Chapter 18 Tail Bounds

Tails

Defn: The **tail** of random variable *X* is $P\{X > x\}$.

Examples of why we care about tails:

- \triangleright Fraction of jobs that queue more than 24 hours
- \triangleright Fraction of packets that find the router buffer full
- \triangleright Fraction of hash buckets that have more than 10 items

Unfortunately, determining the tail of even simple r.v.s is often hard – much harder than determining the mean or transform!

Tails Example

Q: Suppose you're distributing *n* jobs among *n* servers at random. What's the probability that a particular server gets $\geq k$ jobs?

Tails Example

Q: Jobs arrive to a datacenter according to a Poisson process with rate λ jobs/hour. What's the probability that $\geq k$ jobs arrive during the first hour?

Tails Bounds

Rather than directly compute tails, we will derive upper bounds on the tails, called **tail bounds**!

Definition: An upper bound on $P\{X \ge k\}$ is called a **tail bound**. An upper bound on $P\{|X - \mu| \ge k\}$ where $\mu = E[X]$ is called a **concentration bound** or **concentration inequality**.

Running Example

We will develop progressively better (tighter) **tail bounds**.

We will test each bound on the following running example:

Markov's inequality

 $P{X \ge a} \le \frac{\mu}{a}$ **Theorem:** (Markov's inequality) If r.v. X is non-negative, with finite mean $\mu = E[X]$, then $\forall a > 0$,

7

Markov's Inequality on Running Example

Flip a fair coin n times:

Q: What's a tail bound on the probability of getting at least $\frac{3}{4}$ 4 n heads?

Chebyshev's inequality

Theorem: (Chebyshev's inequality) Let X be any r.v. with finite mean, μ , and finite variance. Then $\forall a > 0$,

$$
P\{|X-\mu|\geq a\}\leq \frac{Var(X)}{a^2}
$$

Chebyshev's Bound on Running Example

Flip a fair coin n times:

Q: What's a tail bound on the probability of getting at least $\frac{3}{4}$ 4 n heads?

Chernoff Bound

In deriving the Chebyshev bound, we **squared** the r.v. and then applied Markov.

In deriving the Chernoff bound, we **exponentiate** the r.v. and then apply Markov.

11

Chernoff Bound

In deriving the Chebyshev bound, we **squared** the r.v. and then applied Markov.

In deriving the Chernoff bound, we **exponentiate** the r.v. and then apply Markov.

 $\forall t > 0$:

 $P{X \ge a} = P{tX \ge ta}$ $= P\{e^{tX} \geq e^{ta}\}\$ ≤ $\boldsymbol{E}\big[e^{\,tX}\big]$ e^t

Theorem 18.3: (Chernoff bound) Let X be any r.v. and a be a constant. Then

$$
P\{X \ge a\} \le \min_{t>0} \left\{ \frac{E[e^{tX}]}{e^{ta}} \right\}
$$

Chernoff Bound

In deriving the Chebyshev bound, we **squared** the r.v. and then applied Markov.

In deriving the Chernoff bound, we **exponentiate** the r.v. and then apply Markov.

$$
\forall t > 0:
$$
\n
$$
P\{X \ge a\} = P\{tX \ge ta\}
$$
\n
$$
= P\{e^{tX} \ge e^{ta}\}
$$
\n
$$
\le \frac{E[e^{tX}]}{e^{ta}}
$$
\nWhen the others?

Theorem: (Chernoff bound) Let X be any r.v. and a be a constant. Then

$$
P\{X \ge a\} \le \min_{t>0} \left\{ \frac{E[e^{tX}]}{e^{ta}} \right\}
$$
 A: Looks a lot like an onion!

Chernoff Bound on c.d.f.

Theorem: (Chernoff bound on c.d.f.) Let X be any r.v. and a be a constant. Then

$$
P\{X \le a\} \le \min_{t < 0} \left\{ \frac{E[e^{tX}]}{e^{ta}} \right\}
$$

Chernoff Bound for Poisson Tail

Goal: Bound tail of $X \sim Poisson(\lambda)$

[&]quot;Introduction to Probability for Computing", Harchol-Balter '24

Chernoff Bound for Poisson Tail

Goal: Bound tail of $X \sim Poisson(\lambda)$

"Introduction to P \sim Probability for Computing", Harchol-Balter '24 16 Step 2: Let $a > \lambda$. Bound $P\{X \ge a\}$ $=$ min $t > 0$ $e^{\lambda(e^t-1)}$ e^t $P\{X \ge a\} \le \min_{t > 0}$ $t > 0$ $\boldsymbol{E}\!\left[e^{\,tX}\right]$ e^t $=\min_{t>0}$ $t > 0$ $e^{\lambda(e^t-1)-t}$ Suffices to minimize exponent! \triangleright Exponent is minimized at $t = ln\left(\frac{a}{\lambda}\right)$ λ Thus: $= e$ $\lambda(\frac{a}{\lambda}-1)-a ln(\frac{a}{\lambda})$ \triangleright $P\{X \ge a\} \le e^{\lambda (e^t-1)-ta}$, at $t = \ln\left(\frac{a}{\lambda}\right)$ $=\left(e^{a-\lambda}\cdot\left(\frac{\lambda}{a}\right)^a\right)$

 λ

Chernoff Bound for Binomial

Theorem 18.4: (Pretty Chernoff Bound for Binomial)

Let $X \sim Binomial(n, p)$ where $\mu = E[X] = np$. Then, for any $\delta > 0$,

 $P{X - np \ge \delta} \le e^{-2\delta^2/n}$ $P{X - np \le -\delta} \le e^{-2\delta^2/n}$

We will prove this soon, but let's try applying it first!

Chernoff Bound on Running Example

Flip a fair coin n times: **Community Community Community Community**

CONTINUES CONTINUES

Q: What's a tail bound on the probability of getting at least $\frac{3}{4}$ 4 n heads?

Comparing the bounds

Flip a fair coin n times:

Q: What's a tail bound on the probability of getting at least $\frac{3}{4}$ 4 n heads?

Q: What is the exact answer?

$$
P\left\{X\geq \frac{3}{4}n\right\} = \sum_{i=\frac{3}{4}n}^{n} {n \choose i} \left(\frac{1}{2}\right)^i \left(\frac{1}{2}\right)^{n-i} = \boxed{2^{-n} \sum_{i=\frac{3}{4}n}^{n} {n \choose i}}
$$

Central Limit Theorem

Comparing the approximation and bounds

Comparing the approximation and bounds

 $P{X - np \ge \delta} \le e^{-2\delta^2/n}$ **Theorem 18.4: (Pretty Chernoff Bound for Binomial)** Let $X \sim Binomial(n, p)$ where $\mu = E[X] = np$. Then, for any $\delta > 0$, $P{X - np \le -\delta} \le e^{-2\delta^2/n}$

We will now prove Thm 18.4 (top half). The bottom half is an Exercise in your book.

Our proof requires using Lemma 18.5, which is proven in your book.

 $pe^{tq} + qe^{-tp} \leq e^{t^2/8}$ **Lemma 18.5:** For any $t > 0$ and $0 < p < 1$ and $q = 1 - p$, we have that:

Theorem 18.4: Let $X \sim Binomial(n, p)$ where $\mu = E[X] = np$. Then, for any $\delta > 0$, $P{X - np \ge \delta} \le e^{-2\delta^2/n}$

Proof: For any $t > 0$,

Theorem 18.4: Let $X \sim Binomial(n, p)$ where $\mu = E[X] = np$. Then, for any $\delta > 0$, $P{X - np \ge \delta} \le e^{-2\delta^2/n}$

Theorem 18.4: Let $X \sim Binomial(n, p)$ where $\mu = E[X] = np$. Then, for any $\delta > 0$, $P{X - np \ge \delta} \le e^{-2\delta^2/n}$

Stronger (?) Chernoff Bound for Binomial

Theorem 18.6 presents an alternative, sometime stronger, bound. The bound holds for a more general definition of a Binomial.

Theorem 18.6: (Sometimes stronger Chernoff Bound) Let $X = \sum_{i=1}^{n} X_i$ where $X_i \sim Bernoulli(p_i)$ and $\mu = E[X] = \sum_{i=1}^{n} X_i$ Then, $\forall \epsilon > 0$, $P\{X \leq (1-\epsilon)\mu\} \leq$ e^{ϵ} $(1+\epsilon)^{(1+\epsilon)}$ μ

Stronger (?) Chernoff Bound for Binomial

Theorem 18.6: (Sometimes stronger Chernoff Bound)

Let
$$
X = \sum_{i=1}^{n} X_i
$$
 where $X_i \sim Bernoulli(p_i)$ and $\mu = E[X] = \sum_{i=1}^{n} p_i$. Then, $\forall \epsilon > 0$,

$$
P\{X \ge (1 - \epsilon)\mu\} < \left(\frac{e^{\epsilon}}{(1 + \epsilon)^{(1 + \epsilon)}}\right)^{\mu}
$$

Plot of inner term:

Two observations:

1. $f(\epsilon)$ < 1, so bound is exponentially decreasing.

2. Bound in Thm 18.6 is particularly strong when ϵ is high.

Comparison of Chernoff Bounds

Theorem 18.4: (Pretty bound) Let $X \sim Binomial(n, p)$ where $\mu = E[X] = np$. Then, for any $\delta > 0$,

 $P{X - np \ge \delta} \le e^{-2\delta^2/n}$

Theorem 18.6: (Sometimes stronger bound) Let $X = \sum_{i=1}^{n} X_i$ where $X_i \sim Bernoulli(p_i)$ and $\mu = E[X] = \sum_{i=1}^{n} p_i$. Then, $\forall \epsilon > 0$,

$$
P\{X \ge (1+\epsilon)\mu\} < \left(\frac{e^{\epsilon}}{(1+\epsilon)^{(1+\epsilon)}}\right)^{\mu}
$$

Q: Which gives best bound on probability of getting $\geq \frac{3}{4}$ 4 n heads, when flipping fair coin n times?

Comparison of Chernoff Bounds

Theorem 18.4: (Pretty bound) Let $X \sim Binomial(n, p)$ where $\mu = E[X] = np$. Then, for any $\delta > 0$,

 $P{X - np \ge \delta} \le e^{-2\delta^2/n}$

Theorem 18.6: (Sometimes stronger bound) Let $X = \sum_{i=1}^{n} X_i$ where $X_i \sim Bernoulli(p_i)$ and $\mu = E[X] = \sum_{i=1}^{n} p_i$. Then, $\forall \epsilon > 0$, $P\{X \geq (1+\epsilon)\mu\}$ < e^{ϵ} $(1+\epsilon)^{(1+\epsilon)}$ μ

Q: Which is the better bound on $P\{X \geq 21\}$ if $p_i = p = \frac{1}{n}$ \boldsymbol{n} ?

$$
P{X \ge 21} = P{X - 1 \ge 20}
$$

\n
$$
\le e^{-\frac{2 \cdot (20)^2}{n}}
$$

\n
$$
\le e^{-\frac{800}{n}} \to \boxed{1}
$$

$$
= P\{X - 1 \ge 20\}
$$
\n
$$
\le e^{\frac{2 \cdot (20)^2}{n}}
$$
\n
$$
\le e^{\frac{800}{n}} \to \boxed{1}
$$
\n
$$
\le \frac{e^{20}}{8.3 \cdot 10^{-20}}
$$
\n
$$
\le \frac{8.3 \cdot 10^{-20}}{21^{21}}
$$
\n
$$
\le 8.3 \cdot 10^{-20}
$$
\n
$$
\le 10^{-20}
$$
\n
$$
\text{better}
$$
\n
$$
\approx 10^{-20}
$$
\n
$$
\text{bound!}
$$

More general bound: Hoeffding's Inequality

Theorem 18.7: (Hoeffding's Inequality)

Let $X_1, X_2, ..., X_n$ be independent r.v.s, where $a_i \leq X_i \leq b_i$, $\forall i$.

Let:

More general because X_i 's don't have to be independent

Then,

$$
P\{X - E[X] \ge \delta\} \le \exp\left(-\frac{2\delta^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)
$$

$$
P\{X - E[X] \le -\delta\} \le \exp\left(-\frac{2\delta^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)
$$