Chapter 3 Discrete Random Variables

Random Variables

Defn: A **random variable (r.v.)** is a real-valued function of the outcome of an experiment involving randomness.

Example: Experiment: Roll two dice

Q: Here are some r.v.s. What values can these take on?

 $X = sum of the rolls$ Y = difference of the rolls $Z = max$ of the rolls W = value of the first roll

```
We can now ask, "What is P\{X = 11\}?"
```


Random Variables

Defn: A **random variable (r.v.)** is a real-valued function of the outcome of an experiment involving randomness.

Example: Throw 2 darts uniformly at random at unit interval

Here are some random variables:

 D = difference in location of the 2 darts L = location of leftmost dart

Q: Can you define some more r.v.s?

Random Variables

Defn: A **discrete random variable** can take on at most a countably infinite number of possible values, whereas a **continuous random variable** can take on an uncountable set of possible values.

Q: Which of these random variables is discrete and which is continuous?

 \Box The sum of the rolls of two dice \Box The number of arrivals at a website by time t \Box The time until the next arrival at a website \Box The CPU time requirement of an HTTP request

From Random Variables to Events

We use CAPITAL letters to denote random variables.

When we set a random variable (r.v.) equal to a value, we get an event, and all the theorems we learned about events and their probabilities now apply.

Discrete Random Variables

Defn: A **discrete r.v.** takes on a countable number of values, each with some probability.

A discrete r.v. is associated with a **discrete distribution** that represents the likelihood of each of these values occurring. We sometimes define a r.v. by its associated distribution.

Defn: For a discrete r.v. X , the **probability mass function** of X is:

$$
p_X(a) = P\{X = a\}
$$

The **cumulative distribution function** of X is:

$$
F_X(a) = P\{X \le a\} = \sum_{x \le a} p_X(x)
$$

The **tail** of X is:

$$
\overline{F}_X(a) = P\{X > a\} = 1 - F_X(a)
$$

Q: What is this? $\sum_{x} p_X(x)$ χ

Common Discrete R.V.s / Distributions

$Bernoulli(p)$

Experiment: Flip a single coin, with probability p of Heads.

Random Variable $X =$ value of the coin flip

Defn: $X \sim Bernoulli(p)$: $X = \{$ 1 w.p. p 0 w.p. $1 - p$

Q: What distribution is shown above, with what parameter?

Binomial (n, p)

Experiment: Flip a coin, with probability p of Heads, n times

Random Variable $X =$ number of heads

Defn: $X \sim Binomial(n, p)$:

$$
p_X(i) = \binom{n}{i} p^i (1-p)^{n-i}
$$

where $i = 0, 1, 2, ..., n$

0.15

0.10

0.05

$Geometric(p)$

Experiment: Flip a coin, with probability p of Heads, until see first head

Random Variable $X =$ number flips until first head

Defn: $X \sim Geometric(p)$:

$$
p_X(i) = (1-p)^{i-1} \cdot p
$$

where $i = 1, 2, 3, ...$

Pop Quiz

Q: You have a room of *n* disks. Each disk independently dies with probability p . How are the following quantities distributed?

 \boldsymbol{n}

- a) The number of disks that die in the first year $\;$ Binomial(n, p)
- b) The number of years until a particular disk dies Geometric (p)
- c) The state of a particular disk after one year Bernoulli (p)

$Poisson(\lambda)$

The Poisson distribution occurs naturally when looking at a mixture of a large number of independent sources.

Q: Does the shape of the Poisson p.m.f. remind you of another distribution?

Two Random Variables

Defn: The **joint probability mass function** between discrete r.v.'s X and Y is:

$$
p_{X,Y}(x, y) = P\{X = x \& Y = y\}
$$

or equivalently, ${\bf P}{X = x}$, $Y = y$ or ${\bf P}{X = x \cap Y = y}$, where, by definition:

$$
\sum_{x}\sum_{y}p_{X,Y}(x,y)=1.
$$

Marginal Probability Mass Function

How is $p_X(x)$ related to $p_{X,Y}(x, y)$?

Table shows $p_{X,Y}(x, y)$

	$X=0$	$X=1$	$X = 2$	
$Y=0$	0.4	0.05	0.05	
$Y=1$		0.05		$p_Y(1) = 0.2$
$Y=2$				
$n_{\rm v}(0) = 0.55$				$p_Y(y) = \sum p_{X,Y}(x, y)$

$$
p_X(0)=0.55
$$

$$
p_X(x) = \sum_{y} p_{X,Y}(x, y)
$$

Called "**marginal probabilities**" because written in the margins.

 χ

Independence

Defn: Discrete random variables X and Y are **independent** (written $X \perp Y$) if :

 $p_{X,Y}(x, y) = p_X(x) \cdot p_Y(y)$

Q: If X and Y are independent, what does this say about $P\{X = x \mid Y = y\}$?

Independence

Defn: Discrete random variables X and Y are **independent** (written $X \perp Y$) if :

$$
p_{X,Y}(x,y)=p_X(x)\cdot p_Y(y)
$$

Q: If X and Y are independent, what does this say about $P\{X = x \mid Y = y\}$?

$$
P{X = x | Y = y} = \frac{P{X = x & Y = y}}{P{Y = y}}
$$

=
$$
\frac{P{X = x} \cdot P{Y = y}}{P{Y = y}}
$$

=
$$
P{X = x}
$$

"Introduction to Probability for Computing", Harchol-Balter '24

You have a disk with probability p_1 of failing each day, and a CPU which independently has probability p_2 of failing each day.

Q: What is the probability that the disk fails *before* the CPU?

You have a disk with probability p_1 of failing each day, and a CPU which independently has probability p_2 of failing each day.

Q: What is the probability that the disk fails *before* the CPU?

$$
X_1 = \text{days until disk fails} \sim \text{Geometric}(p_1)
$$
\n
$$
X_2 = \text{days until CPU fails} \sim \text{Geometric}(p_2)
$$
\n
$$
P\{X_1 < X_2\} = \sum_{k=1}^{\infty} \sum_{k_2=k+1}^{\infty} p_{X_1, X_2}(k, k_2) = \sum_{k=1}^{\infty} \sum_{k_2=k+1}^{\infty} p_{X_1}(k) \cdot p_{X_2}(k_2)
$$
\n
$$
= \sum_{k=1}^{\infty} \sum_{k_2=k+1}^{\infty} (1 - p_1)^{k-1} p_1 \cdot (1 - p_2)^{k_2-1} p_2
$$

You have a disk with probability p_1 of failing each day, and a CPU which independently has probability p_2 of failing each day.

Q: What is the probability that the disk fails *before* the CPU?

[&]quot;Introduction to Probability for Computing", Harchol-Balter '24

You have a disk with probability p_1 of failing each day, and a CPU which independently has probability p_2 of failing each day.

$$
P\{\text{disk fails before CPU fails}\} = \frac{p_1(1-p_2)}{1-(1-p_2)(1-p_1)}
$$

But WHY?

"Introduction to Probability for Computing", Harchol-Balter '24

You have a disk with probability p_1 of failing each day, and a CPU which independently has probability p_2 of failing each day.

$$
P{\text{disk fails before CPU fails}} = \frac{p_1(1 - p_2)}{1 - (1 - p_2)(1 - p_1)}
$$

Intuition: Think about flipping 2 coins each day. There may be many days where both coins are heads. We only care about the *first day where the coins are not both heads*.

Given that both coins are not heads, what's the probability that coin 1 is H and coin 2 is T?

= $p_1(1-p_2)$ $P\{\text{coin 1 is H 8 coin 2 is T } \} \text{ not both tails}\} = \frac{P\{\text{conn 1 is H 8 coin 2 is T }\}}{P\{\text{not both tails}\}} = \frac{P\{11-P2\}}{P\{\text{not both tails}\}} = \frac{P\{11-P2\}}{P\{\text{not both tails}\}}$ P{coin 1 is H & coin 2 is T} $\frac{n \pm n \pm n \pm \sqrt{2}}{P\{\text{not both tails}\}}$

Law of Total Probability

Theorem**: [Law of Total Probability for Discrete R.V.s]** Let E be an event. Let Y be a discrete r.v.

$$
P\{E\} = \sum_{y} P\{E \cap Y = y\} = \sum_{y} P\{E \mid Y = y\} \cdot P\{Y = y\}
$$

For a discrete r.v. X :

$$
P\{X = k\} = \sum_{y} P\{X = k \cap Y = y\} = \sum_{y} P\{X = k | Y = y\} \cdot P\{Y = y\}
$$

Proof: Follows immediately from Law of Total Probability for Events, if we realize that $Y = y$ represents an event and the set of events $Y = y$ over all y form a partition.

Disk with prob. p_1 of failing each day, and a CPU with indpt. prob. p_2 of failing each day.

Q: What is the probability that the disk fails *before* the CPU? (Redo using conditioning!)

$$
X_1 = \text{days until disk fails} \sim Geometric(p_1) \qquad X_2 = \text{days until CPU fails} \sim Geometric(p_2)
$$
\n
$$
P\{X_1 < X_2\} = \sum_{k=1}^{\infty} P\{X_1 < X_2 \mid X_1 = k\} \cdot P\{X_1 = k\}
$$
\n
$$
= \sum_{k=1}^{\infty} P\{k < X_2 \mid X_1 = k\} \cdot P\{X_1 = k\}
$$
\n
$$
= \sum_{k=1}^{\infty} P\{X_2 > k\} \cdot P\{X_1 = k\}
$$
\n
$$
= \sum_{k=1}^{\infty} (1 - p_2)^k \cdot (1 - p_1)^{k-1} \cdot p_1 = \frac{p_1(1 - p_2)}{1 - (1 - p_2)(1 - p_1)}
$$