin{cases} 1 & \text{w.p. 0.1} \\ 2 & \text{w.p. 0.1} \\ \vdots \\ 10 & \text{w.p. 0.1} \end{cases}
$$

Solution: We want to determine as a function of u .

() = 0.1 () = ≤ = � =1 = ⋅ (0.1) Set = () = ⋅ (0.1) Hence = ⌈10 ⌉ Note we need ceiling.

Example:

Generate instances of $X \sim Geometric(p)$

Solution:

See Exercise 13.3 in your textbook.

Interview Question

Generate instance of X where:

$$
X = \begin{cases} 1 & \text{w.p. } p_1 = 10^{-6} \cdot k_1 = 10^{-6} \cdot 0.33 \\ 2 & \text{w.p. } p_2 = 10^{-6} \cdot k_2 = 10^{-6} \cdot 1.63 \\ 3 & \text{w.p. } p_3 = 10^{-6} \cdot k_3 = 10^{-6} \cdot 0.75 \\ \dots \\ 10^6 & \text{w.p. } p_{10^6} = 10^{-6} \cdot k_{10^6} = 10^{-6} \cdot 1.02 \end{cases} \text{ a}
$$

iven: All of the constants, $k_1, k_2, k_3, ..., k_{106}$ re between $(0, 2)$.

Question: Suppose you know all the p_i 's. How do you generate an instance of X ?

Inverse Transform:

- 1. Compute all the partial sums. Store in an array $A[1]$ to $A[10^6]$.
- 2. Given u , find *approximate* bin in array: $x \approx [u \cdot 10^6]$, then search around there for partial sum interval that contains u .

Interview Question

Generate instance of X where:

$$
X = \begin{cases} 1 & \text{w.p. } p_1 = 10^{-6} \cdot k_1 = 10^{-6} \cdot 0.33 \\ 2 & \text{w.p. } p_2 = 10^{-6} \cdot k_2 = 10^{-6} \cdot 1.63 \\ 3 & \text{w.p. } p_3 = 10^{-6} \cdot k_3 = 10^{-6} \cdot 0.75 \\ \dots \\ 10^6 & \text{w.p. } p_{10^6} = 10^{-6} \cdot k_{10^6} = 10^{-6} \cdot 1.02 \end{cases}
$$

Given: All of the constants, $k_1, k_2, k_3, \ldots, k_{10^6}$ are between $(0, 2)$.

Question: Now suppose you don't know the p_i 's. Can look up one at a time, but takes time to look up each one, and they change over time.

> . Can't get partial sums \rightarrow Can't use Inverse Transform Method Need new approach!

Interview Question

Generate instance of X where:

$$
X = \begin{cases} 1 & \text{w.p. } p_1 = 10^{-6} \cdot k_1 = 10^{-6} \cdot 0.33 \\ 2 & \text{w.p. } p_2 = 10^{-6} \cdot k_2 = 10^{-6} \cdot 1.63 \\ 3 & \text{w.p. } p_3 = 10^{-6} \cdot k_3 = 10^{-6} \cdot 0.75 \\ \dots \\ 10^6 & \text{w.p. } p_{10^6} = 10^{-6} \cdot k_{10^6} = 10^{-6} \cdot 1.02 \end{cases} \quad \text{and} \quad k_1
$$

/en: of the constants, , k_2 , k_3 , ..., k_{10^6} between $(0, 2)$.

Question: Now suppose you don't know the p_i 's. Can look up one at a time, but takes time to look up each one, and they change over time. **Intuition**

\n- ► Imagine r.v. Y, where
$$
p_i = 10^{-6}
$$
, $\forall i$
\n- ▶ Generate instance *i* of *Y* (easy to do).
\n- ▶ Now look up $p_X(i)$. Return *i* as instance of *X* if $p_X(i)$ is high compared to $p_Y(i)$?
\n

A method with fewer requirements …

Goal: To generate instances of r.v. X

Inverse Transform Method Method Method Accept-Reject Method

- 1. Need to know closed-form $F_X(x)$
- 2. Need to know be able to easily invert $F_X(x)$, i.e. get x from $F_X(x) = u$

- 1. Need the p.m.f. of X (or p.d.f., if continuous)
- 2. Need to know how to generate some other r.v. Y , where X and Y take on the same set of values, i.e.,

$$
p_X(i) > 0 \Leftrightarrow p_Y(i) > 0
$$

A method with fewer requirements …

Goal: To generate instances of r.v. X

High-level idea:

We generate an instance of Y . Then we some probability we return that value as our instance of X (accept). Otherwise, we reject that value and try again.

Accept-Reject Method

- 1. Need the p.m.f. of X (or p.d.f., if continuous)
- 2. Need to know how to generate some other r.v. Y , where X and Y take on the same set of values, i.e.,

$$
p_X(i) > 0 \Leftrightarrow p_Y(i) > 0
$$

Accept-Reject Method

Accept-Reject method to generate discrete r.v. X:

1. Find a discrete r.v. Y which we already know how to generate, where $p_Y(i) > 0 \Leftrightarrow p_Y(i) > 0$

Accept-Reject Method: Correctness

Claim: $P{X$ is set to i = $p_X(i)$

Proof: Frac of time *i* is generated & accepted = $P\{i \text{ is generated}\}\cdot P\{i \text{ is accepted} \mid i \text{ is generated}\}\$

$$
= p_Y(i) \cdot \frac{p_X(i)}{c \, p_Y(i)} = \boxed{\frac{p_X(i)}{c}}
$$

Frac of time any value is accepted $= \sum_i$ Frac of time i is generated & accepted ι $=$ \sum ι $\underline{X}(l)$ = 1

Accept-Reject Method

Theorem: On average, only need to generate c values of Y before one is accepted.

 \Rightarrow **E**[# values generated until one is accepted] = c

Back to the Interview Question

Generate instance of X where:

$$
X = \begin{cases} 1 & \text{w.p. } p_1 = 10^{-6} \cdot k_1 = 10^{-6} \cdot 0.33 \\ 2 & \text{w.p. } p_2 = 10^{-6} \cdot k_2 = 10^{-6} \cdot 1.63 \\ 3 & \text{w.p. } p_3 = 10^{-6} \cdot k_3 = 10^{-6} \cdot 0.75 \\ \dots & \dots \\ 10^6 & \text{w.p. } p_{10^6} = 10^{-6} \cdot k_{10^6} = 10^{-6} \cdot 1.02 \end{cases}
$$

Given: All the constants, k_1 , k_2 , k_3 , ..., k_{10^6} are between $(0, 2)$.

Question: You don't know the p_i 's. Can look up one at a time, but takes time to look up each one, and they change over time.

Solution: Accept-Reject! 1. Let $Y = [1, 2, 3, ..., 10^6]$, each with probability 10^{-6} 2. Observe $\frac{p_X(t)}{p_X(t)}$ $\frac{d}{p_Y(i)} < c$, $\forall i$ 3. Generate *i*: instance of Y. Look up $p_X(i)$ only. 4. With probability $\frac{p_{X}(i)}{c \cdot p_{Y}(i)}$: ACCEPT i , RETURN $X = i$. Else, Return to Step 3. What is c ? 2 How many lookups are required in expectation? $c = 2$

Accept-Reject Method: Continuous

Accept-Reject method to generate continuous r.v. X with p.d.f. $f_X(t)$:

- 1. Find a discrete r.v. Y which we already know how to generate, where $f_Y(t) > 0 \Leftrightarrow f_Y(t) > 0$
- 2. Let $c > 1$ be the smallest constant s.t. $f_X(t)$ $\frac{f_X(t)}{f_Y(t)} \leq c, \qquad \forall t \text{ s.t. } f_X(t) > 0.$
- 3. Generate an instance t of Y .
- 4. With probability $AcceptRatio(t) = \frac{f_X(t)}{cf_Y(t)}$, accept t and return $X = t$. Else, reject t and return to step 3.

GOAL: Generate r.v. *X* where $f_X(t) = 20t(1-t)^3$, $0 < t < 1$

Q: Given this image of $f_X(t)$, what's a good choice for Y ?

A: $f_Y(t) = 1$, $0 < t < 1$ has same range and is easy to generate.

Q: Looking at the picture, how high is c approximately?

A: $c \approx 2$. So only need 2 guesses to attempts on averge to generate X .

GOAL: Generate r.v. *X* where $f_X(t) = 20t(1-t)^3$, $0 < t < 1$

"Introduction to Probability for Computing", Harchol-Balter '24

GOAL: Generate r.v. N where $N \sim Normal(0,1)$

Suffices to generate $\overline{X} = |N|$ and then multiply X by $-$ 1 with probability $\frac{1}{2}$ 2

Q: What's a good choice for r.v. *Y* with range 0 to ∞ ?

A: Let
$$
Y \sim Exp(1)
$$
. $f_Y(t) = e^{-t}, 0 < t < \infty$

Q: From the picture, how high is c approximately?

A: $c \approx 1.3$. So only need 1.3 guesses to attempts on averge to generate X .

More precisely:

$$
c = \max_{t} \left\{ \frac{f_X(t)}{f_Y(t)} \right\} = \max_{t} \sqrt{\frac{2}{\pi}} e^{t - \frac{t^2}{2}}
$$

Surfices to maximize $t - \frac{t^2}{2}$

$$
0 = \frac{d}{dt} \left(t - \frac{t^2}{2} \right) = 1 - t \quad \Leftrightarrow \quad t = 1
$$

$$
c = \frac{f_X(1)}{f_Y(1)} = \sqrt{\frac{2e}{\pi}} \approx 1.3
$$

