Chapter 15 Estimators for Mean & Variance

Probability vs. Statistics

<u>This chapter</u>: Given some data, infer the mean and variance of the underlying distribution.

"Introduction to Probability for Computing", Harchol-Balter '24

Motivation for Estimation

Call this unknown θ

Goal: Estimate the mean height of women

Obviously can't measure heights of all women, so sample heights of nwomen, say n = 5.

Use **sample average** as estimation of θ .

Sample Mean Estimator

<u>Defn 15.2</u>: Let $X_1, X_2, ..., X_n$ be i.i.d. samples of r.v. X with unknown mean $\theta = E[X]$.

The **sample mean** is a point estimator of θ :

 $\widehat{\theta}$

$$X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = M_n = \overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Alternate name
for sample mean Alternate name
for sample mean

Choices of estimators

Let $X_1, X_2, ..., X_n$ be i.i.d. samples of r.v. X with unknown finite mean $\theta = E[X]$ and unknown finite variance $\sigma^2 = Var(X)$.

Two possible estimators for θ :

$$\hat{\theta}_A = \bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

$$\hat{\theta}_B = X_2$$

<u>Defn 15.3</u>: Let $\hat{\theta}(X_1, X_2, ..., X_n)$ be a point estimator for θ . The **bias** of $\hat{\theta}$ is:

$$\boldsymbol{B}(\hat{\theta}) = \boldsymbol{E}[\hat{\theta}] - \theta$$

unbiased estimator is desirable property #1

Both!

If $B(\hat{\theta}) = 0$, we say that $\hat{\theta}$ is and **unbiased estimator** of θ .

Which of $\hat{\theta}_A = \bar{X}$ and $\hat{\theta}_B = X_2$ are unbiased estimators?

So why do we prefer $\widehat{ heta}_A$?

Lemma 15.5: If $\hat{\theta}(X_1, X_2, ..., X_n)$ is an unbiased estimator, then

$$MSE(\hat{\theta}) = Var(\hat{\theta})$$

Proof:
$$MSE(\hat{\theta}) = E\left[\left(\hat{\theta} - \theta\right)^2\right] = E\left[\left(\hat{\theta} - E[\hat{\theta}]\right)^2\right] = Var(\hat{\theta})$$

$$MSE(\hat{\theta}) = E\left[\left(\hat{\theta} - \theta\right)^{2}\right] = Var(\hat{\theta})$$

if $\hat{\theta}(X_{1}, X_{2}, ..., X_{n})$ is
unbiased

Q: Which of
$$\hat{\theta}_A = \overline{X}$$
 and $\hat{\theta}_B = X_2$ have lower MSE?

Both
$$\hat{\theta}_A = \bar{X}$$
 and $\hat{\theta}_B = X_2$ are unbiased estimators.
 $\Rightarrow MSE(\hat{\theta}_A) = Var(\hat{\theta}_A) = \frac{1}{n^2} \cdot n Var(X) = \frac{Var(X)}{n}$

 $\Rightarrow MSE(\hat{\theta}_B) = Var(\hat{\theta}_B) = Var(X_2) = Var(X)$

We also want our estimator to become more accurate as the sample size increases.

<u>Defn 15.6</u>: Let $\hat{\theta}_1(X_1)$, $\hat{\theta}_2(X_1, X_2)$, $\hat{\theta}_3(X_1, X_2, X_3)$, ... be a sequence of point estimators of θ , where $\hat{\theta}_n(X_1, X_2, \dots, X_n)$ is a function of n i.i.d. samples.

We say that r.v. $\hat{\theta}_n$ is a **consistent estimator** of θ if, $\forall \epsilon > 0$, $\lim_{n \to \infty} \mathbf{P}\{|\hat{\theta}_n - \theta| \ge \epsilon\} = 0$ consistency is desirable property #3

Seems hard to prove that our estimator is consistent

Lemma 15.7: If $\lim_{n\to\infty} MSE(\hat{\theta}_n) = 0$, then $\hat{\theta}_n$ is a consistent estimator.

Proof:

$$P\{|\hat{\theta}_{n} - \theta| \ge \epsilon\} = P\{|\hat{\theta}_{n} - \theta|^{2} \ge \epsilon^{2}\} \le \frac{E[|\hat{\theta}_{n} - \theta|^{2}]}{\epsilon^{2}}$$

$$\le \frac{E[(\hat{\theta}_{n} - \theta)^{2}]}{\epsilon^{2}} = \frac{MSE(\hat{\theta}_{n})}{\epsilon^{2}}$$

$$\implies \lim_{n \to \infty} P\{|\hat{\theta}_{n} - \theta| \ge \epsilon\} = \lim_{n \to \infty} \frac{MSE(\hat{\theta}_{n})}{\epsilon^{2}} = 0$$

Lemma 15.7: If $\lim_{n\to\infty} MSE(\hat{\theta}_n) = 0$, then $\hat{\theta}_n$ is a consistent estimator.

Q: Is
$$\hat{\theta}_A = \bar{X} = M_n$$
 a consistent estimator of $\boldsymbol{E}[X]$?

Yes!
$$MSE(\hat{\theta}_A) = Var(\hat{\theta}_A) = \frac{Var(X)}{n}$$
Assuming
 $Var(X)$
finite \Longrightarrow $\lim_{n \to \infty} MSE(\hat{\theta}_A) = \lim_{n \to \infty} Var(\hat{\theta}_A) = \lim_{n \to \infty} \frac{Var(X)}{n} = 0$ $\widehat{\theta}_A$ is a consistent estimator

An estimator for Variance

Call this unknown θ

Goal: Estimate the variance of height of women

Obviously can't measure heights of all women, so sample heights of nwomen, say n = 5.

Q: Can we use sample variance as an estimation of θ?Q: And how do we define sample variance ?

"Introduction to Probability for Computing", Harchol-Balter '24

An estimator for Variance

Two cases:

- The case where know E[X] and want to estimate Var(X)
- 2. The case where *don't know E*[X] and want to estimate *Var*(X)

Estimating Variance when Mean is Known

Assume $\mu = \mathbf{E}[X]$ is known. Let $\hat{\theta}$ be an estimator of $\theta = Var(X)$: $\hat{\theta}(X_1, X_2, \dots, X_n) = \overline{S^2} \equiv \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$ mean squared distance from mean sample variance "Introduction to Probability for Computing", Harchol-Balter '24

Estimating Variance when Mean is Known

Assume $\mu = \mathbf{E}[X]$ is known. Let $\hat{\theta}$ be an estimator of $\theta = \mathbf{Var}(X)$:

$$\hat{\theta}(X_1, X_2, \dots, X_n) = \overline{S^2} \equiv \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$$

"Introduction to resummer or comparing , marchor parter 24

Estimating Variance when Mean is UNknown

How about we Assume $\mu = \mathbf{E}[X]$ is **not** known. replace μ by \overline{X} ? Let $\hat{\theta}$ be an estimator of $\theta = Var(X)$: $\hat{\theta}(X_1, X_2, \dots, X_n) = \overline{S^2} \equiv \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$ $\hat{\theta}(X_1, X_2, \dots, X_n) = \overline{S^2} \equiv \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Estimating Variance when Mean is UNknown

Assume $\mu = \mathbf{E}[X]$ is **not** known. Let $\hat{\theta}$ be an estimator of $\theta = \mathbf{Var}(X)$:

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

$$\hat{\theta}(X_1, X_2, \dots, X_n) = \overline{S^2} \equiv \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

Q: Is $\overline{S^2}$ an unbiased estimator?

A: Not quite. In Exercise 15.4, you will prove that:

$$\boldsymbol{E}[\overline{S^2}] = \frac{n-1}{n} \cdot \boldsymbol{Var}(X)$$

"Introduction to Probability for Computing", Harchol-Balter '24

So need to multiply $\overline{S^2}$ by $\frac{n}{n-1}$ to get unbiased estimator

Estimating Variance when Mean is UNknown

<u>Defn 15.8</u>: Let $X_1, X_2, X_3, ...$ be i.i.d. samples of r.v X with **unknown** mean and variance. The **sample variance** is a point estimator of $\theta = Var(X)$. It is denoted by S^2 and defined by:

$$\hat{\theta}(X_1, X_2, \dots, X_n) = \frac{n}{n-1}\overline{S^2} = \frac{1}{n-1}\sum_{i=1}^n (X_i - \overline{X})^2 \equiv S^2$$
sample variance

More complex estimators

The sample mean estimator is often a component of more complex estimators. Consider the following example:

Goal: Estimate # German tanks in WW II.

Each tank has serial number. Below are the tanks we've seen so far ...

Mathematically, we're trying to estimate a maximum, call it θ , based on seeing *n* samples, X_1, X_2, \dots, X_n , each randomly picked without replacement, from the integers 1, 2, 3, ..., θ .

Mathematically, we're trying to estimate a maximum, call it θ , based on seeing *n* samples, X_1, X_2, \dots, X_n , each randomly picked without replacement, from the integers 1, 2, 3, ..., θ .

We know how to estimate the mean. Can we write the max in terms of the sample mean?

Mathematically, we're trying to estimate a maximum, call it θ , based on seeing *n* samples, $X_1, X_2, ..., X_n$, each randomly picked without replacement, from the integers 1, 2, 3, ..., θ .

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

$$\boldsymbol{E}[\overline{X}] = \frac{1}{n} \left(\boldsymbol{E}[X_1] + \boldsymbol{E}[X_2] + \dots + \boldsymbol{E}[X_n] \right) = \frac{\theta + 1}{2}$$
$$\boldsymbol{E}[X_i] = 1 \cdot \frac{1}{\theta} + 2 \cdot \frac{1}{\theta} + 3 \cdot \frac{1}{\theta} + \dots + \theta \cdot \frac{1}{\theta} = \frac{\theta + 1}{2}$$
$$\text{"Introduction to Probability for Computing", Harchol-Balter '24}$$

23

Mathematically, we're trying to estimate a maximum, call it θ , based on seeing *n* samples, $X_1, X_2, ..., X_n$, each randomly picked without replacement, from the integers 1, 2, 3, ..., θ .

$$E[\bar{X}] = \frac{1}{n} (E[X_1] + E[X_2] + \dots + E[X_n]) = \frac{\theta + 1}{2}$$

Hence a reasonable estimator for θ is:

$$\widehat{\theta}(X_1, X_2, \dots, X_n) = 2\overline{X} - 1$$

"Introduction to Probability for Computing", Harchol-Balter '24

Mathematically, we're trying to estimate a maximum, call it θ , based on seeing *n* samples, $X_1, X_2, ..., X_n$, each randomly picked without replacement, from the integers 1, 2, 3, ..., θ .

$$\boldsymbol{E}[\bar{X}] = \frac{1}{n} (\boldsymbol{E}[X_1] + \boldsymbol{E}[X_2] + \dots + \boldsymbol{E}[X_n]) = \frac{\theta + 1}{2}$$

Is $\hat{\theta}$ unbiased?

Yes!

= 0

 $\boldsymbol{E}[\hat{\theta}] = 2\boldsymbol{E}[\bar{X}] - 1$

Hence a reasonable estimator for θ is:

$$\widehat{\theta}(X_1, X_2, \dots, X_n) = 2\overline{X} - 1$$

"Introduction to Probability for Computing", Harchol-Balter '24

Mathematically, we're trying to estimate a maximum, call it θ , based on seeing *n* samples, $X_1, X_2, ..., X_n$, each randomly picked without replacement, from the integers $1, 2, 3, \dots, \theta$.

$$E[\overline{X}] = \frac{1}{n} (E[X_1] + E[X_2] + \dots + E[X_n]) = \frac{\theta + 1}{2}$$

Is $\hat{\theta}$ good?
Not necessarily.

 $\hat{\theta} = 2\bar{X} - 1$

could be smaller

than some samples

Hence a reasonable estimator for θ is:

$$\hat{\theta}(X_1, X_2, \dots, X_n) = 2\bar{X} - 1$$