# Chapter 2 Probability on Events

# Sample Space and Events

Probability is defined in terms of some experiment.

 $\Omega$  = Sample space of the experiment = Set of all possible outcomes

<u>Defn</u>: An **event**, E, is any subset of the sample space,  $\Omega$ .

Example: Roll die twice



Q: What does event  $E_1$  represent?

Q: What is  $E_1 \cup E_2$ ?

Q: What is  $\overline{E_1}$  ?

Q: Are  $E_1$  and  $E_2$  independent? (we'll see)



## Sample Space and Events

<u>Defn</u>: If  $E_1 \cap E_2 = \emptyset$ , then  $E_1$  and  $E_2$  are **mutually exclusive**.

<u>Defn</u>: If  $E_1, E_2, ..., E_n$  are events such that  $E_i \cap E_j = \emptyset$ ,  $\forall i \neq j$ , and such that  $\bigcup_{i=1}^n E_i = F$  then we say that events  $E_1, E_2, ..., E_n$  partition set F.

**Q**: What is an example of events that partition  $\Omega$  for 2 rolls of a die?



## Sample Space and Events

<u>Defn</u>: A sample space is **discrete** if the number of outcomes is:
 <u>countable</u>
 A sample space is **continuous** if the number of outcomes is:
 <u>uncountable</u>

**Q**: Which of these experiments have a discrete/continuous sample space?

- ☐ Roll a die 2 times discrete
- ☐ Throw a dart at a unit interval. continuous
- ☐ Flip a coin until we see the first head. discrete
- ☐ Mark the time when the 100<sup>th</sup> email arrives. continuous

# Probability Defined on Events

 $P{E}$  = probability of event E = probability that the outcome of the experiment lies in set E

#### The 3 Probability Axioms:

**Non-negativity**:  $P\{E\} \ge 0$  for any event E.

**Additivity**: If  $E_1$ ,  $E_2$ ,  $E_3$ , ... is a countable sequence of disjoint events, then

$$P{E_1 \cup E_2 \cup E_3 \cup \cdots} = P{E_1} + P{E_2} + P{E_3} + \cdots$$

Normalization:  $P{\Omega} = 1$ 

# Consequences of the 3 Probability Axioms

Lemma 2.5: 
$$P{E \cup F} = P{E} + P{F} - P{E \cap F}$$



Proof: (Hint: Think about Additivity Axiom)

# Consequences of the 3 Probability Axioms

Lemma 2.5: 
$$P{E \cup F} = P{E} + P{F} - P{E \cap F}$$



#### **Proof**:

Express  $E \cup F$  as a union of mutually exclusive sets  $E \cup F = E \cup (F \setminus (E \cap F))$ 

Then, by the Additivity Axiom we have 2 observations:

$$\mathbf{P}\{E \cup F\} = \mathbf{P}\{E\} + \mathbf{P}\{F \setminus (E \cap F)\}$$
$$\mathbf{P}\{F\} = \mathbf{P}\{F \setminus (E \cap F)\} + \mathbf{P}\{E \cap F\}$$

Now substitute the 2<sup>nd</sup> equation into the 1<sup>st</sup>.

Lemma 2.6:  $P\{E \cup F\} \le P\{E\} + P\{F\}$ 

Proof: WHY??

# Consequences of the 3 Probability Axioms

**Q**: You throw a dart, equally likely to land anywhere in [0,1]. What is  $P\{\text{Dart lands at } 0.3\}$ ?

(Argue using the Probability Axioms.)



<u>Defn</u>: The conditional probability of event E given event F is

$$\mathbf{P}\{E \mid F\} = \frac{\mathbf{P}\{E \cap F\}}{\mathbf{P}\{F\}}$$

assuming  $P{F} > 0$ .



#### Two equivalent views:

$$P\{E \mid F\} = \frac{2}{10}$$
 (of the 10 outcomes in set  $F$ , only 2 of these are in set  $E$ )

$$P{E \mid F} = \frac{P{E \cap F}}{P{F}} = \frac{\frac{2}{42}}{\frac{10}{42}} = \frac{2}{10}$$

<u>Defn</u>: The conditional probability of event E given event F is

$$\mathbf{P}\{E \mid F\} = \frac{\mathbf{P}\{E \cap F\}}{\mathbf{P}\{F\}}$$

assuming  $P\{F\} > 0$ .

#### Sandwich choices:

Mon – Jelly

Tues – Cheese

Wed – Turkey

Thur – Cheese

Fri – Turkey

Sat – Cheese

Sun – None

1<sup>st</sup> half of week

2<sup>nd</sup> half of week

**Q:** What is  $P\{\text{Cheese} \mid 2^{\text{nd}} \text{ half of week}\}$ ? Argue this from 2 views.



Defn: The conditional probability of event E given event F is

$$\mathbf{P}\{E|F\} = \frac{\mathbf{P}\{E \cap F\}}{\mathbf{P}\{F\}}$$

assuming  $P\{F\} > 0$ .

#### Sandwich choices:

Mon – Jelly Tues – Cheese Wed – Turkey

Thur – Cheese

Fri – Turkey

Sat – Cheese

Sun – None

1st half of week

2<sup>nd</sup> half of week **Q:** What is  $P\{\text{Cheese} \mid 2^{\text{nd}} \text{ half of week}\}$ ? Argue this from 2 views.

$$P\{\text{Cheese } | 2^{\text{nd} } \text{ half }\} = \frac{2}{4}$$
 (of the 4 days in  $2^{\text{nd} } \text{ half,}$  2 are cheese sandwiches)

$$P\{\text{Cheese} \mid 2^{\text{nd}} \text{ half}\} = \frac{P\{\text{Cheese} \cap 2^{\text{nd}} \text{ half}\}}{P\{2^{\text{nd}} \text{ half}\}} = \frac{\frac{2}{7}}{\frac{4}{7}} = \frac{2}{4}$$



**Q:** What is  $P\{\text{both are colts} \mid \geq 1 \text{ colt}\}$ ?

The offspring of a horse is called a foal.

Horse couples have one foal at a time.

Each foal is equally likely to be a "colt" or a "filly."

We're told that a horse couple had 2 foals, and at least one of these is a colt.



The offspring of a horse is called a foal.

Horse couples have one foal at a time.

Each foal is equally likely to be a "colt" or a "filly."

We're told that a horse couple had 2 foals, and at least one of these is a colt.

P{both are colts  $| \ge 1 \text{ colt}$ } P{both are colts  $\& \ge 1$  colt} P{ $\geq 1 \text{ colt}$ } **P**{both are colts } P{ $\geq$  1 colt}



The offspring of a horse is called a foal.

Horse couples have one foal at a time.

Each foal is equally likely to be a "colt" or a "filly."

We're told that a horse couple had 2 foals, and at least one of these is a colt.

P{both are colts |  $\geq 1$  colt} =  $\frac{1}{3}$ 



If 
$$P\{E_1 \cap E_2\} > 0$$
, then: 
$$P\{E_2 | E_1\} = \frac{P\{E_1 \cap E_2\}}{P\{E_1\}}$$

#### Equivalently, we can write:



# Chain Rule for Conditioning

If 
$$P\{E_1 \cap E_2\} > 0$$
, then:  
 $P\{E_1 \cap E_2\} = P\{E_1\} \cdot P\{E_2 | E_1\}$ 

This can be generalized!

#### Theorem 2.10: [Chain Rule for Conditioning]

If 
$$P{E_1 \cap E_2 \cap E_3 \cap \cdots \cap E_n} > 0$$
, then

$$P{E_1 \cap E_2 \cap E_3 \cap \cdots \cap E_n}$$

$$= P\{E_1\} \cdot P\{E_2 \mid E_1\} \cdot P\{E_3 \mid E_1 \cap E_2\} \cdots P\{E_n \mid E_1 \cap E_2 \cap E_3 \cap \cdots \cap E_{n-1}\}$$

# Independent Events

<u>Defn</u>: Events E and F are **independent**, written  $E \perp F$ , if:

$$\mathbf{P}\{E \cap F\} = \mathbf{P}\{E\} \cdot \mathbf{P}\{F\}$$

Here's an equivalent and more intuitive definition:

<u>Defn</u>: Assuming P(F) > 0, Events E and F are **independent**, if:

$$\mathbf{P}\{E \mid F\} = \mathbf{P}\{E\}$$

See the book for a proof of the equivalence.

## Practice with Independent Events

<u>Defn</u>: Events E and F are **independent**, written  $E \perp F$ , if:

$$\mathbf{P}\{E \cap F\} = \mathbf{P}\{E\} \cdot \mathbf{P}\{F\}$$

<u>Defn</u>: Assuming P(F) > 0, Events E and F are **independent**, if:

$$\mathbf{P}\{E \mid F\} = \mathbf{P}\{E\}$$

**Q**: Can two mutually exclusive, non-null events be independent?



**Q**: Suppose we roll a die twice. Which of these pairs of events are independent:

- a. Let E = ``1st roll is 6.'' Let F = ``2nd roll is 6''
- b. Let E="Sum of rolls is 7." Let F ="2<sup>nd</sup> roll is 4"



#### Practice with Independent Events

You are routing a packet from the source to the destination. But each of the 16 edges in the network only works with probability p.



**Q**: What is the probability that you can get the packet from the source to the destination?

## Practice with Independent Events

Each edge works with probability p. There are 8 paths.

Let  $E_i$  denote the event that the  $i^{th}$  path is usable (not broken).



**Q**: What is **P**{Can get from source to destination}?



P{Can get from source to destination} = P{At least one path works}

$$= \mathbf{P}\{E_1 \cup E_2 \cup \cdots \cup E_8\}$$

 $= 1 - P\{All paths are broken\}$ 

$$= 1 - \mathbf{P}\{\overline{E_1}\} \cdot \mathbf{P}\{\overline{E_2}\} \cdots \mathbf{P}\{\overline{E_8}\} = 1 - (1 - p^2)^8$$

## More Independence Definitions

<u>Defn 2.15</u>: Events  $A_1, A_2, ..., A_n$  are **independent** if, for every subset S of  $\{1, 2, ..., n\}$ :

$$\mathbf{P}\left\{\bigcap_{i\in S}A_i\right\} = \prod_{i\in S}\mathbf{P}\{A_i\}$$

<u>Defn 2.16</u>: Events  $A_1, A_2, ..., A_n$  are **pairwise independent** if every pair of events is independent.

<u>Defn 2.17</u>: Two events E and F are said to be **conditionally independent given** G, where P(G) > 0, if

$$\mathbf{P}\{E \cap F \mid G\} = \mathbf{P}\{E \mid G\} \cdot \mathbf{P}\{F \mid G\}$$

# Law of Total Probability

For any sets 
$$E$$
 and  $F$ :

$$E = (E \cap F) \cup (E \cap \overline{F})$$

$$\mathbf{P}\{E\} = \mathbf{P}\{E \cap F\} + \mathbf{P}\{E \cap \overline{F}\}$$
$$= \mathbf{P}\{E \mid F\} \cdot \mathbf{P}\{F\} + \mathbf{P}\{E \mid \overline{F}\} \cdot \mathbf{P}\{\overline{F}\}$$

#### Generalizing, we have:

#### Theorem 2.18: [Law of Total Probability]

Let  $F_1, F_2, \dots, F_n$  partition the state space  $\Omega$ . Then:

$$P{E} = \sum_{i=1}^{n} P{E \cap F_i} = \sum_{i=1}^{n} P{E|F_i} \cdot P{F_i}$$

# Law of Total Probability

The Law of Total Probability applies to conditional probability as well:

<u>Theorem 2.19</u>: [Law of Total Probability for Conditional Probability] Let  $F_1, F_2, ..., F_n$  partition the state space  $\Omega$ . Then:

$$P\{A \mid B\} = \sum_{i=1}^{n} P\{A \mid B \cap F_i\} \cdot P\{F_i \mid B\}$$

## Bayes' Law

Sometimes we want to know  $P\{F \mid E\}$  but all we know is the reverse direction,  $P\{E \mid F\}$ .

Theorem 2.20: [Bayes' Law] Assuming  $P{E} > 0$ ,

$$P\{F \mid E\} = \frac{P\{E \cap F\}}{P\{E\}} = \frac{P\{E \mid F\} \cdot P\{F\}}{P\{E\}}$$

<u>Theorem 2.21</u>: [Extended Bayes' Law] Let  $F_1, F_2, ..., F_n$  partition  $\Omega$ . Assuming P(E) > 0,

$$P\{F \mid E\} = \frac{P\{E \mid F\} \cdot P\{F\}}{P\{E\}} = \frac{P\{E \mid F\} \cdot P\{F\}}{\sum_{j=1}^{n} P\{E \mid F_{j}\} \cdot P\{F_{j}\}}$$

## Bayes' Law Example

There's a rare child cancer that occurs in one out of a million kids. There's a test for this cancer that is 99.9% effective:



**Q**: Suppose my child's test result is positive. How worried should I be?

## Bayes' Law Example

Rare cancer occurs in 1 out of  $10^6$  kids. Test for this cancer is 99.9% effective:

**Q**: My child's test result is positive. How worried should I be?



$$\begin{split} & P\{\text{Cancer } | \, \text{Test Pos}\} \\ &= \frac{P\{\text{Test pos } | \, \text{Cancer}\} \cdot P\{\text{Cancer}\}}{P\{\text{Test pos } | \, \text{Cancer}\} \cdot P\{\text{No cancer}\}} \\ &= \frac{0.999 \cdot 10^{-6}}{0.999 \cdot 10^{-6} + 10^{-3} \cdot (1 - 10^{-6})} \approx \frac{10^{-6}}{10^{-6} + 10^{-3}} = \frac{1}{1001} \end{split}$$