Chapter 14
Event-Driven Simulation



Queueing Theory Terminology: Simplest Model

—

“the queue” “the server”
FCFS
[ The server is the CPU [ Jobs arrive over time. The interarrival time is
[ A job is a red rectangle the time between subsequent arrivals.
U The size of a job is the height of the O The average arrival rate (1) is the average
rectangle. number of arrivals per sec:
d Size = S = # seconds of CPU O A; = number of arrivals by time t
needed by the job 0 = lim

[ Only one job is served (run) at a time. t—oo t

[ Jobs are served in FCFS order.
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Stochastic Setting vs. Trace-driven Simulation

— 0

Stochastic Setting Trace-driven Simulation
O S : r.v.for size of job. O S and/ instances are given by a trace.
d Typically assume i.i.d. instances of S. O At time 1.5, job arrives of size 7.
d [ : r.v.for interarrival time. O At time 1.7, job arrives of size 3.
d Typically assume i.i.d. instances of /. O At time 13, job arrives of size 1.2.
Given a Poisson Process w/
rate A, how are A and E|I]
related?




Queueing Metrics

— 0

T
J Response time of job, T J Number of jobs in system, NV
(d Mean Response time, E[T] (d Mean number of jobs, E[N]
T+ T+ +T
E[T] = lim ——2 L
n—oo n
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Queueing Metrics

— 0

Q Server utilization (a.k.a., load), p B(t) = total time server is busy by time t
_ Express p in terms of B(t)
O p is the long-run fraction of time

that the server is busy p = lim —

tooo t




Queueing Metrics

— 0

Q: Suppose 4 = 3 jobs/secand E[S]| = isec. What is p? Will there be queueing?

1/4 1/4, 1/4, 1/4

e el el el el e e e R W e e e T
|

| |
| |
Os 1s 2s 3s 4s Not necessarily
3 arrivals/s
A: Seems like p = AE|S]| = %. We will prove this in Chapter 27.

O If I, S are Deterministic =2 no queueing
O If 7, S have high variability = lots of queueing

1/4 1/4 1/4 1/4 1/4
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Running a Simulation — Single Queue

— 0

GOAL: Simulate this queue, where interarrival times ~ I and service times ~ S

Determine E[T]| across 10° jobs

Do you start by generating 10° instances of I and S ?

No! Generate
as needed




Running a Simulation — Single Queue

— 0

GOAL: Simulate this queue, where interarrival times ~ I and service times ~ S

Determine E[T]| across 10° jobs

If a job takes 55, do we wait 5s on computer clock?

No! Simulate
the clock!




Event-driven Simulation

— 0

State = Number of jobs, N, currently in system

What are these
events?
Arrivals &

Track only events that change the state! .
Completions!

Generate instances of / and S as needed.



Event-driven Simulation Example

Suppose instances of [ are: 5.3, 2, 9.5, ... Suppose instances of S are: 10,1, 7, ...
Iteration 1 Iteration 2

CLOCK = 0 CLOCK= 5.3

State=N =0 State=N =1

Time-to-next-Compl = o [ Time-to-next-Compl = Generate(S) = 10

Time-to-next-Arrival = Generate(I) = 5.3 Time-to-next-Arrival = Generate(l) = 2

Next-Event = min(T-C,T-A) = T-A = 5.3 Next-Event = min(T-C,T-A) = T-A = 2

Event = Arrival @5.3 Event = Arrival @7.3
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Event-driven Simulation Example

Suppose instances of [ are: 5.3, 2, 9.5, ... Suppose instances of S are: 10,1, 7, ...
lteration 2 Iteration 3

CLOCK = 5.3 CLOCK = 7.3

State=N =1 State=N =2

Time-to-next-Compl = Generate(S) = 10 : Time-to-next-Compl =10 — 2 =8

Time-to-next-Arrival = Generate(l) = 2 Time-to-next-Arrival = Generate(l) = 9.5
Next-Event = min(T-C,T-A) = T-A = 2 Next-Event = min(T-C,T-A) = T-C =8
Event = Arrival @7.3 Event = Completion @15.3
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Event-driven Simulation Example

Suppose instances of [ are: 5.3, 2, 9.5, ... Suppose instances of S are: 10,1, 7, ...
Iteration 3 Iteration 4

CLOCK = 7.3 CLOCK = 15.3

State = N = 2 State=N =1

Time-to-next-Compl =10 —2 =8 :> Time-to-next-Compl = Generate(S) = 1

Time-to-next-Arrival = Generate(l) = 9.5 Time-to-next-Arrival = 9.5 — 8 = 1.5

Next-Event = min(T-C,T-A) = T-C =8 Next-Event = min(T-C,T-A) = T-C =1

Event = Completion @15.3 Event = Completion @16.3
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Event-driven Simulation Example

Suppose instances of [ are: 5.3, 2, 9.5, ... Suppose instances of S are: 10,1, 7, ...
Iteration 4 lteration 5

CLOCK = 15.3 CLOCK = 16.3

State=N =1 State=N =0

Time-to-next-Compl = Generate(S) = 1 [ Time-to-next-Compl =

Time-to-next-Arrival = 9.5 -8 = 1.5 Time-to-next-Arrival = 1.5 — 1 = 0.5
Next-Event = min(T-C,T-A) = T-C =1 Next-Event = min(T-C,T-A) = T-A = 0.5
Event = Completion @16.3 Event = Arrival @16.8
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Event-driven Simulation Quiz

Q: When exactly do you generate a
new instance of /?

1. Immediately after a job arrives

Q: In an event-driven simulation, 2. When drop to 0 jobs
what are the 4 variables you track?

Q: When exactly do you generate a

1. Global Clock o new instance of S7?

2. State = Number jobs in system

3. Time-to-next-Arrival 1. Immediately after a job

4. Time-to-next-Completion completes, assuming job leaves

behind = 1 job.
2. When system moves from state
O to state 1.




Getting E|T|

T, +T,++T
E[T] = lim —= n
Nn—00 n

Q: How do we get T; for our FCFS queue?

A: Log arrival times as they happen on this list:

>3 >4 - 16.8

When completions happen:

o Subtract earliest arrival on list from current clock time.

o Delete earliest arrival from list

Example: Completionat15.3=>» 7; = 15.3 — 5.3 = 10
Completionat16.3=> 7, = 163 —7.3 =9
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Getting E|T|

T, +T, + - +T
E[T] = lim ——= n

n—oo n

Q: To get E[T] do | need to store all 10° T;s?

A: No!

Let

. 1\
A = average of firstn ;s = — z i
n
i=1

A(n+1) —

—— (n-A(”)+Tn+1)
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Getting E|N|

Let N(s) = Number of jobs in the system at time s

t
N(s)ds
E[N] = lim )
Q: How to get E[N| ? N:AO N71 N:AZ 1\\/(;{
TG \@5 ldea 1: (Time Average) |( Y I —
N 0 53 7.3 15.3 16.3

A=
Weight N by length of interval?

~5.3(0) +2(1) +8(2) + 1(1)
B 16.3
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Getting E|N|

Let N(s) = Number of jobs in the system at time s

E[N] = lim Jo N(s)ds

t—o0

Q: How to get E[N| ?

~A 4 Idea2: (Ensemble Average)
J) v &
A= d Whenever arrival happens, record how many jobs arrival sees in the system

] Take average over all these observations

"Introduction to Probability for Computing", Harchol-Balter '24 18



Getting E|N|

Let N(s) = Number of jobs in the system at time s

E[N] = lim Jo N(s)ds

t—o0

Every arrival

: walks into
Q: Is E[N]TlmeAvg — E[N]EnsembleAvg? empty system

Suppose | ~ Uniform(1,2) and S = 1. Are your answers the same?

S=1 §=1 S=1
. 2
[N ]rimess = 2 — —
0
Correct E[N] E[N]Ensembledvg —
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Getting E|N|

Why Wwas E[N]TimeAvg —+ E[N]EnsembleAvg ?

Arrival times were bad times to measure # jobs

Is it ever true that E[N]TimeAvgd = E[N]Ensembledvg

Need arrival times to be “random.”

Poisson
Process!




PASTA

PASTA = Poisson Arrivals See Time Averages

E [N] TimeAvg _ E [N] EnsembleAvg

& Q: But whatif arrival process is not Poisson.
Can we still average over what arrivals see?

A: No, but you can simulate a
Poisson Process in the background,
and record number of jobs at times
of those events!
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Running simulations: one long run?

# jobs 4

N ~ >

I I I time

restart restart restart

Q: When running simulations, is it better to consider time-average over
one long run, or many short runs?

A: Turns out these are the same, provided simulation
empties (restarts) infinitely often. See Chpt 25

of your book!
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Running simulations: convergence

# jobs 4

= ~ >

I I I time

restart restart restart

Q: How long should we run our simulation? How many arrivals?

A: Run long enough to meet both these conditions:
1. Performance metricis no longer biased by initial state
2. Performance metricis no longer changing much (has converged)
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