Chapter 14 Event-Driven Simulation

Queueing Theory Terminology: Simplest Model

 \Box The server is the CPU

- **□** The **size** of a job is the height of the rectangle.
	- \Box $Size = S = \#$ seconds of CPU needed by the job
- \Box Only one job is served (run) at a time.
- \Box Jobs are served in FCFS order.
- Jobs arrive over time. The **interarrival time** is the time between subsequent arrivals.
- \Box The **average arrival rate** (λ) is the average number of arrivals per sec:

 $\Box A_t$ = number of arrivals by time t

$$
\Box \lambda = \lim_{t \to \infty} \frac{A_t}{t}
$$

Stochastic Setting vs. Trace-driven Simulation

 \Box *S* : r. v. for size of job. \Box Typically assume i.i.d. instances of S. *for interarrival time.* \Box Typically assume i.i.d. instances of I .

Stochastic Setting Trace-driven Simulation

 \Box *S* and *I* instances are given by a trace. \Box At time 1.5, job arrives of size 7. \Box At time 1.7, job arrives of size 3. \Box At time 13, job arrives of size 1.2.

Given a Poisson Process w/ rate λ , how are λ and $\boldsymbol{E}[I]$
related? $\lambda =$

to Probability for Computing", Harchol-Balter '24

1

 $E[I]$

Queueing Metrics

 \Box Response time of job, T

 \Box Mean Response time, $E[T]$

 \Box Number of jobs in system, N

 \Box Mean number of jobs, $E[N]$

Queueing Metrics

O Server utilization (a.k.a., load), ρ

 \Box ρ is the long-run fraction of time that the server is busy

 $B(t)$ = total time server is busy by time t

Queueing Metrics

Q: Suppose $\lambda = 3$ jobs/sec and $E[S] = \frac{1}{4}$ sec. What is ρ ? Will there be queueing?

"Introduction to Probability for Computing", Harchol-Balter '24

Running a Simulation – Single Queue

GOAL: Simulate this queue, where interarrival times $\sim I$ and service times $\sim S$ Determine $E[T]$ across 10^6 jobs

Running a Simulation – Single Queue

GOAL: Simulate this queue, where interarrival times $\sim I$ and service times $\sim S$ Determine $E[T]$ across 10^6 jobs

Event-driven Simulation

Event-driven Simulation Quiz

- **Q:** In an event-driven simulation, what are the 4 variables you track?
	- 1. Global Clock
	- 2. State = Number jobs in system
	- 3. Time-to-next-Arrival
	- 4. Time-to-next-Completion

Q: When exactly do you generate a new instance of *?*

- 1. Immediately after a job arrives
- 2. When drop to 0 jobs

Q: When exactly do you generate a new instance of S ?

- 1. Immediately after a job completes, assuming job leaves behind ≥ 1 job.
- 2. When system moves from state 0 to state 1.

$$
E[T] = \lim_{n \to \infty} \frac{T_1 + T_2 + \dots + T_n}{n}
$$

Q: How do we get T_i for our FCFS queue?

A: Log arrival times as they happen on this list:

$$
\cancel{\cancel{\times}} \rightarrow \cancel{\cancel{\times}} \rightarrow 16.8
$$

When completions happen:

- o Subtract earliest arrival on list from current clock time.
- o Delete earliest arrival from list

Example: Completion at $15.3 \rightarrow T_1 = 15.3 - 5.3 = 10$

Completion at $16.3 \rightarrow T_2 = 16.3 - 7.3 = 9$

$$
E[T] = \lim_{n \to \infty} \frac{T_1 + T_2 + \dots + T_n}{n}
$$

Q: To get $E[T]$ do I need to store all $10^6 T_i s$? **A:** No! Let $A^{(n)} =$ average of first $n T_i s =$ 1 \overline{n} $\sum_{i=1}$ $l=1$ $\frac{n}{2}$ T_i $A^{(n+1)} =$ 1 $\frac{1}{n+1}$ $(n \cdot A^{(n)} + T_{n+1})$

Let $N(s)$ = Number of jobs in the system at time s

$$
E[N] = \lim_{t \to \infty} \frac{\int_0^t N(s) ds}{t}
$$

Weight N by length of interval?

$$
E[N] = \frac{5.3(0) + 2(1) + 8(2) + 1(1)}{16.3}
$$

Let $N(s)$ = Number of jobs in the system at time s

$$
E[N] = \lim_{t \to \infty} \frac{\int_0^t N(s) ds}{t}
$$

Q: How to get $E[N]$?

Idea 2: (Ensemble Average)

 \Box Whenever arrival happens, record how many jobs arrival sees in the system \Box Take average over all these observations

Let $N(s)$ = Number of jobs in the system at time s

$$
E[N] = \lim_{t \to \infty} \frac{\int_0^t N(s) ds}{t}
$$

Q: Is $E[N]^{TimeAvg} = E[N]^{EnsembleAvg}$?

Suppose $I \sim Uniform(1,2)$ and $S = 1$. Are your answers the same?

Every arrival

empty system

walks into

"Introduction to Probability for Computing", Harchol-Balter '24

PASTA

PASTA = **P**oisson **A**rrivals **S**ee **T**ime **A**verages

 $E[N]^{TimeAvg} = E[N]^{EnsembleAvg}$

- **Q:** But what if arrival process is not Poisson. Can we still average over what arrivals see?
	- **A:** No, but you can simulate a Poisson Process in the background, and record number of jobs at times of those events!

Running simulations: one long run?

Q: When running simulations, is it better to consider time-average over one long run, or many short runs?

A: Turns out these are the same, provided simulation empties (restarts) infinitely often.

Running simulations: convergence

Q: How long should we run our simulation? How many arrivals?

- **A:** Run long enough to meet both these conditions:
	- 1. Performance metric is no longer biased by initial state
	- 2. Performance metric is no longer changing much (has converged)