
Chapter 2
Probability on Events
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Sample Space and Events
Probability is defined in terms of some experiment.

Ω = Sample space of the experiment = Set of all possible outcomes

Defn: An event, 𝐸𝐸, is any subset of the sample space, Ω.

Example: Roll die twice

   Q: What does event 𝐸𝐸1 represent?
   Q: What is 𝐸𝐸1 ∪ 𝐸𝐸2 ?
   Q: What is 𝐸𝐸1 ?
   Q: Are 𝐸𝐸1 and 𝐸𝐸2 independent? (we’ll see)
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Sample Space and Events

Defn: If 𝐸𝐸1 ∩ 𝐸𝐸2 = ∅, then 𝐸𝐸1 and 𝐸𝐸2 are mutually exclusive. 

Q: What is an example of events that 
      partition Ω for 2 rolls of a die?

Defn: If 𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸𝑛𝑛 are events such that 𝐸𝐸𝑖𝑖 ∩ 𝐸𝐸𝑗𝑗 = ∅,   ∀𝑖𝑖 ≠ 𝑗𝑗, 
and such that ⋃𝑖𝑖=1

𝑛𝑛 𝐸𝐸𝑖𝑖 = 𝐹𝐹 then we say that events 𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸𝑛𝑛 
partition set 𝐹𝐹.
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Sample Space and Events

Defn: A sample space is discrete if the number of outcomes is:
           __________________.
           A sample space is continuous if the number of outcomes is:
           __________________.

Q: Which of these experiments have a discrete/continuous sample space?

 Roll a die 2 times
 Throw a dart at a unit interval.
 Flip a coin until we see the first head.
Mark the time when the 100th email arrives.

"Introduction to Probability for Computing", Harchol-Balter '24
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Probability Defined on Events

The 3 Probability Axioms: 

Non-negativity: 𝑷𝑷{𝐸𝐸} ≥ 0 for any event 𝐸𝐸.

Additivity: If 𝐸𝐸1,𝐸𝐸2,𝐸𝐸3, … is a countable sequence of disjoint events, then
𝑷𝑷{𝐸𝐸1 ∪ 𝐸𝐸2 ∪ 𝐸𝐸3 ∪ ⋯ } = 𝑷𝑷{𝐸𝐸1} + 𝑷𝑷{𝐸𝐸2} + 𝑷𝑷{𝐸𝐸3} + ⋯

Normalization: 𝑷𝑷{Ω} = 1
 

= probability of event 𝐸𝐸
= probability that the outcome of the experiment lies in set 𝐸𝐸

}𝑷𝑷{𝐸𝐸

"Introduction to Probability for Computing", Harchol-Balter '24



6

Consequences of the 3 Probability Axioms

Lemma 2.5:  𝑷𝑷{𝐸𝐸 ∪ 𝐹𝐹} = 𝑷𝑷{𝐸𝐸} + 𝑷𝑷{𝐹𝐹} − 𝑷𝑷{𝐸𝐸 ∩ 𝐹𝐹}

 Proof:  (Hint: Think about Additivity Axiom)  
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Consequences of the 3 Probability Axioms

Lemma 2.5:  𝑷𝑷{𝐸𝐸 ∪ 𝐹𝐹} = 𝑷𝑷{𝐸𝐸} + 𝑷𝑷{𝐹𝐹} − 𝑷𝑷{𝐸𝐸 ∩ 𝐹𝐹}

 Proof:  
Express 𝐸𝐸 ∪ 𝐹𝐹  as a union of mutually exclusive sets

𝐸𝐸 ∪ 𝐹𝐹 = 𝐸𝐸 ∪ 𝐹𝐹 \ 𝐸𝐸 ∩ 𝐹𝐹

Then, by the Additivity Axiom we have 2 observations:
𝑷𝑷{𝐸𝐸 ∪ 𝐹𝐹} = 𝐏𝐏 𝐸𝐸 + 𝑷𝑷{𝐹𝐹 \ 𝐸𝐸 ∩ 𝐹𝐹 }
𝑷𝑷{𝐹𝐹} = 𝑷𝑷 𝐹𝐹 \ 𝐸𝐸 ∩ 𝐹𝐹 + 𝑷𝑷 𝐸𝐸 ∩ 𝐹𝐹

Now substitute the 2nd equation into the 1st . 

Lemma 2.6:  𝑷𝑷{𝐸𝐸 ∪ 𝐹𝐹} ≤ 𝑷𝑷{𝐸𝐸} + 𝑷𝑷{𝐹𝐹}
 

Proof: WHY?? 
"Introduction to Probability for Computing", Harchol-Balter '24
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Consequences of the 3 Probability Axioms

Q: You throw a dart, equally likely to land anywhere in [0,1].
     What is 𝑷𝑷{Dart lands at 0.3}?

     (Argue using the Probability Axioms.)

"Introduction to Probability for Computing", Harchol-Balter '24
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Conditional Probability on Events
Defn:  The conditional probability of event 𝐸𝐸 given event 𝐹𝐹 is

𝑷𝑷{𝐸𝐸|𝐹𝐹} =
𝑷𝑷{𝐸𝐸 ∩ 𝐹𝐹}
𝑷𝑷{𝐹𝐹}

              assuming 𝑷𝑷 𝐹𝐹 > 0.

𝑷𝑷{𝐸𝐸 | 𝐹𝐹 } =
2

10
(of the 10 outcomes in set 𝐹𝐹,
 only 2 of these are in set 𝐸𝐸)

𝑷𝑷{𝐸𝐸 | 𝐹𝐹 } =
𝑷𝑷{𝐸𝐸 ∩ 𝐹𝐹}
𝑷𝑷{𝐹𝐹}

=
2

42
10
42

=
2

10

Two equivalent views:

"Introduction to Probability for Computing", Harchol-Balter '24
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Conditional Probability on Events
Defn:  The conditional probability of event 𝐸𝐸 given event 𝐹𝐹 is

𝑷𝑷{𝐸𝐸|𝐹𝐹} =
𝑷𝑷{𝐸𝐸 ∩ 𝐹𝐹}
𝑷𝑷{𝐹𝐹}

              assuming 𝑃𝑃 𝐹𝐹 > 0.

Q: What is 𝑷𝑷{Cheese | 2nd half of week} ?
      Argue this from 2 views.Mon – Jelly

Tues – Cheese
Wed – Turkey
Thur – Cheese
Fri – Turkey
Sat – Cheese
Sun – None

1st half
of week

2nd  half
of week

Sandwich choices:

"Introduction to Probability for Computing", Harchol-Balter '24
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Conditional Probability on Events
Defn:  The conditional probability of event 𝐸𝐸 given event 𝐹𝐹 is

𝑷𝑷{𝐸𝐸|𝐹𝐹} =
𝑷𝑷{𝐸𝐸 ∩ 𝐹𝐹}
𝑷𝑷{𝐹𝐹}

              assuming 𝑃𝑃 𝐹𝐹 > 0.

𝑷𝑷{Cheese | 2nd half } =
2
4

(of the 4 days in 2nd half,
  2 are cheese sandwiches)

𝑷𝑷{Cheese | 2nd half } =
𝑷𝑷{Cheese ∩ 2nd half}

𝑷𝑷{2nd half}

Q: What is 𝑷𝑷{Cheese | 2nd half of week} ?
      Argue this from 2 views.Mon – Jelly

Tues – Cheese
Wed – Turkey
Thur – Cheese
Fri – Turkey
Sat – Cheese
Sun – None

1st half
of week

2nd  half
of week

Sandwich choices:

=
2
7
4
7

=
2
4
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Conditional Probability on Events

Q: What is 𝑷𝑷{both are colts | ≥ 1 colt} ?

The offspring of a horse is called a foal.   
Horse couples have one foal at a time.
Each foal is equally likely to be a “colt” or a “filly.”

We’re told that a horse couple had 2 foals, 
and at least one of these is a colt.

"Introduction to Probability for Computing", Harchol-Balter '24
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Conditional Probability on Events

=
𝑷𝑷{both are colts & ≥ 1 colt}

𝑷𝑷{≥ 1 colt}

𝑷𝑷{both are colts | ≥ 1 colt}

The offspring of a horse is called a foal.   
Horse couples have one foal at a time.
Each foal is equally likely to be a “colt” or a “filly.”

We’re told that a horse couple had 2 foals, 
and at least one of these is a colt.

=
𝑷𝑷{both are colts }

𝑷𝑷{≥ 1 colt}

=
1
4
3
4

=
1
3
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Conditional Probability on Events

The offspring of a horse is called a foal.   
Horse couples have one foal at a time.
Each foal is equally likely to be a “colt” or a “filly.”

We’re told that a horse couple had 2 foals, 
and at least one of these is a colt.

𝑷𝑷{both are colts | ≥ 1 colt}

=
1
3

"Introduction to Probability for Computing", Harchol-Balter '24
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Conditional Probability on Events
If 𝑷𝑷{𝐸𝐸1 ∩ 𝐸𝐸2} > 0, then:

𝑷𝑷{𝐸𝐸2|𝐸𝐸1} =
𝑷𝑷{𝐸𝐸1 ∩ 𝐸𝐸2}
𝑷𝑷{𝐸𝐸1}

Equivalently, we can write:

If 𝑷𝑷{𝐸𝐸1 ∩ 𝐸𝐸2} > 0, then:

𝑷𝑷{𝐸𝐸1 ∩ 𝐸𝐸2} = 𝑷𝑷{𝐸𝐸1} ⋅ 𝑷𝑷{𝐸𝐸2|𝐸𝐸1} 𝑷𝑷{𝐸𝐸1 ∩ 𝐸𝐸2} = 𝑷𝑷{𝐸𝐸2} ⋅ 𝑷𝑷{𝐸𝐸1|𝐸𝐸2}Likewise:

Probability
outcome
is in both 
𝐸𝐸1 and 𝐸𝐸2

Probability
outcome
is in 𝐸𝐸1

Probability
outcome
is in 𝐸𝐸2 given
that it’s in 𝐸𝐸1

"Introduction to Probability for Computing", Harchol-Balter '24
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Chain Rule for Conditioning

This can be generalized!

𝑷𝑷{𝐸𝐸1 ∩ 𝐸𝐸2 ∩ 𝐸𝐸3 ∩ ⋯∩ 𝐸𝐸𝑛𝑛}

 = 𝑷𝑷{𝐸𝐸1} ⋅ 𝑷𝑷{𝐸𝐸2  𝐸𝐸1 ⋅ 𝑷𝑷{𝐸𝐸3  𝐸𝐸1∩ 𝐸𝐸2 ⋅⋅⋅ 𝑷𝑷{𝐸𝐸𝑛𝑛 |  𝐸𝐸1∩ 𝐸𝐸2 ∩ 𝐸𝐸3 ∩ ⋯∩ 𝐸𝐸𝑛𝑛−1} 

Theorem 2.10: [Chain Rule for Conditioning]   

If 𝑷𝑷{𝐸𝐸1 ∩ 𝐸𝐸2 ∩ 𝐸𝐸3 ∩ ⋯∩ 𝐸𝐸𝑛𝑛} > 0, then

If 𝑷𝑷{𝐸𝐸1 ∩ 𝐸𝐸2} > 0, then:

𝑷𝑷{𝐸𝐸1 ∩ 𝐸𝐸2} = 𝑷𝑷{𝐸𝐸1} ⋅ 𝑷𝑷{𝐸𝐸2|𝐸𝐸1} 

If 𝑷𝑷{𝐸𝐸1 ∩ 𝐸𝐸2} > 0, then:

"Introduction to Probability for Computing", Harchol-Balter '24
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Independent Events

Here’s an equivalent and more intuitive definition:

Defn: Events 𝐸𝐸 and 𝐹𝐹 are independent, written 𝐸𝐸 ⊥ 𝐹𝐹, if:

𝑷𝑷{𝐸𝐸 ∩ 𝐹𝐹} = 𝑷𝑷{𝐸𝐸} ⋅ 𝑷𝑷{𝐹𝐹} 

Defn: Assuming 𝑷𝑷{𝐹𝐹} > 0 , Events 𝐸𝐸 and 𝐹𝐹 are independent, if:

𝑷𝑷{𝐸𝐸 | 𝐹𝐹} = 𝑷𝑷{𝐸𝐸}

See the book for a proof of the equivalence.

"Introduction to Probability for Computing", Harchol-Balter '24
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Practice with Independent Events
Defn: Events 𝐸𝐸 and 𝐹𝐹 are independent, written 𝐸𝐸 ⊥ 𝐹𝐹, if:

𝑷𝑷{𝐸𝐸 ∩ 𝐹𝐹} = 𝑷𝑷{𝐸𝐸} ⋅ 𝑷𝑷{𝐹𝐹} 

Defn: Assuming 𝑷𝑷{𝐹𝐹} > 0 , Events 𝐸𝐸 and 𝐹𝐹 are independent, if:

𝑷𝑷{𝐸𝐸 | 𝐹𝐹} = 𝑷𝑷{𝐸𝐸}

Q: Can two mutually exclusive, non-null events be independent?

Q: Suppose we roll a die twice.  Which of these pairs of events are independent: 
a. Let 𝐸𝐸=“1st roll is 6.”  Let  𝐹𝐹 =“2nd roll is 6”
b. Let 𝐸𝐸=“Sum of rolls is 7.”  Let 𝐹𝐹 =“2nd roll is 4”

"Introduction to Probability for Computing", Harchol-Balter '24
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Practice with Independent Events

Q: What is the probability that you can get the packet from the source to the destination?

You are routing a packet from the source to the destination.   
But each of the 16 edges in the network only works with probability 𝑝𝑝.

"Introduction to Probability for Computing", Harchol-Balter '24
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Practice with Independent Events
Each edge works with probability 𝑝𝑝. There are 8 paths.  
Let 𝐸𝐸𝑖𝑖  denote the event that the 𝑖𝑖𝑡𝑡𝑡 path is usable (not broken).

Q: What is 𝑷𝑷 𝐸𝐸𝑖𝑖 ? 

𝑷𝑷 Can get from source to destination =  𝑷𝑷 At least one path works

= 1 − 𝑷𝑷 All paths are broken

= 𝑷𝑷 𝐸𝐸1 ∪ 𝐸𝐸2 ∪ ⋯∪ 𝐸𝐸8

= 1 − 𝑷𝑷 𝐸𝐸1 ⋅ 𝑷𝑷 𝐸𝐸2 ⋯𝑷𝑷 𝐸𝐸8 = 1 − 1 − 𝑝𝑝2 8

Q: What is 𝑷𝑷 Can get from source to destination ? 

"Introduction to Probability for Computing", Harchol-Balter '24
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More Independence Definitions 

Defn 2.17: Two events 𝐸𝐸 and 𝐹𝐹 are said to be conditionally independent given 𝑮𝑮, 
where 𝑷𝑷{𝐺𝐺} > 0, if

 𝑷𝑷{𝐸𝐸 ∩ 𝐹𝐹  𝐺𝐺 = 𝑷𝑷{𝐸𝐸  𝐺𝐺 ⋅ 𝑷𝑷{𝐹𝐹  𝐺𝐺

Defn 2.15: Events 𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑛𝑛 are independent if, for every subset 𝑆𝑆 of 1, 2, … ,𝑛𝑛 :

𝐏𝐏 �
𝑖𝑖∈𝑆𝑆

 

𝐴𝐴𝑖𝑖 = �
𝑖𝑖 ∈𝑆𝑆 

𝑷𝑷{𝐴𝐴𝑖𝑖} 

Defn 2.16: Events 𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑛𝑛 are pairwise independent if every pair of events is 
independent.

"Introduction to Probability for Computing", Harchol-Balter '24
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Law of Total Probability

Theorem 2.18: [Law of Total Probability]  
Let 𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛 partition the state space Ω. Then:

= �
𝑖𝑖=1

𝑛𝑛

𝑷𝑷{𝐸𝐸|𝐹𝐹𝑖𝑖} ⋅ 𝑷𝑷{𝐹𝐹𝑖𝑖} 𝑷𝑷{𝐸𝐸}  = �
𝑖𝑖=1

𝑛𝑛

𝑷𝑷{𝐸𝐸 ∩ 𝐹𝐹𝑖𝑖}

For any sets 𝐸𝐸 and 𝐹𝐹: 𝐸𝐸 = 𝐸𝐸 ∩ 𝐹𝐹 ∪ (𝐸𝐸 ∩ �𝐹𝐹)

𝑷𝑷 𝐸𝐸 = 𝑷𝑷 𝐸𝐸 ∩ 𝐹𝐹  + 𝑷𝑷 𝐸𝐸 ∩ �𝐹𝐹

= 𝑷𝑷 𝐸𝐸 | 𝐹𝐹 ⋅ 𝑷𝑷{𝐹𝐹}+ 𝑷𝑷 𝐸𝐸 | �𝐹𝐹 ⋅ 𝑷𝑷 �𝐹𝐹

Generalizing, we have:

"Introduction to Probability for Computing", Harchol-Balter '24
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Law of Total Probability

The Law of Total Probability applies to conditional probability as well:

Theorem 2.19: [Law of Total Probability for Conditional Probability]  
Let 𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛 partition the state space Ω. Then:

�
𝑖𝑖=1

𝑛𝑛

𝑷𝑷{𝐴𝐴 | 𝐵𝐵 ∩ 𝐹𝐹𝑖𝑖} ⋅ 𝑷𝑷 𝐹𝐹𝑖𝑖  𝐵𝐵} 𝑷𝑷 𝐴𝐴 𝐵𝐵} =

"Introduction to Probability for Computing", Harchol-Balter '24
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Bayes’ Law

Theorem 2.20 : [Bayes’ Law]    Assuming 𝑷𝑷 𝐸𝐸 > 0 , 

𝑷𝑷{𝐹𝐹 | 𝐸𝐸} =
𝑷𝑷{𝐸𝐸 ∩ 𝐹𝐹}
𝑷𝑷{𝐸𝐸} =

𝑷𝑷{𝐸𝐸 | F } ⋅ 𝑷𝑷{𝐹𝐹}
𝑷𝑷{𝐸𝐸}

Sometimes we want to know 𝑷𝑷{𝐹𝐹 | 𝐸𝐸} but all we know is the reverse direction, 𝑷𝑷{𝐸𝐸 | 𝐹𝐹}.

Theorem 2.21: [Extended Bayes’ Law]    Let 𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛 partition Ω. Assuming 𝑷𝑷 𝐸𝐸 > 0 , 

𝑷𝑷{𝐹𝐹 | 𝐸𝐸} =
𝑷𝑷{𝐸𝐸 | 𝐹𝐹} ⋅ 𝑃𝑃{𝐹𝐹}

𝑷𝑷{𝐸𝐸}
=

𝑷𝑷{𝐸𝐸 | F } ⋅ 𝑷𝑷{𝐹𝐹}
∑𝑗𝑗=1𝑛𝑛 𝑷𝑷{𝐸𝐸 | 𝐹𝐹𝑗𝑗} ⋅ 𝑃𝑃{𝐹𝐹𝑗𝑗} 

"Introduction to Probability for Computing", Harchol-Balter '24
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Bayes’ Law Example
There’s a rare child cancer that occurs in one out of a million kids. 
There’s a test for this cancer that is 99.9% effective:

Q:  Suppose my child’s test result is positive.   How worried should I be?

"Introduction to Probability for Computing", Harchol-Balter '24
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Bayes’  Law Example
Rare cancer occurs in 1 out of 106 kids. 
Test for this cancer is 99.9% effective:

Q:  My child’s test result is positive.   
       How worried should I be?

𝑷𝑷{Cancer | Test Pos}

=
𝑷𝑷{Test pos | Cancer} ⋅ 𝑷𝑷{Cancer}

𝑷𝑷{Test pos  Cancer ⋅ 𝑷𝑷 Cancer} + 𝑷𝑷{Test pos No cancer} ⋅ 𝑷𝑷{No cancer} 

=
0.999 ⋅ 10−6 

0.999 ⋅ 10−6 + 10−3⋅ (1 −  10−6) ≈
10−6 

10−6 +  10−3 
=

1 
1001

"Introduction to Probability for Computing", Harchol-Balter '24
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