Chapter 4 Expectation of Discrete R.V.s

Expectation

Defn: The **expectation of a discrete r.v.** X, written $E[X]$, is the sum of the possible values of X , each weighted by its probability:

$$
E[X] = \sum_{x} x \cdot P\{X = x\}
$$

 $E[X]$ also represents the **mean of the distribution** from which X is drawn.

Average Cost of Lunch

Average Cost =
$$
\frac{7 + 7 + 12 + 12 + 12 + 0 + 9}{7}
$$

|||

$$
E[Cost] = 7 \cdot \frac{2}{7} + 12 \cdot \frac{3}{7} + 9 \cdot \frac{1}{7} + 0 \cdot \frac{1}{7}
$$

Expectation of Bernoulli (p)

 $X =$ value of the coin flip

Probability p of heads

Q: What is $E[X]$?

$$
E[X] = 1 \cdot p + 0 \cdot (1-p) = p
$$

4

"Introduction to Probability for Computing", Harchol-Balter '24

Expected Time Until Disk Fails

Disk has probability $\frac{1}{3}$ of failing each year.

Q: On average, how many years will it be until the disk fails?

[&]quot;Introduction to Probability for Computing", Harchol-Balter '24

Expectation of Poisson (λ)

Q: What is $E[X]$? $X \sim Poisson(\lambda)$

$$
p_X(i) = \frac{e^{-\lambda} \lambda^i}{i!}, \ i = 0, 1, 2, ...
$$

Remember! Mean of Poisson (λ) $is λ .$

"Introduction to Probability for Computing", Harchol-Balter '24

Expectation of a Function of a R.V.

Defn: A **expectation of a function** $g(\cdot)$ of a discrete r.v. X is defined as follows:

$$
E[g(X)] = \sum_{x} g(x) \cdot p_{X}(x)
$$

Consider a sphere, whose radius is a random variable R :

$$
R = \begin{bmatrix} 1 & \text{w.p.} & \frac{1}{3} \\ 2 & \text{w.p.} & \frac{1}{3} \\ 3 & \text{w.p.} & \frac{1}{3} \end{bmatrix}
$$

Q: What is the expected volume of the sphere?

Expectation of a Function of a R.V.

Defn: A **expectation of a function** $g(\cdot)$ of a discrete r.v. X is defined as follows:

$$
E[g(X)] = \sum_{x} g(x) \cdot p_X(x)
$$

$$
E[\text{Volume}] = E\left[\frac{4}{3}\pi R^3\right]
$$

= $\frac{4}{3}\pi \cdot 1^3 \cdot \frac{1}{3} + \frac{4}{3}\pi \cdot 2^3 \cdot \frac{1}{3} + \frac{4}{3}\pi \cdot 3^3 \cdot \frac{1}{3}$
= 16π

$$
R = \begin{bmatrix} 1 & \text{w.p.} & \frac{1}{3} \\ 2 & \text{w.p.} & \frac{1}{3} \\ 3 & \text{w.p.} & \frac{1}{3} \end{bmatrix}
$$

Q: Is
$$
E[R^3] = (E[R]^3)
$$
?

Expectation of a Product

Defn: Let X and Y be r.v.s. The **expectation of the product** XY is defined as follows:

$$
E[XY] = \sum_{x} \sum_{y} xy \cdot p_{X,Y}(x, y)
$$

$$
E[g(X)f(Y)] = \sum_{x} \sum_{y} g(x)f(y) \cdot p_{X,Y}(x, y)
$$

where $p_{X,Y}(x, y) = P\{X = x \& Y = y\}.$

Expectation of Product under Independence

Theorem 4.8: (Expectation of a product) If $X \perp Y$, then $E[XY] = E[X] \cdot E[Y]$.

Proof:

$$
E[XY] = \sum_{x} \sum_{y} xy \cdot P\{X = x, Y = y\}
$$

=
$$
\sum_{x} \sum_{y} xy \cdot P\{X = x\} \cdot P\{Y = y\}
$$

=
$$
\sum_{x} x \cdot P\{X = x\} \sum_{y} y \cdot P\{Y = y\}
$$

=
$$
E[X] \cdot E[Y]
$$

Via the same proof: $\text{ If } X \perp Y \text{, then } \pmb{E}[g(X)f(Y)] = \pmb{E}[g(X)] \cdot \pmb{E}[f(Y)] \text{.}$

Alternative Definition of Expectation

Theorem 4.9: (Alternative Definition of Expectation) Let X be a non-negative, discrete, integer-valued random variable. Then

Proof: See exercise in textbook. Hint: Rewrite the inside probability as a sum.

Linearity of Expectation

The following theorem greatly simplifies the computation of an expectation by breaking up the random variable into smaller pieces.

Linearity of Expectation

Theorem 4.10: [Linearity of Expectation] For random variables X and Y ,

 $E[X + Y] = E[X] + E[Y]$

Expectation of Binomial (n, p)

Experiment: Flip a coin, with probability p of Heads, n times

Random Variable $X =$ number of heads

Key Observation:

 $X = X_1 + X_2 + \cdots + X_n$, where $X_i \sim$ Bernoulli (p)

Applying Linearity of Expectation:

$$
E[X] = E[X_1] + E[X_2] + \dots + E[X_n]
$$

= $p + p + \dots + p = np \cdot \circ \circ$ Intuitive sense

Remember!

What is

 \boldsymbol{n}

 $\boldsymbol{E}[X_i]$

Mean of

Binomial (n, p)

is np .

Expectation of Binomial (n, p)

Experiment: Flip a coin, with probability p of Heads, n times

Random Variable $X =$ number of heads

Key Observation:

$$
X = X_1 + X_2 + \dots + X_n
$$
, where $X_i \sim \text{Bernoulli}(p)$

Applying Linearity of Expectation:

Defn: The X_i here are called **indicator r.v.s**, because they take on values of 1 or 0.

[] = [X1] + [X2] + ⋯ + [] = + + ⋯ + = **Q:** Were the ′ indpt in here?

At a party, n people put their drink on a table. Later that night, no one can remember which cup is theirs, so they simply each grab any cup at random.

Let $X =$ number of people who get back their own cup.

Q: What is $E[X]$? Is it increasing with n ?

At a party, n people put their drink on a table. Later that night, no one can remember which cup is theirs, so they simply each grab any cup at random.

Let $X =$ number of people who get back their own cup.

Q: What is $E[X]$? Is it increasing with n ?

Idea: $X = X_1 + X_2 + \cdots + X_n$

Q: What do the X_i represent?

At a party, n people put their drink on a table. Later that night, no one can remember which cup is theirs, so they simply each grab any cup at random.

Let $X =$ number of people who get back their own cup.

Q: What is $E[X]$?

Idea:
$$
X = X_1 + X_2 + \dots + X_n
$$
 $X_i = \begin{cases} 1 & \text{w.p. } 1/n \\ 0 & \text{o.w.} \end{cases}$

 $X_i = 1 \Leftrightarrow$ person *i* got back their own cup

Q: Are the X_i independent Bernoulli distributions? If so, is X Binomially distributed?

At a party, n people put their drink on a table. Later that night, no one can remember which cup is theirs, so they simply each grab any cup at random.

Let $X =$ number of people who get back their own cup.

Q: What is $E[X]$?

Idea:
$$
X = X_1 + X_2 + \dots + X_n
$$
 $X_i = \begin{cases} 1 & \text{w.p. } 1/n \\ 0 & \text{o.w.} \end{cases}$

 \mathbf{r}

 $X_i = 1 \Leftrightarrow$ person *i* got back their own cup

A: The X_i 's are NOT independent. Nevertheless, Linearity of Expectation applies: [] = [X1] + [X2] + ⋯ + [] regardless = [] = ⋅ $of n$ 1 \boldsymbol{n} $=$ 1.

There are n coupons we're trying to collect. Each draw we get a random coupon (sampling with replacement).

Let $D =$ number of draws until we've collected all the coupons.

Q: What is $E[D]$?

There are n coupons we're trying to collect. Each draw we get a random coupon (sampling with replacement).

Let $D =$ number of draws until we've collected all the coupons.

There are n coupons we're trying to collect. Each draw we get a random coupon (sampling with replacement).

Let $D =$ number of draws until we've collected all the coupons.

Q: What is $E[D]$?

 D_i = number of draws needed to get *i*th distinct coupon, given already have $i - 1$ distinct coupons

There are n coupons we're trying to collect. Each draw we get a random coupon (sampling with replacement).

Let $D =$ number of draws until we've collected all the coupons.

Q: What is $E[D]$?

Idea:
$$
D = D_1 + D_2 + D_3 + \cdots + D_n
$$

 D_i = number of draws needed to get *i*th distinct coupon, given already have $i - 1$ distinct coupons

$$
D_1 \sim Geometric(1)
$$

$$
D_2 \sim Geometric\left(\frac{n-1}{n}\right)
$$

$$
D_3 \sim Geometric\left(\frac{n-2}{n}\right)
$$

$$
D_n \sim Geometric\left(\frac{1}{n}\right)
$$

$$
2^3
$$

"Introduction to Probability for Computing", Harchol-Balter '24

There are n coupons we're trying to collect. Each draw we get a random coupon (sampling with replacement).

Q: What is $E[D]$? Let $D =$ number of draws until we've collected all the coupons.

Idea:
$$
D = D_1 + D_2 + D_3 + \cdots + D_n
$$

\n
$$
E[D] = E[D_1] + E[D_2] + E[D_3] + \cdots + E[D_n]
$$
\n
$$
= 1 + \frac{n}{n-1} + \frac{n}{n-2} + \cdots + n
$$
\n
$$
= n \cdot \left(\frac{1}{n} + \frac{1}{n-1} + \frac{1}{n-2} + \cdots + 1\right)
$$

 $D_1 \sim Geometric(1)$

$$
D_2 \sim Geometric\left(\frac{n-1}{n}\right)
$$

$$
D_3 \sim Geometric\left(\frac{n-2}{n}\right)
$$

$$
D_n \sim Geometric\left(\frac{1}{n}\right)
$$

$$
24
$$

[&]quot;Introduction to Probability for Computing", Harchol-Balter '24

There are n coupons we're trying to collect. Each draw we get a random coupon (sampling with replacement).

Q: What is $E[D]$? Let $D =$ number of draws until we've collected all the coupons.

Idea:
$$
D = D_1 + D_2 + D_3 + \dots + D_n
$$

\n
$$
E[D] = E[D_1] + E[D_2] + E[D_3] + \dots + E[D_n]
$$
\n
$$
= 1 + \frac{n}{n-1} + \frac{n}{n-2} + \dots + n
$$
\n
$$
= n \cdot \left(\frac{1}{n} + \frac{1}{n-1} + \frac{1}{n-2} + \dots + 1\right) = n \cdot H_n \approx n \ln(n)
$$

"Introduction to Probability for Computing", Harchol-Balter '24

Conditional p.m.f.

We often want the expected value of a r.v. X conditioned on some event, A, e.g.

 $E[Price of hotel room | Month is March]$

To define $E[X|A]$ we will need to define a conditional p.m.f., $p_{X|A}(x)$.

Defn 4.14: Let X be a discrete r.v. with p.m.f. $p_X(x)$. Let A be an event s.t. $P\{A\} > 0$. Then $p_{X|A}(x)$ is the **conditional p.m.f. of X given event** A where:

$$
p_{X|A}(x) = P\{X = x \mid A\} = \frac{P\{(X = x) \cap A\}}{P\{A\}}
$$

Conditioning on an Event

Let r.v. X denote the size of a job:

$$
X = \left\{ \begin{array}{ll} 1 & \text{w.p. } 0.1 \\ 2 & \text{w.p. } 0.2 \\ 3 & \text{w.p. } 0.3 \\ 4 & \text{w.p. } 0.2 \\ 5 & \text{w.p. } 0.2 \end{array} \right\}
$$

Let A denote the event that the job is "small," meaning its size is ≤ 3 .

Q: What is $p_{X|A}(1)$? How does this compare with $p_X(1)$?

Conditioning on an Event

Let r.v. X denote the size of a job:

$$
X = \left\{ \begin{array}{ll} 1 & \text{w.p. } 0.1 \\ 2 & \text{w.p. } 0.2 \\ 3 & \text{w.p. } 0.3 \\ 4 & \text{w.p. } 0.2 \\ 5 & \text{w.p. } 0.2 \end{array} \right\}
$$

Let A denote the event that the job is "small," meaning its size is ≤ 3 .

Q: What is $p_{X|A}(1)$? How does this compare with $p_X(1)$?

A:
$$
p_{X|A}(1) = P\{X = 1 | A\} = \frac{P\{X = 1 \& A\}}{P\{A\}} = \frac{P\{X = 1\}}{P\{A\}} = \frac{\frac{1}{10}}{\frac{6}{10}} = \frac{1}{6}
$$

Conditioning on an Event

Let r.v. X denote the size of a job:

$$
X = \left\{ \begin{array}{ll} 1 & \text{w.p. } 0.1 \\ 2 & \text{w.p. } 0.2 \\ 3 & \text{w.p. } 0.3 \\ 4 & \text{w.p. } 0.2 \\ 5 & \text{w.p. } 0.2 \end{array} \right\}
$$

Let A denote the event that the job is "small," meaning its size is ≤ 3 .

Q: What is $p_{X|A}(x)$ if $x \notin A$? **Answer:** 0

Lemma 4.16: A conditional p.m.f. is a p.m.f., i.e.,

$$
\sum_{x} p_{X|A}(x) = \sum_{x \in A} p_{X|A}(x) = 1
$$

"Introduction to Probability for Computing", Harchol-Balter '24

Example: Conditioning on an Event

Table shows $p_{X,Y}(x, y)$

	$X=0$	$X=1$	$X=2$	
$Y=0$				
$Y=1$	1 /Ջ			
$Y=2$				

Q: What is $p_{X|Y=2}(1)$?

A:
$$
p_{X|Y=2}(1) = P\{X = 1 | Y = 2\} = \frac{P\{X = 1 \& Y = 2\}}{P\{Y = 2\}} = \frac{\frac{1}{6}}{\frac{1}{6} + \frac{1}{8}} = \frac{4}{7}
$$

Conditional Expectation

The *conditional* expectation, $E[X|A]$, is based on the *conditional* p.m.f., $p_{X|A}(x)$.

Defn: Let X be a discrete r.v. The **conditional expectation of** X **given event** A is defined as:

$$
E[X|A] = \sum_{x} x \cdot p_{X|A}(x) = \sum_{x} x \cdot \frac{P\{(X=x) \cap A\}}{P\{A\}}
$$

Let r.v. X denote the size of a job:

$$
X = \left\{ \begin{array}{ll} 1 & \text{w.p. 0.1} \\ 2 & \text{w.p. 0.2} \\ 3 & \text{w.p. 0.3} \\ 4 & \text{w.p. 0.2} \\ 5 & \text{w.p. 0.2} \end{array} \right.
$$

Let A denote the event that the job is "small," meaning its size is ≤ 3 .

Q: What is $E[X|A]$?

Let r.v. X denote the size of a job:

$$
X = \left\{ \begin{array}{ll} 1 & \text{w.p. 0.1} \\ 2 & \text{w.p. 0.2} \\ 3 & \text{w.p. 0.3} \\ 4 & \text{w.p. 0.2} \\ 5 & \text{w.p. 0.2} \end{array} \right.
$$

Let A denote the event that the job is "small," meaning its size is ≤ 3 .

Q: What is $E[X|A]$?

A:
$$
E[X|A] = 1 \cdot p_{X|A}(1) + 2 \cdot p_{X|A}(2) + 3 \cdot p_{X|A}(3)
$$

= $1 \cdot \frac{1}{6} + 2 \cdot \frac{2}{6} + 3 \cdot \frac{3}{6} = \frac{14}{6}$

Table shows $p_{X,Y}(x, y)$

Q: What $E[X | Y = 2]$?

Table shows $p_{X,Y}(x, y)$

Q: What $E[X | Y = 2]$?

A:
$$
E[X | Y = 2] = 0 \cdot p_{X|Y=2}(0) + 1 \cdot p_{X|Y=2}(1) + 2 \cdot p_{X|Y=2}(2)
$$

= $1 \cdot \frac{4}{7} + 2 \cdot \frac{3}{7} = \frac{10}{7}$

Computing Expectations via Conditioning

Theorem 4.22**:** Let X be a discrete r.v.

Let events $F_1, F_2, ..., F_n$ partition the space Ω . Then

$$
E[X] = \sum_{i=1}^{n} E[X | F_i] \cdot P\{F_i\}
$$

For a discrete r.v. Y :

$$
E[X] = \sum_{y} E[X | Y = y] \cdot P{Y = y}
$$

Expected Value of Geometric, Revisited

 $X \sim Geometric(p)$. Derive $E[X]$ by conditioning.

Q: What should we condition on?

Expected Value of Geometric, Revisited

 $X \sim Geometric(p)$. Derive $E[X]$ by conditioning.

Q: What should we condition on?

A: Condition on the value of the first flip, \blacktriangleright $E[X] = E[X | Y = 1] \cdot P{Y = 1} + E[X \bigcup_{i=1}^{n} P{Y = 0}]$ $= E[X | Y = 1] \cdot p + E[X | Y = 0] (1 - p)$ What is this?

Expected Value of Geometric, Revisited

 $X \sim Geometric(p)$. Derive $E[X]$ by conditioning.

Q: What should we condition on?

A: Condition on the value of the first flip, Y.

 $E[X] = E[X | Y = 1] \cdot P{Y = 1} + E[X | Y = 0] \cdot P{Y = 0}$ $= E[X | Y = 1] \cdot p + E[X | Y = 0] (1 - p)$ $= 1 \cdot p + (1 + E[X]) \cdot (1 - p)$ $\Rightarrow E[X] =$ 1 \boldsymbol{p}

Simpson's Paradox

Consider two treatments for kidney stones**: Treatment A** and **Treatment B**

- **Treatment A** is more effective on small kidney stones
- **Treatment A** is also more effective on large kidney stones

But if we ignore the type of stones, **Treatment B** is more effective!

Simpson's Paradox

Q: How is this possible?

Simpson's Paradox

Is treatment B better?

- \Box No! Treatment A is better on both small stones and on large stones. It is the better treatment!
- \Box But because A is better, it is given more "hard cases" the large stone cases and hence has lower average scores.