
Chapter 18
Tail Bounds
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Tails
Defn:   The tail of random variable 𝑋𝑋 is 𝑷𝑷 𝑋𝑋 > 𝑥𝑥 .

Examples of why we care about tails:  
 Fraction of jobs that queue more than 24 hours
 Fraction of packets that find the router buffer full 
 Fraction of  hash buckets that have more than 10 items

2

Unfortunately, determining the tail of even simple r.v.s is often hard 
            – much harder than determining the mean or transform!
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Tails Example
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𝑷𝑷{𝑋𝑋 ≥ 𝑘𝑘} = �
𝑖𝑖=𝑘𝑘

𝑛𝑛
𝑛𝑛
𝑖𝑖
𝑝𝑝𝑖𝑖 1 − 𝑝𝑝 𝑛𝑛−𝑖𝑖

𝑋𝑋 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛, 𝑝𝑝)
No closed-form 
known for this

Q:   Suppose you’re distributing 𝑛𝑛 jobs among 𝑛𝑛 servers at random.
       What’s the probability that a particular server gets ≥ 𝑘𝑘 jobs?
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Tails Example
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𝑷𝑷{𝑋𝑋 ≥ 𝑘𝑘} = �
𝑖𝑖=𝑘𝑘

∞

𝑒𝑒−𝜆𝜆 ⋅
𝜆𝜆𝑖𝑖

𝑖𝑖!

𝑋𝑋 ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆)
No closed-form 
known for this

Q:   Jobs arrive to a datacenter according to a Poisson process with rate 𝜆𝜆 jobs/hour.  
       What’s the probability that ≥ 𝑘𝑘 jobs arrive during the first hour?
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Tails Bounds
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𝑷𝑷{𝑋𝑋 ≥ 𝑘𝑘} = �
𝑖𝑖=𝑘𝑘

∞

𝑒𝑒−𝜆𝜆 ⋅
𝜆𝜆𝑖𝑖

𝑖𝑖!

Rather than directly compute tails, we will derive upper bounds on 
the tails, called tail bounds!

𝑷𝑷{𝑋𝑋 ≥ 𝑘𝑘} = �
𝑖𝑖=𝑘𝑘

𝑛𝑛
𝑛𝑛
𝑖𝑖
𝑝𝑝𝑖𝑖 1 − 𝑝𝑝 𝑛𝑛−𝑖𝑖

We’ll soon have tail bounds 
for both of these!

Definition:  An upper bound on 𝑷𝑷{𝑋𝑋 ≥ 𝑘𝑘} is called a tail bound.   
An upper bound on 𝑷𝑷{|𝑋𝑋 − 𝜇𝜇| ≥ 𝑘𝑘} where 𝜇𝜇 = 𝑬𝑬 𝑋𝑋  is  called a 
concentration bound or concentration inequality.   
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Running Example
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We will develop progressively better (tighter) tail bounds.

We will test each bound on the following running example:

Flip a fair coin 𝑛𝑛 times:  

Q:  What’s a tail bound on the probability of getting at least 3
4
𝑛𝑛  heads?
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Markov’s inequality

𝑷𝑷 𝑋𝑋 ≥ 𝑎𝑎 ≤
𝜇𝜇
𝑎𝑎

Theorem:  (Markov’s inequality)  If r.v. 𝑋𝑋 is non-negative, with finite mean 
𝜇𝜇 = 𝑬𝑬[𝑋𝑋], then ∀𝑎𝑎 > 0, 

𝑬𝑬[𝑋𝑋] =  �
𝑥𝑥=0

∞

𝑥𝑥 ⋅ 𝑝𝑝𝑋𝑋(𝑥𝑥) ≥ �
𝑥𝑥=𝑎𝑎

∞

𝑥𝑥 ⋅ 𝑝𝑝𝑋𝑋 𝑥𝑥

≥ �
𝑥𝑥=𝑎𝑎

∞

𝑎𝑎 ⋅ 𝑝𝑝𝑋𝑋 𝑥𝑥

= 𝑎𝑎�
𝑥𝑥=𝑎𝑎

∞

𝑝𝑝𝑋𝑋 𝑥𝑥 = 𝑎𝑎 ⋅ 𝑷𝑷{𝑋𝑋 ≥ 𝑎𝑎}
7

Proof:
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Markov’s Inequality on Running Example
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𝑋𝑋 = Number Heads ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑛𝑛,
1
2

Flip a fair coin 𝑛𝑛 times:  

Q:  What’s a tail bound on the probability of getting at least 3
4
𝑛𝑛  heads?

𝑷𝑷 𝑋𝑋 ≥
3
4
𝑛𝑛  ≤  

𝜇𝜇
3
4𝑛𝑛

𝜇𝜇 = 𝑬𝑬 𝑋𝑋 =
𝑛𝑛
2

=
𝑛𝑛
2

3
4𝑛𝑛

=
2
3

Clearly a terrible bound 
because doesn’t involve 𝑛𝑛 
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Chebyshev’s inequality

𝑷𝑷 |𝑋𝑋 − 𝜇𝜇| ≥ 𝑎𝑎 ≤
𝑽𝑽𝑽𝑽𝑽𝑽(𝑋𝑋)
𝑎𝑎2

Theorem:  (Chebyshev’s inequality)  Let 𝑋𝑋 be any r.v. with finite mean, 𝜇𝜇, and 
finite variance.  Then ∀𝑎𝑎 > 0, 

𝑷𝑷 𝑋𝑋 − 𝜇𝜇 ≥ 𝑎𝑎 = 𝑷𝑷 𝑋𝑋 − 𝜇𝜇 2 ≥ 𝑎𝑎2

≤
𝑬𝑬 𝑋𝑋 − 𝜇𝜇 2

𝑎𝑎2

Q: Can you see how to apply 
Markov’s inequality here?

=
𝑽𝑽𝑽𝑽𝑽𝑽(𝑋𝑋)
𝑎𝑎2

9

Proof:
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Chebyshev’s Bound on Running Example
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𝑋𝑋 = Number Heads ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑛𝑛,
1
2

Flip a fair coin 𝑛𝑛 times:  

Q:  What’s a tail bound on the probability of getting at least 3
4
𝑛𝑛  heads?

𝑷𝑷 𝑋𝑋 ≥ 3
4
𝑛𝑛 = 𝑷𝑷 𝑋𝑋 − 𝑛𝑛

2
≥ 𝑛𝑛

4

𝜇𝜇 = 𝐸𝐸 𝑋𝑋 =
𝑛𝑛
2

At least 
decreases

with  𝑛𝑛
𝑽𝑽𝑽𝑽𝑽𝑽(𝑋𝑋) =

𝑛𝑛
4

= 1
2
𝑷𝑷 𝑋𝑋 − 𝑛𝑛

2
≥ 𝑛𝑛

4

Why?

≤ 1
2
⋅ 𝑽𝑽𝑽𝑽𝑽𝑽(𝑋𝑋)

𝑛𝑛
4

2 = 1
2
⋅

𝑛𝑛
4
𝑛𝑛
4

2 =
2
𝑛𝑛
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Chernoff Bound
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In deriving the Chebyshev bound, we squared the r.v. and then applied Markov.

In deriving the Chernoff bound, we exponentiate the r.v. and then apply Markov.

∀𝑡𝑡 > 0:

𝑷𝑷 𝑋𝑋 ≥ 𝑎𝑎 = 𝑷𝑷{𝑡𝑡𝑡𝑡 ≥ 𝑡𝑡𝑡𝑡}

= 𝑷𝑷{𝑒𝑒𝑡𝑡𝑡𝑡 ≥ 𝑒𝑒𝑡𝑡𝑡𝑡}

≤
𝑬𝑬[𝑒𝑒𝑡𝑡𝑡𝑡]
𝑒𝑒𝑡𝑡𝑡𝑡

Why are we 
allowed to apply 
Markov to this?

But because this 
bound holds ∀𝑡𝑡, it 
also holds for the 

minimizing 𝑡𝑡.
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Chernoff Bound

𝑷𝑷 𝑋𝑋 ≥ 𝑎𝑎 ≤ min
𝑡𝑡>0

𝑬𝑬[𝑒𝑒𝑡𝑡𝑡𝑡]
𝑒𝑒𝑡𝑡𝑡𝑡

Theorem 18.3:  (Chernoff bound)  Let 𝑋𝑋 be any r.v. and 𝑎𝑎 be a constant.  Then

12

In deriving the Chebyshev bound, we squared the r.v. and then applied Markov.

In deriving the Chernoff bound, we exponentiate the r.v. and then apply Markov.

∀𝑡𝑡 > 0:

𝑷𝑷 𝑋𝑋 ≥ 𝑎𝑎 = 𝑷𝑷{𝑡𝑡𝑡𝑡 ≥ 𝑡𝑡𝑡𝑡}

= 𝑷𝑷{𝑒𝑒𝑡𝑡𝑡𝑡 ≥ 𝑒𝑒𝑡𝑡𝑡𝑡}

≤
𝑬𝑬[𝑒𝑒𝑡𝑡𝑡𝑡]
𝑒𝑒𝑡𝑡𝑡𝑡
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Chernoff Bound

𝑷𝑷 𝑋𝑋 ≥ 𝑎𝑎 ≤ min
𝑡𝑡>0

𝑬𝑬[𝑒𝑒𝑡𝑡𝑡𝑡]
𝑒𝑒𝑡𝑡𝑡𝑡

Theorem:  (Chernoff bound)  Let 𝑋𝑋 be any r.v. and 𝑎𝑎 be a constant.  Then

13

In deriving the Chebyshev bound, we squared the r.v. and then applied Markov.

In deriving the Chernoff bound, we exponentiate the r.v. and then apply Markov.

∀𝑡𝑡 > 0:

𝑷𝑷 𝑋𝑋 ≥ 𝑎𝑎 = 𝑷𝑷{𝑡𝑡𝑡𝑡 ≥ 𝑡𝑡𝑡𝑡}

= 𝑷𝑷{𝑒𝑒𝑡𝑡𝑡𝑡 ≥ 𝑒𝑒𝑡𝑡𝑡𝑡}

≤
𝑬𝑬[𝑒𝑒𝑡𝑡𝑡𝑡]
𝑒𝑒𝑡𝑡𝑡𝑡

Q: Why do we expect the 
Chernoff bound to be stronger 

than the others?

A: Looks a lot 
like an onion!
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Chernoff Bound on c.d.f.

𝑷𝑷 𝑋𝑋 ≤ 𝑎𝑎 ≤ min
𝑡𝑡<0

𝑬𝑬[𝑒𝑒𝑡𝑡𝑡𝑡]
𝑒𝑒𝑡𝑡𝑡𝑡

Theorem:  (Chernoff bound on c.d.f.)  Let 𝑋𝑋 be any r.v. and 𝑎𝑎 be a constant.  Then

14

∀𝑡𝑡 < 0:

𝑷𝑷 𝑋𝑋 ≤ 𝑎𝑎 = 𝑷𝑷{𝑡𝑡𝑡𝑡 ≥ 𝑡𝑡𝑡𝑡}

= 𝑷𝑷{𝑒𝑒𝑡𝑡𝑡𝑡 ≥ 𝑒𝑒𝑡𝑡𝑡𝑡}

≤
𝑬𝑬[𝑒𝑒𝑡𝑡𝑡𝑡]
𝑒𝑒𝑡𝑡𝑡𝑡

Q: What do we do if we want to upper bound 𝑷𝑷 𝑋𝑋 ≤ 𝑎𝑎  ?

Consider
𝑡𝑡 < 0
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Chernoff Bound for Poisson Tail

15

Step 1:  Derive 𝑬𝑬 𝑒𝑒𝑡𝑡𝑡𝑡  where 𝑡𝑡 > 0  

𝑬𝑬[𝑒𝑒𝑡𝑡𝑡𝑡] = �
𝑖𝑖=0

∞

𝑒𝑒𝑡𝑡𝑡𝑡 ⋅
𝑒𝑒−𝜆𝜆 ⋅ 𝜆𝜆𝑖𝑖

𝑖𝑖!

Goal:  Bound tail of 𝑋𝑋 ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆)

= 𝑒𝑒−𝜆𝜆�
𝑖𝑖=0

∞
𝜆𝜆𝑒𝑒𝑡𝑡 𝑖𝑖

𝑖𝑖!

= 𝑒𝑒𝜆𝜆 𝑒𝑒𝑡𝑡−1  

= 𝑒𝑒−𝜆𝜆 ⋅ 𝑒𝑒𝜆𝜆𝑒𝑒𝑡𝑡

Step 2:  Let 𝑎𝑎 > 𝜆𝜆.  Bound 𝑷𝑷 𝑋𝑋 ≥ 𝑎𝑎

= min
𝑡𝑡>0

𝑒𝑒𝜆𝜆 𝑒𝑒𝑡𝑡−1  

𝑒𝑒𝑡𝑡𝑡𝑡

𝑷𝑷 𝑋𝑋 ≥ 𝑎𝑎 ≤ min
𝑡𝑡>0

𝑬𝑬[𝑒𝑒𝑡𝑡𝑡𝑡]
𝑒𝑒𝑡𝑡𝑡𝑡

= min
𝑡𝑡>0

𝑒𝑒𝜆𝜆 𝑒𝑒𝑡𝑡−1 −𝑡𝑡𝑡𝑡 

Suffices to 
minimize 

exponent!
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Chernoff Bound for Poisson Tail

16

Goal:  Bound tail of 𝑋𝑋 ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆)

Step 2:  Let 𝑎𝑎 > 𝜆𝜆.  Bound 𝑷𝑷 𝑋𝑋 ≥ 𝑎𝑎

= min
𝑡𝑡>0

𝑒𝑒𝜆𝜆 𝑒𝑒𝑡𝑡−1  

𝑒𝑒𝑡𝑡𝑡𝑡

𝑷𝑷 𝑋𝑋 ≥ 𝑎𝑎 ≤ min
𝑡𝑡>0

𝑬𝑬[𝑒𝑒𝑡𝑡𝑡𝑡]
𝑒𝑒𝑡𝑡𝑡𝑡

= min
𝑡𝑡>0

𝑒𝑒𝜆𝜆 𝑒𝑒𝑡𝑡−1 −𝑡𝑡𝑡𝑡 
Suffices to 
minimize 

exponent!

 Exponent is minimized at 𝑡𝑡 = 𝑙𝑙𝑙𝑙 𝑎𝑎
𝜆𝜆

Thus:

= 𝑒𝑒𝜆𝜆
𝑎𝑎
𝜆𝜆−1 −𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎

𝜆𝜆
 

 𝑷𝑷 𝑋𝑋 ≥ 𝑎𝑎 ≤ 𝑒𝑒𝜆𝜆 𝑒𝑒𝑡𝑡−1 −𝑡𝑡𝑡𝑡 , at 𝑡𝑡 = 𝑙𝑙𝑙𝑙 𝑎𝑎
𝜆𝜆

=  𝑒𝑒𝑎𝑎−𝜆𝜆 ⋅
𝜆𝜆
𝑎𝑎

𝑎𝑎
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Chernoff Bound for Binomial

𝑷𝑷 𝑋𝑋 − 𝑛𝑛𝑛𝑛 ≥ 𝛿𝛿 ≤ 𝑒𝑒−2𝛿𝛿2/𝑛𝑛

Theorem 18.4:  (Pretty Chernoff Bound for Binomial)

Let 𝑋𝑋 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛,𝑝𝑝) where 𝜇𝜇 = 𝑬𝑬 𝑋𝑋 = 𝑛𝑛𝑛𝑛. Then, for any 𝛿𝛿 > 0, 

17

We will prove this soon, but let’s try applying it first!

𝑷𝑷 𝑋𝑋 − 𝑛𝑛𝑛𝑛 ≤ −𝛿𝛿 ≤ 𝑒𝑒−2𝛿𝛿2/𝑛𝑛

Bound is strongest when 𝛿𝛿 = Θ 𝑛𝑛
Try to use it in this regime.
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Chernoff Bound on Running Example
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𝑋𝑋 = Number Heads ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑛𝑛,
1
2

Flip a fair coin 𝑛𝑛 times:  

Q:  What’s a tail bound on the probability of getting at least 3
4
𝑛𝑛  heads?

𝑷𝑷 𝑋𝑋 ≥ 3
4
𝑛𝑛 = 𝑷𝑷 𝑋𝑋 − 𝑛𝑛

2
≥ 𝑛𝑛

4

𝜇𝜇 = 𝐸𝐸 𝑋𝑋 =
𝑛𝑛
2

Decreases
exponentially 

fast in  𝑛𝑛≤ 𝑒𝑒−2
𝑛𝑛
4

2
⋅1𝑛𝑛 = 𝑒𝑒−

𝑛𝑛
8

Note  𝛿𝛿 = 𝑛𝑛
4

= Θ(𝑛𝑛)
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Comparing the bounds

19

Flip a fair coin 𝑛𝑛 times:  

Q:  What’s a tail bound on the probability of getting at least 3
4
𝑛𝑛  heads?

Q: What is the exact answer?

𝑷𝑷 𝑋𝑋 ≥
3
4
𝑛𝑛 = �

𝑖𝑖=34𝑛𝑛

𝑛𝑛
𝑛𝑛
𝑖𝑖

1
2

𝑖𝑖 1
2

𝑛𝑛−𝑖𝑖

= 2−𝑛𝑛 �
𝑖𝑖=34𝑛𝑛

𝑛𝑛
𝑛𝑛
𝑖𝑖
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Central Limit Theorem

20

Flip a fair coin 𝑛𝑛 times:  

Q:  What’s a tail bound on the probability of getting at least 3
4
𝑛𝑛  heads?

𝑷𝑷 𝑋𝑋 ≥
3
4
𝑛𝑛 = 𝑷𝑷 𝑋𝑋 −

𝑛𝑛
2
≥
𝑛𝑛
4

CLT applies
because adding i.i.d.  

r.v.s
𝑋𝑋 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑛𝑛,

1
2

𝜇𝜇 = 𝑬𝑬 𝑋𝑋 =
𝑛𝑛
2

𝑽𝑽𝑽𝑽𝑽𝑽(𝑋𝑋) =
𝑛𝑛
4

𝜎𝜎𝑋𝑋 =
𝑛𝑛
4

= 𝑷𝑷
𝑋𝑋 − 𝑛𝑛

2
𝑛𝑛
4

≥
𝑛𝑛
4
𝑛𝑛
4

≈ 𝑷𝑷 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 0,1 ≥
𝑛𝑛
4 =  1 −𝚽𝚽

𝑛𝑛
4

Result is 
approximation

not bound
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Comparing the approximation and bounds

21

We’re not showing 
Markov because 

it’s too high

Even Chebyshev is 
terrible

Chernoff looks 
okay
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An up close view 
at higher 𝑛𝑛 > 70

Chebyshev no 
longer visible.  
It’s  too high

Even Chernoff 
doesn’t look 
so great any 

more
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Proof of Thm 18.4 – Pretty Chernoff Bound

𝑷𝑷 𝑋𝑋 − 𝑛𝑛𝑛𝑛 ≥ 𝛿𝛿 ≤ 𝑒𝑒−2𝛿𝛿2/𝑛𝑛

Theorem 18.4:  (Pretty Chernoff Bound for Binomial)

Let 𝑋𝑋 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛,𝑝𝑝) where 𝜇𝜇 = 𝑬𝑬 𝑋𝑋 = 𝑛𝑛𝑛𝑛. Then, for any 𝛿𝛿 > 0, 

𝑷𝑷 𝑋𝑋 − 𝑛𝑛𝑛𝑛 ≤ −𝛿𝛿 ≤ 𝑒𝑒−2𝛿𝛿2/𝑛𝑛

We will now prove Thm 18.4 (top half).  The bottom half is an Exercise in your book.

Our proof requires using Lemma 18.5, which is proven in your book.

𝑝𝑝𝑒𝑒𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑒𝑒−𝑡𝑡𝑡𝑡 ≤ 𝑒𝑒𝑡𝑡2/8

Lemma 18.5:  For any 𝑡𝑡 > 0 and 0 < 𝑝𝑝 < 1  and  𝑞𝑞 = 1 − 𝑝𝑝, we have that:
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Proof of Thm 18.4 – Pretty Chernoff Bound

𝑷𝑷 𝑋𝑋 − 𝑛𝑛𝑛𝑛 ≥ 𝛿𝛿 =  𝑷𝑷 𝑡𝑡(𝑋𝑋 − 𝑛𝑛𝑛𝑛) ≥ 𝑡𝑡𝛿𝛿

Proof:  

Theorem 18.4:   Let 𝑋𝑋 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛,𝑝𝑝) where 𝜇𝜇 = 𝑬𝑬 𝑋𝑋 = 𝑛𝑛𝑛𝑛. Then, for any 𝛿𝛿 > 0, 

𝑷𝑷 𝑋𝑋 − 𝑛𝑛𝑛𝑛 ≥ 𝛿𝛿 ≤ 𝑒𝑒−2𝛿𝛿2/𝑛𝑛

=  𝑷𝑷 𝑒𝑒𝑡𝑡(𝑋𝑋−𝑛𝑛𝑛𝑛) ≥ 𝑒𝑒𝑡𝑡𝑡𝑡

≤ 𝑒𝑒−𝑡𝑡𝑡𝑡𝑬𝑬 𝑒𝑒𝑡𝑡(𝑋𝑋−𝑛𝑛𝑛𝑛)

We can break this up!
𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖  where
𝑋𝑋𝑖𝑖 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝) 

= 𝑒𝑒−𝑡𝑡𝑡𝑡𝑬𝑬 𝑒𝑒𝑡𝑡( 𝑋𝑋1−𝑝𝑝 + 𝑋𝑋2−𝑝𝑝 +⋯+ 𝑋𝑋𝑛𝑛−𝑝𝑝 )

= 𝑒𝑒−𝑡𝑡𝑡𝑡 ⋅�
𝑖𝑖=1

𝑛𝑛

𝑬𝑬 𝑒𝑒𝑡𝑡(𝑋𝑋𝑖𝑖−𝑝𝑝)

For any 𝑡𝑡 > 0, 
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Proof of Thm 18.4 – Pretty Chernoff Bound
Theorem 18.4:   Let 𝑋𝑋 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛,𝑝𝑝) where 𝜇𝜇 = 𝑬𝑬 𝑋𝑋 = 𝑛𝑛𝑛𝑛. Then, for any 𝛿𝛿 > 0, 

Proof, cont: 

𝑷𝑷 𝑋𝑋 − 𝑛𝑛𝑛𝑛 ≥ 𝛿𝛿 ≤ 𝑒𝑒−2𝛿𝛿2/𝑛𝑛

by Lemma 
18.5

𝑷𝑷 𝑋𝑋 − 𝑛𝑛𝑛𝑛 ≥ 𝛿𝛿 ≤ 𝑒𝑒−𝑡𝑡𝑡𝑡�
𝑖𝑖=1

𝑛𝑛

𝑬𝑬 𝑒𝑒𝑡𝑡(𝑋𝑋𝑖𝑖−𝑝𝑝)

= 𝑒𝑒−𝑡𝑡𝑡𝑡 �
𝑖𝑖=1

𝑛𝑛

𝑝𝑝 ⋅ 𝑒𝑒𝑡𝑡(1−𝑝𝑝) + 1 − 𝑝𝑝 ⋅ 𝑒𝑒−𝑡𝑡𝑡𝑡

= 𝑒𝑒−𝑡𝑡𝑡𝑡 �
𝑖𝑖=1

𝑛𝑛

𝑒𝑒𝑡𝑡2/8 =  𝑒𝑒−𝑡𝑡𝑡𝑡+𝑛𝑛𝑡𝑡2/8

Q: What do we 
do next?

A: Find the 
minimizing 𝑡𝑡

So, for any 𝑡𝑡 > 0, 
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Proof of Thm 18.4 – Pretty Chernoff Bound
Theorem 18.4:   Let 𝑋𝑋 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛,𝑝𝑝) where 𝜇𝜇 = 𝑬𝑬 𝑋𝑋 = 𝑛𝑛𝑛𝑛. Then, for any 𝛿𝛿 > 0, 

𝑷𝑷 𝑋𝑋 − 𝑛𝑛𝑛𝑛 ≥ 𝛿𝛿 ≤ 𝑒𝑒−2𝛿𝛿2/𝑛𝑛

Proof, cont:  So, for any 𝑡𝑡 > 0, 

𝑷𝑷 𝑋𝑋 − 𝑛𝑛𝑛𝑛 ≥ 𝛿𝛿  ≤  𝑒𝑒−𝑡𝑡𝑡𝑡+𝑛𝑛𝑡𝑡2/8 The exponent is
minimized at 

𝑡𝑡 = 4𝛿𝛿
𝑛𝑛

⟹ 𝑷𝑷 𝑋𝑋 − 𝑛𝑛𝑛𝑛 ≥ 𝛿𝛿  ≤  𝑒𝑒−
4𝛿𝛿
𝑛𝑛 𝛿𝛿+𝑛𝑛 4𝛿𝛿

𝑛𝑛
2

 /8 =  𝑒𝑒−2𝛿𝛿2/𝑛𝑛
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Stronger (?) Chernoff Bound for Binomial

Theorem 18.6:  (Sometimes stronger Chernoff Bound)

 Let 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖  where 𝑋𝑋𝑖𝑖 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑝𝑝𝑖𝑖  and 𝜇𝜇 = 𝑬𝑬 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝑝𝑝𝑖𝑖 . Then, ∀𝜖𝜖 > 0,

𝑷𝑷 𝑋𝑋 ≤ 1 − 𝜖𝜖 𝜇𝜇  ≤  
𝑒𝑒𝜖𝜖

1 + 𝜖𝜖 1+𝜖𝜖

𝜇𝜇

Theorem 18.6 presents an alternative, sometime stronger, bound.
The bound holds for a more general definition of a Binomial.  
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Stronger (?) Chernoff Bound for Binomial
Theorem 18.6:  (Sometimes stronger Chernoff Bound)

 Let 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖  where 𝑋𝑋𝑖𝑖 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑝𝑝𝑖𝑖  and 𝜇𝜇 = 𝑬𝑬 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝑝𝑝𝑖𝑖 . Then, ∀𝜖𝜖 > 0,

𝑷𝑷 𝑋𝑋 ≥ 1 − 𝜖𝜖 𝜇𝜇  <  
𝑒𝑒𝜖𝜖

1 + 𝜖𝜖 1+𝜖𝜖

𝜇𝜇

Plot of inner term:

𝑓𝑓 𝜖𝜖 =
𝑒𝑒𝜖𝜖

1 + 𝜖𝜖 1+𝜖𝜖

Two observations:

1.  𝑓𝑓 𝜖𝜖 < 1, so bound is 
exponentially decreasing.

2.  Bound in Thm 18.6 is 
particularly strong when 𝜖𝜖 is high.   
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Comparison of Chernoff Bounds
Theorem 18.6:  (Sometimes stronger bound)
 Let 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖  where 𝑋𝑋𝑖𝑖 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑝𝑝𝑖𝑖  
and 𝜇𝜇 = 𝑬𝑬 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝑝𝑝𝑖𝑖 . Then, ∀𝜖𝜖 > 0,

𝑷𝑷 𝑋𝑋 ≥ 1 + 𝜖𝜖 𝜇𝜇  <  
𝑒𝑒𝜖𝜖

1 + 𝜖𝜖 1+𝜖𝜖

𝜇𝜇

Theorem 18.4: (Pretty bound)   
Let 𝑋𝑋 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛,𝑝𝑝) where 
𝜇𝜇 = 𝑬𝑬 𝑋𝑋 = 𝑛𝑛𝑛𝑛. Then, for any 𝛿𝛿 > 0, 

𝑷𝑷 𝑋𝑋 − 𝑛𝑛𝑛𝑛 ≥ 𝛿𝛿 ≤ 𝑒𝑒−2𝛿𝛿2/𝑛𝑛

Q:  Which gives best bound on probability of getting ≥ 3
4
𝑛𝑛 heads, when flipping fair coin 𝑛𝑛 times?

𝑷𝑷 𝑋𝑋 ≥
3𝑛𝑛
4

 =  𝑷𝑷 𝑋𝑋 ≥ 1 +
1
2

⋅
𝑛𝑛
2

 

≤
𝑒𝑒0.5

1.51.5

𝑛𝑛/2

≈  1.54 −𝑛𝑛8

𝑷𝑷 𝑋𝑋 ≥
3𝑛𝑛
4

 =  𝑷𝑷 𝑋𝑋 −
𝑛𝑛
2

 ≥
𝑛𝑛
4

 

≤  𝑒𝑒−
𝑛𝑛
8

This is the 
better 

bound!
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Comparison of Chernoff Bounds
Theorem 18.6:  (Sometimes stronger bound)
 Let 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖  where 𝑋𝑋𝑖𝑖 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑝𝑝𝑖𝑖  
and 𝜇𝜇 = 𝑬𝑬 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝑝𝑝𝑖𝑖 . Then, ∀𝜖𝜖 > 0,

𝑷𝑷 𝑋𝑋 ≥ 1 + 𝜖𝜖 𝜇𝜇  <  
𝑒𝑒𝜖𝜖

1 + 𝜖𝜖 1+𝜖𝜖

𝜇𝜇

Theorem 18.4: (Pretty bound)   
Let 𝑋𝑋 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛,𝑝𝑝) where 
𝜇𝜇 = 𝑬𝑬 𝑋𝑋 = 𝑛𝑛𝑛𝑛. Then, for any 𝛿𝛿 > 0, 

𝑷𝑷 𝑋𝑋 − 𝑛𝑛𝑛𝑛 ≥ 𝛿𝛿 ≤ 𝑒𝑒−2𝛿𝛿2/𝑛𝑛

Q:  Which is the better bound on 𝑷𝑷{𝑋𝑋 ≥ 21} if  𝑝𝑝𝑖𝑖 = 𝑝𝑝 = 1
𝑛𝑛

 ?

𝑷𝑷 𝑋𝑋 ≥ 21  =  𝑷𝑷 𝑋𝑋 − 1 ≥ 20  

≤  𝑒𝑒−
2⋅ 20 2

𝑛𝑛 Much 
better 

bound!≤  𝑒𝑒−
800
𝑛𝑛 →  1

𝑷𝑷 𝑋𝑋 ≥ 21  =  𝑷𝑷 (𝑋𝑋 ≥ 1 +  20 ⋅ 1 

≤  
𝑒𝑒20

2121
 

≈  8.3 ⋅ 10−20 
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More general bound: Hoeffding’s Inequality
Theorem 18.7:  (Hoeffding’s Inequality)

 Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be independent r.v.s, where 𝑎𝑎𝑖𝑖 ≤ 𝑋𝑋𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 , ∀𝑖𝑖.  

𝑷𝑷 𝑋𝑋 − 𝑬𝑬 𝑋𝑋 ≥ 𝛿𝛿  ≤  𝑒𝑒𝑒𝑒𝑒𝑒 −
2 𝛿𝛿2

∑𝑖𝑖=1𝑛𝑛 𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖 2

 
Then,

𝑋𝑋 = �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖  
Let:

𝑷𝑷 𝑋𝑋 − 𝑬𝑬 𝑋𝑋 ≤ −𝛿𝛿  ≤  𝑒𝑒𝑒𝑒𝑒𝑒 −
2 𝛿𝛿2

∑𝑖𝑖=1𝑛𝑛 𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖 2

 

More general because 
𝑋𝑋𝑖𝑖’s don’t have to
be independent
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