
Chapter 4
Expectation of Discrete R.V.s
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Expectation

Defn: The expectation of a discrete r.v. 𝑋𝑋, written 𝑬𝑬 𝑋𝑋 , is the sum of the 
possible values of 𝑋𝑋, each weighted by its probability:

𝑬𝑬 𝑋𝑋 = �
𝑥𝑥

𝑥𝑥 ⋅ 𝑷𝑷{𝑋𝑋 = 𝑥𝑥}

𝑬𝑬 𝑋𝑋  also represents the mean of the distribution from which 𝑋𝑋 is drawn.
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Average Cost of Lunch

MON TUES WED THUR FRI SAT SUN

$7 $7 $12 $12 $12 $0 $9

Average Cost =
7 + 7 + 12 + 12 + 12 + 0 + 9

7

𝑬𝑬 Cost = 7 ⋅
2
7

+ 12 ⋅
3
7

+ 9 ⋅
1
7

+ 0 ⋅
1
7

≡
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Expectation of Bernoulli(𝑝𝑝)

Q: What is 𝑬𝑬[𝑋𝑋]?

𝑬𝑬 𝑋𝑋 = 1 ⋅ 𝑝𝑝 + 0 ⋅ 1 − 𝑝𝑝 = 𝑝𝑝

Remember!
Mean of

Bernoulli(𝑝𝑝)
is 𝑝𝑝.

𝑋𝑋 = value of the coin flip
Probability 𝑝𝑝
of heads
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Expected Time Until Disk Fails

Q: On average, how many years will it be until the disk fails? 

Disk has probability 1
3
 of failing each year.   

𝑋𝑋 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝  where 𝑝𝑝 =
1
3

𝑬𝑬 𝑋𝑋 =  �
𝑛𝑛=1

∞

𝑛𝑛 1 − 𝑝𝑝 𝑛𝑛−1𝑝𝑝

= 𝑝𝑝�
𝑛𝑛=1

∞

𝑛𝑛 𝑞𝑞𝑛𝑛−1

=
1
𝑝𝑝

𝑞𝑞 =
1
𝑝𝑝

= 𝑝𝑝 ⋅
1

1 − 𝑞𝑞 2

Remember!
Mean of

Geometric(𝑝𝑝)
is 1
𝑝𝑝

.= 𝑝𝑝 ⋅ 1 + 2𝑞𝑞 + 3𝑞𝑞2 + 4𝑞𝑞3 + ⋯

Remember me
from Chapter 1?
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Expectation of Poisson(𝜆𝜆)

Q: What is 𝑬𝑬[𝑋𝑋]?

𝑋𝑋 ∼ 𝑃𝑃𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝐺𝐺𝑛𝑛(𝜆𝜆) 𝑝𝑝𝑋𝑋 𝐺𝐺 =
𝐺𝐺−𝜆𝜆𝜆𝜆𝑖𝑖

𝐺𝐺!
, 𝐺𝐺 = 0, 1, 2, …

𝑬𝑬 𝑋𝑋 =  �
𝑖𝑖=0

∞

𝐺𝐺 ⋅
𝐺𝐺−𝜆𝜆𝜆𝜆𝑖𝑖

𝐺𝐺!
= �

𝑖𝑖=1

∞

𝐺𝐺 ⋅
𝐺𝐺−𝜆𝜆𝜆𝜆𝑖𝑖

𝐺𝐺!

= 𝜆𝜆𝐺𝐺−𝜆𝜆�
𝑖𝑖=1

∞
𝜆𝜆𝑖𝑖−1

(𝐺𝐺 − 1)! Remember me
from Chpt 1?

= 𝜆𝜆𝐺𝐺−𝜆𝜆 ⋅ 𝐺𝐺𝜆𝜆 = 𝜆𝜆= 𝜆𝜆𝐺𝐺−𝜆𝜆 �
𝑘𝑘=0

∞
𝜆𝜆𝑘𝑘

𝑘𝑘!

Remember!
Mean of

Poisson(𝜆𝜆)
is 𝜆𝜆.
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Expectation of a Function of a R.V.

Defn: A expectation of a function 𝑔𝑔(⋅) of a discrete r.v. 𝑋𝑋 is defined as follows:

𝑬𝑬 𝑔𝑔 𝑋𝑋 =  �
𝑥𝑥

 

𝑔𝑔 𝑥𝑥 ⋅ 𝑝𝑝𝑋𝑋(𝑥𝑥)

Consider a sphere, whose radius is a random variable 𝑅𝑅:

1 w.p. 
1
3

2 w.p. 
1
3

3 w.p. 
1
3

𝑅𝑅 =

Q: What is the expected volume of the sphere?

𝑅𝑅
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Expectation of a Function of a R.V.
Defn: A expectation of a function 𝑔𝑔(⋅) of a discrete r.v. 𝑋𝑋 is defined as follows:

𝑬𝑬 𝑔𝑔 𝑋𝑋 =  �
𝑥𝑥

 

𝑔𝑔 𝑥𝑥 ⋅ 𝑝𝑝𝑋𝑋(𝑥𝑥)

1 w.p. 
1
3

2 w.p. 
1
3

3 w.p. 
1
3

𝑅𝑅 =

𝑬𝑬 Volume = 𝑬𝑬
4
3
𝜋𝜋𝑅𝑅3

=
4
3
𝜋𝜋 ⋅ 13⋅

1
3

+
4
3
𝜋𝜋 ⋅ 23⋅

1
3

+
4
3
𝜋𝜋 ⋅ 33⋅

1
3

= 16 𝜋𝜋

Q:  Is 𝑬𝑬 𝑅𝑅3 = 𝑬𝑬 𝑅𝑅 3  ?

𝑅𝑅
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Expectation of a Product

Defn: Let 𝑋𝑋 and 𝑌𝑌 be r.v.s.   The expectation of the product 𝑋𝑋𝑌𝑌 is defined as follows:

where  𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 𝑷𝑷{𝑋𝑋 = 𝑥𝑥 & 𝑌𝑌 = 𝑦𝑦}. 

𝑬𝑬 𝑋𝑋𝑌𝑌 =  �
𝑥𝑥

 

�
𝑦𝑦

 

𝑥𝑥𝑦𝑦 ⋅ 𝑝𝑝𝑋𝑋,𝑌𝑌(𝑥𝑥,𝑦𝑦)

𝑬𝑬 𝑔𝑔 𝑋𝑋 𝑓𝑓(𝑌𝑌) =  �
𝑥𝑥

 

�
𝑦𝑦

 

𝑔𝑔 𝑥𝑥 𝑓𝑓(𝑦𝑦) ⋅ 𝑝𝑝𝑋𝑋,𝑌𝑌(𝑥𝑥,𝑦𝑦)
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Expectation of Product under Independence 

Theorem 4.8:  (Expectation of a product)  If 𝑋𝑋 ⊥ 𝑌𝑌, then 𝑬𝑬 𝑋𝑋𝑌𝑌 = 𝑬𝑬 𝑋𝑋 ⋅ 𝑬𝑬 𝑌𝑌 .

Proof: 𝑬𝑬 XY =  �
𝑥𝑥

�
𝑦𝑦

𝑥𝑥𝑦𝑦 ⋅ 𝑷𝑷{𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦}

=  �
𝑥𝑥

�
𝑦𝑦

𝑥𝑥𝑦𝑦 ⋅ 𝑷𝑷 𝑋𝑋 = 𝑥𝑥 ⋅ 𝑷𝑷{𝑌𝑌 = 𝑦𝑦}

=  �
𝑥𝑥

𝑥𝑥 ⋅ 𝑷𝑷 𝑋𝑋 = 𝑥𝑥 �
𝑦𝑦

𝑦𝑦 ⋅ 𝑷𝑷{𝑌𝑌 = 𝑦𝑦}

=  𝑬𝑬 𝑋𝑋 ⋅ 𝑬𝑬[𝑌𝑌]

Via the same proof:  If 𝑋𝑋 ⊥ 𝑌𝑌, then 𝑬𝑬 𝑔𝑔 𝑋𝑋 𝑓𝑓(𝑌𝑌) = 𝑬𝑬 𝑔𝑔(𝑋𝑋) ⋅ 𝑬𝑬 𝑓𝑓(𝑌𝑌) .
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Alternative Definition of Expectation

Theorem 4.9:  (Alternative Definition of Expectation)  Let  𝑋𝑋 be a non-negative, 
discrete, integer-valued random variable.   Then  

𝑬𝑬 𝑋𝑋 = �
𝑥𝑥=0

∞

𝑷𝑷 𝑋𝑋 > 𝑥𝑥 .

Proof: See exercise in textbook.  Hint: Rewrite the inside probability as a sum.

This alternative 
formulation can
be very useful.
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Linearity of Expectation

Theorem 4.10: [Linearity of Expectation] For random variables 𝑋𝑋 and 𝑌𝑌,

 𝑬𝑬 𝑋𝑋 + 𝑌𝑌 = 𝑬𝑬 𝑋𝑋 + 𝑬𝑬[𝑌𝑌]

The following theorem greatly simplifies the computation of an expectation by 
breaking up the random variable into smaller pieces.

Note this theorem 
does not require 

𝑋𝑋 ⊥ 𝑌𝑌

Proof:  First try proving this yourself.
              It’s similar to the 𝑬𝑬 𝑋𝑋𝑌𝑌  derivation,
              but you aren’t allowed to split 
              the 𝑝𝑝𝑋𝑋,𝑌𝑌(𝑥𝑥,𝑦𝑦).
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Linearity of Expectation
Theorem 4.10: [Linearity of Expectation] For random variables 𝑋𝑋 and 𝑌𝑌,

 𝑬𝑬 𝑋𝑋 + 𝑌𝑌 = 𝑬𝑬 𝑋𝑋 + 𝑬𝑬[𝑌𝑌]

Proof:
𝑬𝑬 X + Y =  �

𝑦𝑦

�
𝑥𝑥

(𝑥𝑥 + 𝑦𝑦) ⋅ 𝑝𝑝𝑋𝑋 𝑥𝑥,𝑦𝑦

=  �
𝑦𝑦

�
𝑥𝑥

𝑥𝑥 ⋅ 𝑝𝑝𝑋𝑋 𝑥𝑥,𝑦𝑦 + �
𝑦𝑦

�
𝑥𝑥

𝑦𝑦 ⋅ 𝑝𝑝𝑋𝑋 𝑥𝑥,𝑦𝑦  

=  �
𝑥𝑥

�
𝑦𝑦

𝑥𝑥 ⋅ 𝑝𝑝𝑋𝑋 𝑥𝑥,𝑦𝑦 + �
𝑦𝑦

�
𝑥𝑥

𝑦𝑦 ⋅ 𝑝𝑝𝑋𝑋 𝑥𝑥,𝑦𝑦  

=  �
𝑥𝑥

𝑥𝑥�
𝑦𝑦

𝑝𝑝𝑋𝑋 𝑥𝑥,𝑦𝑦 + �
𝑦𝑦

𝑦𝑦�
𝑥𝑥

𝑝𝑝𝑋𝑋 𝑥𝑥,𝑦𝑦  =  �
𝑥𝑥

𝑥𝑥𝑝𝑝𝑋𝑋 𝑥𝑥 +  �
𝑦𝑦

𝑦𝑦𝑝𝑝𝑌𝑌 𝑦𝑦 = 𝑬𝑬 𝑋𝑋 + 𝑬𝑬[𝑌𝑌]
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Expectation of Binomial(𝑛𝑛,𝑝𝑝)

Remember!
Mean of

Binomial(𝑛𝑛,𝑝𝑝)
is 𝑛𝑛𝑝𝑝.

Experiment:  Flip a coin, with probability 𝑝𝑝 of Heads, 𝑛𝑛 times

Random Variable 𝑋𝑋 = number of heads

𝑋𝑋 = X1 + X2 + ⋯+ 𝑋𝑋𝑛𝑛 , where 𝑋𝑋𝑖𝑖 ∼ Bernoulli(𝑝𝑝) 

Key Observation:

Applying Linearity of Expectation:

𝑬𝑬[𝑋𝑋] = 𝑬𝑬[X1] + 𝑬𝑬[X2] + ⋯+ 𝑬𝑬[𝑋𝑋𝑛𝑛]

What is 
𝑬𝑬 𝑋𝑋𝑖𝑖  ?

= 𝑝𝑝 + 𝑝𝑝 + ⋯+ 𝑝𝑝
Should make 

intuitive sense

𝑛𝑛

= 𝑛𝑛𝑝𝑝
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Expectation of Binomial(𝑛𝑛,𝑝𝑝)
Experiment:  Flip a coin, with probability 𝑝𝑝 of Heads, 𝑛𝑛 times

Random Variable 𝑋𝑋 = number of heads

𝑋𝑋 = X1 + X2 + ⋯+ 𝑋𝑋𝑛𝑛 , where 𝑋𝑋𝑖𝑖 ∼ Bernoulli(𝑝𝑝) 

Key Observation:

Applying Linearity of Expectation:

𝑬𝑬[𝑋𝑋] = 𝑬𝑬[X1] + 𝑬𝑬[X2] + ⋯+ 𝑬𝑬[𝑋𝑋𝑛𝑛]

= 𝑝𝑝 + 𝑝𝑝 + ⋯+ 𝑝𝑝 = 𝑛𝑛𝑝𝑝
15

Q: Were the 
𝑋𝑋𝑖𝑖′𝑃𝑃 indpt in 

here?

Defn:  The 𝑋𝑋𝑖𝑖  here are 
called indicator r.v.s, 
because they take on 
values of 1 or 0.

𝑛𝑛
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Drinking from your own Cup
At a party, 𝑛𝑛 people put their drink on a table.   Later that night, 
no one can remember which cup is theirs, so they simply each grab 
any cup at random.  

Q:  What is 𝑬𝑬[𝑋𝑋]?   Is it increasing with 𝑛𝑛 ?

Let 𝑋𝑋 = number of people who get back their own cup.
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Drinking from your own Cup
At a party, 𝑛𝑛 people put their drink on a table.   Later that night, 
no one can remember which cup is theirs, so they simply each grab 
any cup at random.  

Q:  What is 𝑬𝑬[𝑋𝑋]?   Is it increasing with 𝑛𝑛 ?

Let 𝑋𝑋 = number of people who get back their own cup.

Q:  What do the Xi represent?  

Idea: 𝑋𝑋 = X1 + X2 + ⋯+ 𝑋𝑋𝑛𝑛  
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Drinking from your own Cup
At a party, 𝑛𝑛 people put their drink on a table.   Later that night, 
no one can remember which cup is theirs, so they simply each grab 
any cup at random.  

Q:  What is 𝑬𝑬[𝑋𝑋]?

Let 𝑋𝑋 = number of people who get back their own cup.

Idea: 𝑋𝑋 = X1 + X2 + ⋯+ 𝑋𝑋𝑛𝑛  
𝑋𝑋𝑖𝑖 = � 1 w.p.  1/𝑛𝑛

0 o.w. 

Q:  Are the 𝑋𝑋𝑖𝑖 independent Bernoulli distributions?  If so, is 𝑋𝑋 Binomially distributed?  

𝑋𝑋𝑖𝑖 = 1 ⇔ person 𝐺𝐺 got back their own cup
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Drinking from your own Cup
At a party, 𝑛𝑛 people put their drink on a table.   Later that night, 
no one can remember which cup is theirs, so they simply each grab 
any cup at random.  

Q:  What is 𝑬𝑬[𝑋𝑋]?

Let 𝑋𝑋 = number of people who get back their own cup.

Idea: 𝑋𝑋 = X1 + X2 + ⋯+ 𝑋𝑋𝑛𝑛  

𝑋𝑋𝑖𝑖 = 1 ⇔ person 𝐺𝐺 got back their own cup

A: The 𝑋𝑋𝑖𝑖 ‘s are NOT independent.  Nevertheless, Linearity of Expectation applies:

                𝑬𝑬[𝑋𝑋] = 𝑬𝑬[X1] + 𝑬𝑬[X2] + ⋯+ 𝑬𝑬[𝑋𝑋𝑛𝑛] regardless 
of 𝑛𝑛 

𝑋𝑋𝑖𝑖 = � 1 w.p.  1/𝑛𝑛
0 o.w. 

= 𝑛𝑛𝑬𝑬[𝑋𝑋𝑖𝑖] = 𝑛𝑛 ⋅
1
𝑛𝑛

= 1. 
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Coupon Collector
There are 𝑛𝑛 coupons we’re trying to collect.
Each draw we get a random coupon 
(sampling with replacement).   

Q:  What is 𝑬𝑬[𝐷𝐷]?

Let 𝐷𝐷 = number of draws until we’ve collected all the coupons.

"Introduction to Probability for Computing", Harchol-Balter '24
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Coupon Collector
There are 𝑛𝑛 coupons we’re trying to collect.
Each draw we get a random coupon 
(sampling with replacement).   

Q:  What is 𝑬𝑬[𝐷𝐷]?

Let 𝐷𝐷 = number of draws until we’ve collected all the coupons.

Q:  But what do the 𝐷𝐷𝑖𝑖  represent?  

Idea: 𝐷𝐷 = 𝐷𝐷1 + 𝐷𝐷2 + 𝐷𝐷3 + ⋯+ 𝐷𝐷𝑛𝑛  
What’s wrong with 
letting 𝐷𝐷𝑖𝑖  represent 
number of draws to 

get coupon 𝐺𝐺 ?

"Introduction to Probability for Computing", Harchol-Balter '24
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Coupon Collector
There are 𝑛𝑛 coupons we’re trying to collect.
Each draw we get a random coupon 
(sampling with replacement).   

Q:  What is 𝑬𝑬[𝐷𝐷]?

Let 𝐷𝐷 = number of draws until we’ve collected all the coupons.

Idea: 𝐷𝐷 = 𝐷𝐷1 + 𝐷𝐷2 + 𝐷𝐷3 + ⋯+ 𝐷𝐷𝑛𝑛  

𝐷𝐷𝑖𝑖 =  number of draws needed to get 𝐺𝐺th distinct coupon,         
given already have 𝐺𝐺 − 1 distinct coupons

# draws 
to get 1st 
distinct 
coupon

Additional 
draws 
needed to 
reach 2 
distinct 
coupons

Additional 
draws 
needed to 
reach 3 
distinct 
coupons

"Introduction to Probability for Computing", Harchol-Balter '24
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Coupon Collector
There are 𝑛𝑛 coupons we’re trying to collect.
Each draw we get a random coupon 
(sampling with replacement).   

Q:  What is 𝑬𝑬[𝐷𝐷]?

Let 𝐷𝐷 = number of draws until we’ve collected all the coupons.

Idea: 𝐷𝐷 = 𝐷𝐷1 + 𝐷𝐷2 + 𝐷𝐷3 + ⋯+ 𝐷𝐷𝑛𝑛  

𝐷𝐷𝑖𝑖 =  number of draws needed to get 𝐺𝐺th distinct coupon,         
given already have 𝐺𝐺 − 1 distinct coupons

# draws 
to get 1st 
distinct 
coupon

Additional 
draws 
needed to 
reach 2 
distinct 
coupons

Additional 
draws 
needed to 
reach 3 
distinct 
coupons

"Introduction to Probability for Computing", Harchol-Balter '24
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𝐷𝐷1 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 1

𝐷𝐷2 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑛𝑛 − 1
𝑛𝑛

𝐷𝐷3 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑛𝑛 − 2
𝑛𝑛

𝐷𝐷𝑛𝑛 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
1
𝑛𝑛
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Coupon Collector
There are 𝑛𝑛 coupons we’re trying to collect.
Each draw we get a random coupon 
(sampling with replacement).   

Q:  What is 𝑬𝑬[𝐷𝐷]?

Let 𝐷𝐷 = number of draws until we’ve collected all the coupons.

Idea: 𝐷𝐷 = 𝐷𝐷1 + 𝐷𝐷2 + 𝐷𝐷3 + ⋯+ 𝐷𝐷𝑛𝑛  
𝐷𝐷1 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 1

𝐷𝐷2 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑛𝑛 − 1
𝑛𝑛

𝐷𝐷3 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑛𝑛 − 2
𝑛𝑛

𝐷𝐷𝑛𝑛 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
1
𝑛𝑛
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𝑬𝑬[𝐷𝐷] = 𝑬𝑬[𝐷𝐷1] + 𝑬𝑬[𝐷𝐷2] + 𝑬𝑬[𝐷𝐷3] + ⋯+ 𝑬𝑬[𝐷𝐷𝑛𝑛] 

= 1 +
𝑛𝑛

𝑛𝑛 − 1
+

𝑛𝑛
𝑛𝑛 − 2

+ ⋯+ 𝑛𝑛 

= 𝑛𝑛 ⋅
1
𝑛𝑛

+
1

𝑛𝑛 − 1
+

1
𝑛𝑛 − 2

+ ⋯+ 1
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Coupon Collector
There are 𝑛𝑛 coupons we’re trying to collect.
Each draw we get a random coupon 
(sampling with replacement).   

Q:  What is 𝑬𝑬[𝐷𝐷]?

Let 𝐷𝐷 = number of draws until we’ve collected all the coupons.

Idea: 𝐷𝐷 = 𝐷𝐷1 + 𝐷𝐷2 + 𝐷𝐷3 + ⋯+ 𝐷𝐷𝑛𝑛  

"Introduction to Probability for Computing", Harchol-Balter '24

𝑬𝑬[𝐷𝐷] = 𝑬𝑬[𝐷𝐷1] + 𝑬𝑬[𝐷𝐷2] + 𝑬𝑬[𝐷𝐷3] + ⋯+ 𝑬𝑬[𝐷𝐷𝑛𝑛] 

= 1 +
𝑛𝑛

𝑛𝑛 − 1
+

𝑛𝑛
𝑛𝑛 − 2

+ ⋯+ 𝑛𝑛 

= 𝑛𝑛 ⋅
1
𝑛𝑛

+
1

𝑛𝑛 − 1
+

1
𝑛𝑛 − 2

+ ⋯+ 1
 

= 𝑛𝑛 ⋅ 𝐻𝐻𝑛𝑛 ≈ 𝑛𝑛 ln(𝑛𝑛) 
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Conditional p.m.f.
We often want the expected value of a r.v. 𝑋𝑋 conditioned on some event, 𝐴𝐴, e.g.

To define 𝑬𝑬[𝑋𝑋|𝐴𝐴]  we will need to define a conditional p.m.f., 𝑝𝑝𝑋𝑋|𝐴𝐴 𝑥𝑥 .  

𝑬𝑬[Price of hotel room | Month is March]

Defn 4.14: Let 𝑋𝑋 be a discrete r.v. with p.m.f. 𝑝𝑝𝑋𝑋 𝑥𝑥 .   
Let 𝐴𝐴 be an event s.t. 𝑷𝑷 𝐴𝐴 > 0.
Then 𝑝𝑝𝑋𝑋|𝐴𝐴 𝑥𝑥  is the conditional p.m.f. of 𝑿𝑿 given event 𝑨𝑨 where:

= 𝑷𝑷 𝑋𝑋 = 𝑥𝑥 | 𝐴𝐴𝑝𝑝𝑋𝑋|𝐴𝐴 𝑥𝑥 =
𝑷𝑷{ 𝑋𝑋 = 𝑥𝑥 ∩ 𝐴𝐴}

𝑷𝑷{𝐴𝐴}
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Conditioning on an Event

Let 𝐴𝐴 denote the event that the job is “small,” meaning its size is ≤ 3.

Let r.v. 𝑋𝑋 denote the size of a job:

𝑋𝑋 =  

1 w.p. 0.1
2 w.p. 0.2
3 w.p. 0.3
4 w.p. 0.2
5 w.p. 0.2

Q: What is 𝑝𝑝𝑋𝑋|𝐴𝐴 1 ?   How does this compare with 𝑝𝑝𝑋𝑋 1 ?   
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Conditioning on an Event

Let 𝐴𝐴 denote the event that the job is “small,” meaning its size is ≤ 3.

Let r.v. 𝑋𝑋 denote the size of a job:

𝑋𝑋 =  

1 w.p. 0.1
2 w.p. 0.2
3 w.p. 0.3
4 w.p. 0.2
5 w.p. 0.2

A: 𝑝𝑝𝑋𝑋|𝐴𝐴 1 = 𝑷𝑷 𝑋𝑋 = 1 𝐴𝐴} =
𝑷𝑷{𝑋𝑋 = 1 & 𝐴𝐴}

𝑷𝑷{𝐴𝐴}
=
𝑷𝑷{𝑋𝑋 = 1}
𝑷𝑷{𝐴𝐴} =

1
10
6

10
=

1
6

Q: What is 𝑝𝑝𝑋𝑋|𝐴𝐴 1 ?   How does this compare with 𝑝𝑝𝑋𝑋 1 ?   
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Conditioning on an Event

Let 𝐴𝐴 denote the event that the job is “small,” meaning its size is ≤ 3.

Let r.v. 𝑋𝑋 denote the size of a job:

𝑋𝑋 =  

1 w.p. 0.1
2 w.p. 0.2
3 w.p. 0.3
4 w.p. 0.2
5 w.p. 0.2

Q: What is 𝑝𝑝𝑋𝑋|𝐴𝐴 𝑥𝑥  if 𝑥𝑥 ∉ 𝐴𝐴?  Answer:  0

Lemma 4.16: A conditional p.m.f. is a p.m.f., i.e.,

�
𝑥𝑥

𝑝𝑝𝑋𝑋|𝐴𝐴 𝑥𝑥 = �
𝑥𝑥∈𝐴𝐴

𝑝𝑝𝑋𝑋|𝐴𝐴 𝑥𝑥 = 1 
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Example: Conditioning on an Event

Q:  What is 𝑝𝑝𝑋𝑋|𝑌𝑌=2 1 ?  

A: 𝑝𝑝𝑋𝑋|𝑌𝑌=2 1 = 𝑷𝑷 𝑋𝑋 = 1 𝑌𝑌 = 2} =
𝑷𝑷{𝑋𝑋 = 1 & 𝑌𝑌 = 2}

𝑷𝑷{𝑌𝑌 = 2}
=

1
6

1
6 + 1

8
=

4
7

1/6
𝑋𝑋 = 2

𝑌𝑌 = 2
𝑌𝑌 = 1
𝑌𝑌 = 0

𝑋𝑋 = 1𝑋𝑋 = 0

1/8
0

1/8 0
1/6 1/8
1/6 1/8

Table shows 𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦
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Conditional Expectation

The conditional expectation, 𝑬𝑬[𝑋𝑋|𝐴𝐴], is based on the conditional p.m.f., 𝑝𝑝𝑋𝑋|𝐴𝐴 𝑥𝑥 .  

Defn: Let 𝑋𝑋 be a discrete r.v. 
The conditional expectation of 𝑿𝑿 given event 𝑨𝑨 is defined as:
 

𝑬𝑬 𝑋𝑋 𝐴𝐴 = �
𝑥𝑥

𝑥𝑥 ⋅  𝑝𝑝𝑋𝑋|𝐴𝐴 𝑥𝑥 = �
𝑥𝑥

𝑥𝑥 ⋅
𝑷𝑷{ 𝑋𝑋 = 𝑥𝑥 ∩ 𝐴𝐴}

𝑷𝑷{𝐴𝐴}
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Conditional Expectation Example

Let 𝐴𝐴 denote the event that the job is “small,” meaning its size is ≤ 3.

Let r.v. 𝑋𝑋 denote the size of a job:

𝑋𝑋 =  

1 w.p. 0.1
2 w.p. 0.2
3 w.p. 0.3
4 w.p. 0.2
5 w.p. 0.2

Q: What is 𝑬𝑬[𝑋𝑋|𝐴𝐴]?   
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Conditional Expectation Example

Let 𝐴𝐴 denote the event that the job is “small,” meaning its size is ≤ 3.

Let r.v. 𝑋𝑋 denote the size of a job:

𝑋𝑋 =  

1 w.p. 0.1
2 w.p. 0.2
3 w.p. 0.3
4 w.p. 0.2
5 w.p. 0.2

A: 𝑬𝑬 𝑋𝑋 𝐴𝐴 = 1 ⋅ 𝑝𝑝𝑋𝑋|𝐴𝐴 1 + 2 ⋅ 𝑝𝑝𝑋𝑋|𝐴𝐴 2 + 3 ⋅ 𝑝𝑝𝑋𝑋|𝐴𝐴 3

Q: What is 𝑬𝑬[𝑋𝑋|𝐴𝐴]?   

= 1 ⋅ 1
6

+ 2 ⋅ 2
6

+ 3 ⋅ 3
6

= 14
6
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Conditional Expectation Example

1/6
𝑋𝑋 = 2

𝑌𝑌 = 2
𝑌𝑌 = 1
𝑌𝑌 = 0

𝑋𝑋 = 1𝑋𝑋 = 0

1/8
0

1/8 0
1/6 1/8
1/6 1/8

Table shows 𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦

Q:  What 𝑬𝑬 𝑋𝑋 𝑌𝑌 = 2]?  
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Conditional Expectation Example

Q:  What 𝑬𝑬 𝑋𝑋 𝑌𝑌 = 2]?  

A: 𝑬𝑬 𝑋𝑋 𝑌𝑌 = 2 = 0 ⋅ 𝑝𝑝𝑋𝑋|𝑌𝑌=2 0 + 1 ⋅ 𝑝𝑝𝑋𝑋|𝑌𝑌=2 1 + 2 ⋅ 𝑝𝑝𝑋𝑋|𝑌𝑌=2 2

= 1 ⋅ 4
7

+ 2 ⋅ 3
7

= 10
7

1/6
𝑋𝑋 = 2

𝑌𝑌 = 2
𝑌𝑌 = 1
𝑌𝑌 = 0

𝑋𝑋 = 1𝑋𝑋 = 0

1/8
0

1/8 0
1/6 1/8
1/6 1/8

Table shows 𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦
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Computing Expectations via Conditioning

Theorem 4.22:  Let X be a discrete r.v.  
Let events 𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛 partition the space Ω.  Then

𝑬𝑬[𝑋𝑋]  = �
𝑖𝑖=1

𝑛𝑛

𝑬𝑬[𝑋𝑋 |𝐹𝐹𝑖𝑖] ⋅ 𝑷𝑷{𝐹𝐹𝑖𝑖} 

𝑬𝑬[𝑋𝑋]  = �
𝑦𝑦

 

𝑬𝑬[𝑋𝑋 |𝑌𝑌 = 𝑦𝑦] ⋅ 𝑷𝑷{𝑌𝑌 = 𝑦𝑦} 

For a discrete r.v. Y :
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Expected Value of Geometric, Revisited

"Introduction to Probability for Computing", Harchol-Balter '24

𝑋𝑋 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝 . Derive 𝑬𝑬 𝑋𝑋  by conditioning

Q: What should we condition on?  
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Expected Value of Geometric, Revisited
𝑋𝑋 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝 . Derive 𝑬𝑬 𝑋𝑋  by conditioning

Q: What should we condition on?  

A: Condition on the value of the first flip, 𝑌𝑌.

𝑬𝑬 𝑋𝑋 = 𝑬𝑬 𝑋𝑋 𝑌𝑌 = 1] ⋅ 𝑷𝑷 𝑌𝑌 = 1 + 𝑬𝑬 𝑋𝑋 𝑌𝑌 = 0] ⋅ 𝑷𝑷 𝑌𝑌 = 0

= 𝑬𝑬 𝑋𝑋 𝑌𝑌 = 1] ⋅ 𝑝𝑝 + 𝑬𝑬 𝑋𝑋 𝑌𝑌 = 0] ⋅ (1 − 𝑝𝑝)

What is 
this?
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Expected Value of Geometric, Revisited
𝑋𝑋 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝 . Derive 𝑬𝑬 𝑋𝑋  by conditioning

Q: What should we condition on?  

A: Condition on the value of the first flip, 𝑌𝑌.

𝑬𝑬 𝑋𝑋 = 𝑬𝑬 𝑋𝑋 𝑌𝑌 = 1] ⋅ 𝑷𝑷 𝑌𝑌 = 1 + 𝑬𝑬 𝑋𝑋 𝑌𝑌 = 0] ⋅ 𝑷𝑷 𝑌𝑌 = 0

= 𝑬𝑬 𝑋𝑋 𝑌𝑌 = 1] ⋅ 𝑝𝑝 + 𝑬𝑬 𝑋𝑋 𝑌𝑌 = 0] ⋅ (1 − 𝑝𝑝)

= 1 ⋅ 𝑝𝑝 + (1 + 𝑬𝑬 𝑋𝑋 ) ⋅ (1 − 𝑝𝑝)

⇒ 𝑬𝑬 𝑋𝑋 =
1
𝑝𝑝
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Simpson’s Paradox

Consider two treatments for kidney stones:  Treatment A and Treatment B

• Treatment A is more effective on small kidney stones
• Treatment A is also more effective on large kidney stones

But if we ignore the type of stones, Treatment B is more effective! 
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Simpson’s Paradox

Treatment A Treatment B

small stones

large stones

aggregate mix

90% effective 80% effective

60% effective 50% effective

63% effective 77% effective

Q:  How is this possible?
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Simpson’s Paradox

Treatment A Treatment B

small stones

large stones

aggregate mix

90% effective 80% effective

60% effective 50% effective

63% effective 77% effective

(successful on 90 out of 100) (successful on 800 out of 1000) 

(successful on 600 out of 1000) (successful on 50 out of 100) 

(successful on 690 out of 1100) (successful on 850 out of 1100) 
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Treatment A Treatment B

small stones

large stones

aggregate mix

90% effective 80% effective

60% effective 50% effective

63% effective 77% effective

(successful on 90 out of 100) (successful on 800 out of 1000) 

(successful on 600 out of 1000) (successful on 50 out of 100) 

(successful on 690 out of 1100) (successful on 850 out of 1100) 

 No!  Treatment A is better on both small stones and on large stones.   It is the better treatment!

 But because A is better, it is given more “hard cases” – the large stone cases – and hence has 
lower average scores. 

Is treatment B better?
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