Chapter 18 Tail Bounds

Tails

<u>Defn</u>: The **tail** of random variable X is $P{X > x}$.

Examples of why we care about tails:

- Fraction of jobs that queue more than 24 hours
- Fraction of packets that find the router buffer full
- Fraction of hash buckets that have more than 10 items

Unfortunately, determining the tail of even simple r.v.s is often hard – much harder than determining the mean or transform!

Tails Example

Q: Suppose you're distributing n jobs among n servers at random. What's the probability that a particular server gets $\geq k$ jobs?

Tails Example

Q: Jobs arrive to a datacenter according to a Poisson process with rate λ jobs/hour. What's the probability that $\geq k$ jobs arrive during the first hour?

Tails Bounds

Rather than directly compute tails, we will derive upper bounds on the tails, called **tail bounds**!

<u>Definition</u>: An upper bound on $P{X \ge k}$ is called a **tail bound**. An upper bound on $P{|X - \mu| \ge k}$ where $\mu = E[X]$ is called a **concentration bound** or **concentration inequality**.

Running Example

We will develop progressively better (tighter) tail bounds.

We will test each bound on the following running example:

Markov's inequality

Theorem: (Markov's inequality) If r.v. *X* is non-negative, with finite mean $\mu = E[X]$, then $\forall a > 0$, $P\{X \ge a\} \le \frac{\mu}{a}$

Proof:

$$E[X] = \sum_{x=0}^{\infty} x \cdot p_X(x) \ge \sum_{x=a}^{\infty} x \cdot p_X(x)$$

$$\ge \sum_{x=a}^{\infty} a \cdot p_X(x)$$

$$= a \sum_{x=a}^{\infty} p_X(x) = a \cdot P\{X \ge a\}$$

Markov's Inequality on Running Example

Flip a fair coin *n* times:

Q: What's a tail bound on the probability of getting at least $\frac{3}{4}n$ heads?

Chebyshev's inequality

Theorem: (Chebyshev's inequality) Let *X* be any r.v. with finite mean, μ , and finite variance. Then $\forall a > 0$,

$$P\{|X - \mu| \ge a\} \le \frac{Var(X)}{a^2}$$

9

Chebyshev's Bound on Running Example

Flip a fair coin *n* times:

Q: What's a tail bound on the probability of getting at least $\frac{3}{4}n$ heads?

Chernoff Bound

In deriving the Chebyshev bound, we **squared** the r.v. and then applied Markov.

In deriving the Chernoff bound, we **exponentiate** the r.v. and then apply Markov.

11

Chernoff Bound

In deriving the Chebyshev bound, we **squared** the r.v. and then applied Markov.

In deriving the Chernoff bound, we **exponentiate** the r.v. and then apply Markov.

 $\forall t > 0$:

$$P\{X \ge a\} = P\{tX \ge ta\}$$
$$= P\{e^{tX} \ge e^{ta}\}$$
$$\leq \frac{E[e^{tX}]}{e^{ta}}$$

Theorem 18.3: (Chernoff bound) Let *X* be any r.v. and *a* be a constant. Then

$$\mathbf{P}\{X \ge a\} \le \min_{t>0} \left\{ \frac{\mathbf{E}[e^{tX}]}{e^{ta}} \right\}$$

Chernoff Bound

In deriving the Chebyshev bound, we **squared** the r.v. and then applied Markov.

In deriving the Chernoff bound, we **exponentiate** the r.v. and then apply Markov.

$$\forall t > 0:$$

$$P\{X \ge a\} = P\{tX \ge ta\}$$

$$= P\{e^{tX} \ge e^{ta}\}$$

$$\leq \frac{E[e^{tX}]}{e^{ta}}$$

$$Q: Why do we expect the Chernoff bound to be stronger than the others?$$

Theorem: (Chernoff bound) Let *X* be any r.v. and *a* be a constant. Then

$$P\{X \ge a\} \le \min_{t>0} \left\{ \frac{E[e^{tX}]}{e^{ta}} \right\}$$
 A: Looks a lot like an onion!

Chernoff Bound on c.d.f.

Theorem: (Chernoff bound on c.d.f.) Let *X* be any r.v. and *a* be a constant. Then

$$\mathbf{P}\{X \le a\} \le \min_{t < 0} \left\{ \frac{\mathbf{E}[e^{tX}]}{e^{ta}} \right\}$$

Chernoff Bound for Poisson Tail

Goal: Bound tail of $X \sim Poisson(\lambda)$

[&]quot;Introduction to Probability for Computing", Harchol-Balter '24

Chernoff Bound for Poisson Tail

Goal: Bound tail of $X \sim Poisson(\lambda)$

<u>Step 2</u>: Let $a > \lambda$. Bound $P\{X \ge a\}$ > Exponent is minimized at $t = ln\left(\frac{a}{2}\right)$ Thus: $\mathbf{P}\{X \ge a\} \le \min_{t>0} \left\{ \frac{\mathbf{E}[e^{tA}]}{e^{ta}} \right\}$ $\succ \mathbf{P}\{X \ge a\} \le e^{\lambda(e^t - 1) - ta}$, at $t = ln\left(\frac{a}{\lambda}\right)$ $= \min_{t > 0} \left\{ \frac{e^{\lambda(e^{t} - 1)}}{e^{ta}} \right\}$ $= e^{\lambda \left(\frac{a}{\lambda} - 1\right) - a ln\left(\frac{a}{\lambda}\right)}$ $= e^{a-\lambda} \cdot \left(\frac{\lambda}{a}\right)^a$ Suffices to $= \min_{t>0} \left\{ e^{\lambda(e^t - 1) - ta} \right\}$ minimize exponent! puting", Harchol-Balter '24 "Introduction to P

16

Chernoff Bound for Binomial

Theorem 18.4: (Pretty Chernoff Bound for Binomial)

Let $X \sim Binomial(n, p)$ where $\mu = \mathbf{E}[X] = np$. Then, for any $\delta > 0$,

$$P\{X - np \ge \delta\} \le e^{-2\delta^2/n}$$
$$P\{X - np \le -\delta\} \le e^{-2\delta^2/n}$$

We will prove this soon, but let's try applying it first!

Chernoff Bound on Running Example

Flip a fair coin *n* times: (n + 1) = (n + 1

Comparing the bounds

Flip a fair coin *n* times:

Q: What's a tail bound on the probability of getting at least $\frac{3}{4}n$ heads?

Q: What is the <u>exact</u> answer?

$$P\left\{X \ge \frac{3}{4}n\right\} = \sum_{i=\frac{3}{4}n}^{n} \binom{n}{i} \left(\frac{1}{2}\right)^{i} \left(\frac{1}{2}\right)^{n-i} = 2^{-n} \sum_{i=\frac{3}{4}n}^{n} \binom{n}{i}$$

Central Limit Theorem

Comparing the approximation and bounds

[&]quot;Introduction to Probability for Computing", Harchol-Balter '24

Comparing the approximation and bounds

Theorem 18.4: (Pretty Chernoff Bound for Binomial) Let $X \sim Binomial(n, p)$ where $\mu = E[X] = np$. Then, for any $\delta > 0$, $P\{X - np \ge \delta\} \le e^{-2\delta^2/n}$ $P\{X - np \le -\delta\} \le e^{-2\delta^2/n}$

We will now prove Thm 18.4 (top half). The bottom half is an Exercise in your book.

Our proof requires using Lemma 18.5, which is proven in your book.

Lemma 18.5: For any t > 0 and 0 and <math>q = 1 - p, we have that: $pe^{tq} + qe^{-tp} \le e^{t^2/8}$

Theorem 18.4: Let $X \sim Binomial(n, p)$ where $\mu = \mathbf{E}[X] = np$. Then, for any $\delta > 0$, $\mathbf{P}\{X - np \ge \delta\} \le e^{-2\delta^2/n}$

Proof: For any t > 0,

Theorem 18.4: Let $X \sim Binomial(n, p)$ where $\mu = \mathbf{E}[X] = np$. Then, for any $\delta > 0$, $\mathbf{P}\{X - np \ge \delta\} \le e^{-2\delta^2/n}$

Theorem 18.4: Let $X \sim Binomial(n, p)$ where $\mu = E[X] = np$. Then, for any $\delta > 0$, $P\{X - np \ge \delta\} \le e^{-2\delta^2/n}$

Stronger (?) Chernoff Bound for Binomial

Theorem 18.6 presents an alternative, sometime stronger, bound. The bound holds for a more general definition of a Binomial.

Theorem 18.6: (Sometimes stronger Chernoff Bound) Let $X = \sum_{i=1}^{n} X_i$ where $X_i \sim Bernoulli(p_i)$ and $\mu = E[X] = \sum_{i=1}^{n} p_i$. Then, $\forall \epsilon > 0$, $P\{X \le (1 - \epsilon)\mu\} \le \left(\frac{e^{\epsilon}}{(1 + \epsilon)^{(1 + \epsilon)}}\right)^{\mu}$

Stronger (?) Chernoff Bound for Binomial

Theorem 18.6: (Sometimes stronger Chernoff Bound)

Let
$$X = \sum_{i=1}^{n} X_i$$
 where $X_i \sim Bernoulli(p_i)$ and $\mu = E[X] = \sum_{i=1}^{n} p_i$. Then, $\forall \epsilon > 0$,
 $P\{X \ge (1 - \epsilon)\mu\} < \left(\frac{e^{\epsilon}}{(1 + \epsilon)^{(1 + \epsilon)}}\right)^{\mu}$

Plot of inner term:

 $f(\epsilon) = \frac{e^{\epsilon}}{(1+\epsilon)^{(1+\epsilon)}}$

Two observations:

1. $f(\epsilon) < 1$, so bound is exponentially decreasing.

2. Bound in Thm 18.6 is particularly strong when ϵ is high.

Comparison of Chernoff Bounds

Theorem 18.4: (Pretty bound) Let $X \sim Binomial(n, p)$ where $\mu = \mathbf{E}[X] = np$. Then, for any $\delta > 0$,

 $\mathbf{P}\{X - np \ge \delta\} \le e^{-2\delta^2/n}$

Theorem 18.6: (Sometimes stronger bound) Let $X = \sum_{i=1}^{n} X_i$ where $X_i \sim Bernoulli(p_i)$ and $\mu = \mathbf{E}[X] = \sum_{i=1}^{n} p_i$. Then, $\forall \epsilon > 0$,

$$\{X \ge (1+\epsilon)\mu\} < \left(\frac{e^{\epsilon}}{(1+\epsilon)^{(1+\epsilon)}}\right)^{\mu}$$

Q: Which gives best bound on probability of getting $\geq \frac{3}{4}n$ heads, when flipping fair coin n times?

Comparison of Chernoff Bounds

Theorem 18.4: (Pretty bound) Let $X \sim Binomial(n, p)$ where $\mu = \mathbf{E}[X] = np$. Then, for any $\delta > 0$,

 $\mathbf{P}\{X - np \ge \delta\} \le e^{-2\delta^2/n}$

Theorem 18.6: (Sometimes stronger bound) Let $X = \sum_{i=1}^{n} X_i$ where $X_i \sim Bernoulli(p_i)$ and $\mu = E[X] = \sum_{i=1}^{n} p_i$. Then, $\forall \epsilon > 0$, $P\{X \ge (1 + \epsilon)\mu\} < \left(\frac{e^{\epsilon}}{(1 + \epsilon)^{(1 + \epsilon)}}\right)^{\mu}$

Q: Which is the better bound on $P{X \ge 21}$ if $p_i = p = \frac{1}{n}$?

$$P\{X \ge 21\} = P\{X - 1 \ge 20\}$$
$$\leq e^{-\frac{2 \cdot (20)^2}{n}}$$
$$\leq e^{-\frac{800}{n}} \to 1$$

$$P\{X \ge 21\} = P\{(X \ge (1 + 20) \cdot 1\}$$

$$\leq \frac{e^{20}}{21^{21}}$$

$$\approx 8.3 \cdot 10^{-20}$$
Much better bound!

More general bound: Hoeffding's Inequality

Theorem 18.7: (Hoeffding's Inequality)

Let $X_1, X_2, ..., X_n$ be independent r.v.s, where $a_i \leq X_i \leq b_i$, $\forall i$.

Let:

More general because X_i 's don't have to be independent

Then,

$$P\{X - E[X] \ge \delta\} \le exp\left(-\frac{2\,\delta^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$
$$P\{X - E[X] \le -\delta\} \le exp\left(-\frac{2\,\delta^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$