
Chapter 5
Variance

"Introduction to Probability for Computing", Harchol-Balter '24 1



"Introduction to Probability for Computing", Harchol-Balter '24
2

Higher moments
Defn: The 𝒌𝒌th moment of r.v. 𝑋𝑋 is

 𝑬𝑬 𝑋𝑋𝑘𝑘 = �
𝑥𝑥

𝑥𝑥𝑘𝑘 ⋅ 𝑷𝑷{𝑋𝑋 = 𝑥𝑥}

Example: 

𝑋𝑋 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝 . 

Derive 𝑬𝑬 𝑋𝑋2

Can we say 

𝑬𝑬 𝑋𝑋2 = 𝑬𝑬 𝑋𝑋 ⋅ 𝑬𝑬 𝑋𝑋 ?

This doesnʹt work because 𝑋𝑋 is 
not independent of 𝑋𝑋.
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Higher moments
Defn: The 𝒌𝒌th moment of r.v. 𝑋𝑋 is

 𝑬𝑬 𝑋𝑋𝑘𝑘 = �
𝑥𝑥

𝑥𝑥𝑘𝑘 ⋅ 𝑷𝑷{𝑋𝑋 = 𝑥𝑥}

Example: 

𝑋𝑋 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝 . 

Derive 𝑬𝑬 𝑋𝑋2

𝑬𝑬 𝑋𝑋2 =  �
𝑖𝑖=1

∞

𝑖𝑖2𝑝𝑝𝑋𝑋 𝑖𝑖

=  �
𝑖𝑖=1

∞

𝑖𝑖2 1 − 𝑝𝑝 𝑖𝑖−1 ⋅ 𝑝𝑝

Not obvious how 
to compute this 

sum
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2nd Moment of Geometric

𝑬𝑬 𝑋𝑋2 = 𝑬𝑬 𝑋𝑋2 𝑌𝑌 = 1] ⋅ 𝑷𝑷 𝑌𝑌 = 1 + 𝑬𝑬 𝑋𝑋2 𝑌𝑌 = 0] ⋅ 𝑷𝑷 𝑌𝑌 = 0

What is 
this?

𝑋𝑋 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝 . 

Derive 𝑬𝑬 𝑋𝑋2

Let’s try 
conditioning

Condition on value of 1st flip, 𝑌𝑌

"Introduction to Probability for Computing", Harchol-Balter '24

= 1 ⋅ 𝑝𝑝 + 𝑬𝑬 𝑋𝑋2 𝑌𝑌 = 0] ⋅ (1 − 𝑝𝑝)
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2nd Moment of Geometric

𝑬𝑬 𝑋𝑋2 = 𝑬𝑬 𝑋𝑋2 𝑌𝑌 = 1] ⋅ 𝑷𝑷 𝑌𝑌 = 1 + 𝑬𝑬 𝑋𝑋2 𝑌𝑌 = 0] ⋅ 𝑷𝑷 𝑌𝑌 = 0

= 1 ⋅ 𝑝𝑝 + 𝑬𝑬 𝑋𝑋2 𝑌𝑌 = 0] ⋅ (1 − 𝑝𝑝)

𝑋𝑋 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝 . 

Derive 𝑬𝑬 𝑋𝑋2 Condition on value of 1st flip, 𝑌𝑌

"Introduction to Probability for Computing", Harchol-Balter '24

= 1 ⋅ 𝑝𝑝 + 𝑬𝑬 1 + 𝑋𝑋 2 ⋅ (1 − 𝑝𝑝)

𝑋𝑋 | 𝑌𝑌 = 0 = 𝑋𝑋 + 1

𝑋𝑋2 | 𝑌𝑌 = 0 = 𝑋𝑋 + 1 2

Let’s try 
conditioning
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2nd Moment of Geometric

𝑬𝑬 𝑋𝑋2 = 𝑬𝑬 𝑋𝑋2 𝑌𝑌 = 1] ⋅ 𝑷𝑷 𝑌𝑌 = 1 + 𝑬𝑬 𝑋𝑋2 𝑌𝑌 = 0] ⋅ 𝑷𝑷 𝑌𝑌 = 0

= 1 ⋅ 𝑝𝑝 + 𝑬𝑬 𝑋𝑋2 𝑌𝑌 = 0] ⋅ (1 − 𝑝𝑝)

𝑋𝑋 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝 . 

Derive 𝑬𝑬 𝑋𝑋2 Condition on value of 1st flip, 𝑌𝑌

"Introduction to Probability for Computing", Harchol-Balter '24

= 1 ⋅ 𝑝𝑝 + 𝑬𝑬 1 + 𝑋𝑋 2 ⋅ (1 − 𝑝𝑝)

= 1 ⋅ 𝑝𝑝 + 𝑬𝑬 1 + 2𝑋𝑋 + 𝑋𝑋2 ⋅ (1 − 𝑝𝑝)

= 1 ⋅ 𝑝𝑝 + (1 + 2𝐸𝐸 𝑋𝑋 + 𝐸𝐸 𝑋𝑋2 ) ⋅ (1 − 𝑝𝑝)

Let’s try 
conditioning

Result: 

𝑬𝑬 𝑋𝑋2 =
2 − 𝑝𝑝
𝑝𝑝2
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Variance
Defn: The variance of r.v.  𝑋𝑋 is the expected squared difference of 𝑋𝑋 from its mean:

𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋 = 𝑬𝑬[ 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 2]

𝑬𝑬[𝑋𝑋]
𝑥𝑥4 𝑥𝑥2 𝑥𝑥1 𝑥𝑥3

𝑑𝑑1

𝑑𝑑3
𝑑𝑑2

𝑑𝑑4

𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋 =
𝑑𝑑12 + 𝑑𝑑22 + 𝑑𝑑32 + 𝑑𝑑42

4

What is 
Var(-X)?

What is 
Var(2 + X)?

"Introduction to Probability for Computing", Harchol-Balter '24
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Choosing between Microsoft and a Startup

Work at Microsoft  Earnings = 105

𝑽𝑽𝑽𝑽𝑽𝑽(Money at Microsoft) = 0

𝑬𝑬 Money at Microsoft = 105

Work at Startup = � 107 w.p.  1%
0 w.p.  99%

Determine the mean and variance in each case.

𝑬𝑬 Money at Startup = 105

𝑽𝑽𝑽𝑽𝑽𝑽(Money at Startup)

= 𝑬𝑬 Money− 105 2

= 107 − 105 2 ⋅ 0.01 + 0 − 105 2 ⋅ 0.99

≈ 1014 ⋅ 0.01 + 1010 ⋅ 0.99 ≈ 1012
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Variance of Bernoulli(𝑝𝑝)

𝑋𝑋 = value of the coin flip

Remember!
Variance of
Bernoulli(𝑝𝑝)
is 𝑝𝑝(1 − 𝑝𝑝).

= � 1 w.p.  𝑝𝑝
0 o.w. 

Recall:  𝑬𝑬 𝑋𝑋 = 𝑝𝑝
𝑽𝑽𝑽𝑽𝑽𝑽(𝑋𝑋) = 𝑬𝑬[ 𝑋𝑋 − 𝑝𝑝 2]

= 𝑬𝑬[𝑋𝑋2 − 2𝑋𝑋𝑋𝑋 + 𝑝𝑝2]

= 𝑬𝑬 𝑋𝑋2 − 2𝑝𝑝𝑬𝑬[𝑋𝑋] + 𝑝𝑝2

= 𝑝𝑝 ⋅ 12 − 2𝑝𝑝 ⋅ 𝑝𝑝 + 𝑝𝑝2

= 𝑝𝑝 − 𝑝𝑝2 = 𝑝𝑝(1 − 𝑝𝑝)

Probability 𝑝𝑝
of heads
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Conditioning on Variance is NOT allowed

𝑋𝑋 = value of the coin flip = � 1 w.p.  𝑝𝑝
0 o.w. 

𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋 = 𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋 𝑋𝑋 = 1 ⋅ 𝑝𝑝 + 𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋 𝑋𝑋 = 0 ⋅ (1 − 𝑝𝑝) 

= 0 ⋅ 𝑝𝑝 + 0 ⋅ 1 − 𝑝𝑝

= 0

Recall:  𝑬𝑬 𝑋𝑋 = 𝑝𝑝

Probability 𝑝𝑝
of heads
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Alternative definitions of variance?

What’s wrong 
with this?

Legitimate, but 
lacking linearity 

property, coming 
soon.

𝑬𝑬 𝑋𝑋 − 𝑬𝑬[𝑋𝑋]

Potential new defn: 

𝑬𝑬[ 𝑋𝑋 − 𝑬𝑬 𝑋𝑋 𝟐𝟐]

Potential new defn: 
This has a name!

std(X) 

Potential new defn: 

𝑬𝑬 𝑋𝑋 − 𝑬𝑬[𝑋𝑋]
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Standard deviation of X

Defn: The standard deviation of a r.v.  𝑋𝑋 is:

𝜎𝜎𝑋𝑋 =  𝒔𝒔𝒔𝒔𝒔𝒔 𝑋𝑋 = 𝑬𝑬[ 𝑋𝑋 − 𝑬𝑬 𝑋𝑋 𝟐𝟐]

𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋 = 𝜎𝜎𝑋𝑋2
We often write:
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The need for a different variation metric
Suppose we measure a quantity, first in cm (r.v. 𝑋𝑋)  and then in mm (r.v. 𝑌𝑌):

1 w.p. 
1
3

2 w.p. 
1
3

3 w.p. 
1
3

𝑋𝑋 =

10 w.p. 
1
3

20 w.p. 
1
3

30 w.p. 
1
3

𝑌𝑌 =

Feels like they should have same variance, since they’re the same quantity, but they don’t:

𝑽𝑽𝑽𝑽𝑽𝑽(𝑌𝑌) =
200

3𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋 =
2
3

Need a new 
metric!
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Squared coefficient of variation

1 w.p. 
1
3

2 w.p. 
1
3

3 w.p. 
1
3

𝑋𝑋 =

𝑬𝑬[𝑋𝑋] = 2 𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋 =
2
3

Defn 5.6: The squared coefficient of variation of a r.v.  𝑋𝑋 is:

𝐶𝐶𝑋𝑋2  = 𝑽𝑽𝑽𝑽𝑽𝑽(𝑋𝑋)
𝑬𝑬 𝑋𝑋 2

10 w.p. 
1
3

20 w.p. 
1
3

30 w.p. 
1
3

𝑌𝑌 =

𝐶𝐶𝑋𝑋2  = 1
6

𝑬𝑬[𝑌𝑌] = 20 𝑽𝑽𝑽𝑽𝑽𝑽(𝑌𝑌) =
200

3

𝐶𝐶𝑌𝑌2  = 1
6

The coeff of 
variation is 

popular 
because it’s 

scale 
invariant!
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Equivalent definition of variance

𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋 = 𝑬𝑬[ 𝑋𝑋 − 𝑬𝑬 𝑋𝑋 2]

= 𝑬𝑬[𝑋𝑋2 − 2𝑋𝑋𝑬𝑬 𝑋𝑋 + 𝑬𝑬 𝑋𝑋 2]

= 𝑬𝑬 𝑋𝑋2 − 2 𝑬𝑬 𝑋𝑋 𝑬𝑬 𝑋𝑋 + 𝑬𝑬 𝑋𝑋 2

= 𝑬𝑬 𝑋𝑋2 − 𝑬𝑬 𝑋𝑋 2

Theorem 5.7:

𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋 = 𝑬𝑬 𝑋𝑋2 − 𝑬𝑬 𝑋𝑋 2
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Linearity of Variance

𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋 = 𝑬𝑬 𝑋𝑋 + 𝑌𝑌 2 − 𝑬𝑬 𝑋𝑋 + 𝑌𝑌 2

= 𝑬𝑬 𝑋𝑋2 + 𝑬𝑬 𝑌𝑌2 + 2𝑬𝑬 𝑋𝑋𝑋𝑋 − 𝑬𝑬 𝑋𝑋 2 − 𝑬𝑬 𝑌𝑌 2 − 2 𝑬𝑬 𝑋𝑋 𝑬𝑬[𝑌𝑌]

= 𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋 + 𝑽𝑽𝑽𝑽𝑽𝑽 𝑌𝑌 + 2𝑬𝑬 𝑋𝑋𝑋𝑋 − 2𝑬𝑬 𝑋𝑋 𝑬𝑬[𝑌𝑌]

= 𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋 + 𝑽𝑽𝑽𝑽𝑽𝑽(𝑌𝑌)

Theorem 5.8:  Let 𝑋𝑋 and 𝑌𝑌 be random variables where 𝑋𝑋 ⊥ 𝑌𝑌 .  Then

𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋 + 𝑌𝑌 = 𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋 + 𝑽𝑽𝑽𝑽𝑽𝑽 𝑌𝑌

0
Where did we 
use 𝑋𝑋 ⊥ 𝑌𝑌 ?
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Variance of Binomial(𝑛𝑛, 𝑝𝑝)

Remember!
Variance of

Binomial(𝑛𝑛,𝑝𝑝)
is 𝑛𝑛𝑛𝑛(1 − 𝑝𝑝).

Experiment:  Flip a coin, with probability 𝑝𝑝 of Heads, 𝑛𝑛 times

Random Variable 𝑋𝑋 = number of heads

𝑋𝑋 = X1 + X2 + ⋯+ 𝑋𝑋𝑛𝑛 , where 𝑋𝑋𝑖𝑖 ∼ Bernoulli(𝑝𝑝) 

Key Observation:

Applying Linearity of Variance:

𝑽𝑽𝑽𝑽𝑽𝑽(𝑋𝑋) = 𝑽𝑽𝑽𝑽𝑽𝑽(X1) + 𝑽𝑽𝑽𝑽𝑽𝑽(X2) + ⋯+ 𝑽𝑽𝑽𝑽𝑽𝑽(𝑋𝑋𝑛𝑛)

What is 𝑬𝑬 𝑋𝑋𝑖𝑖  ?
What is 𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋𝑖𝑖 ?

= 𝑝𝑝 1 − 𝑝𝑝 + 𝑝𝑝 1 − 𝑝𝑝 + ⋯+ 𝑝𝑝 1 − 𝑝𝑝 = 𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)

𝑛𝑛



"Introduction to Probability for Computing", Harchol-Balter '24
18

Sums versus copies

Let X1 and X2 be independent and identically distributed (i.i.d.) random variables,
where X1 ∼ 𝑋𝑋2 ∼ 𝑋𝑋.

𝑬𝑬 Y = 𝐄𝐄 Z = 2𝐄𝐄[X]How do 𝑬𝑬[𝑌𝑌] and 𝑬𝑬[𝑍𝑍] 
compare?

Why does 𝑍𝑍 yield 
more variance?  

How do 𝑽𝑽𝑽𝑽𝑽𝑽 𝑌𝑌  and 
𝑽𝑽𝑽𝑽𝑽𝑽 𝑍𝑍  compare?

𝑽𝑽𝑽𝑽𝑽𝑽 𝑌𝑌 = 𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋1 + 𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋2 = 2 𝑽𝑽𝑽𝑽𝑽𝑽(𝑋𝑋)

𝑽𝑽𝑽𝑽𝑽𝑽(𝑍𝑍) = 4 𝑽𝑽𝑽𝑽𝑽𝑽(𝑋𝑋)

𝑌𝑌 = 𝑋𝑋1 + 𝑋𝑋2 𝑍𝑍 = 2𝑋𝑋versus
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Covariance
Defn 5.11: The covariance of two random variables  𝑋𝑋 and 𝑌𝑌 is:

𝑪𝑪𝑪𝑪𝑪𝑪 𝑋𝑋,𝑌𝑌 = 𝑬𝑬 𝑋𝑋 − 𝑬𝑬 𝑋𝑋 ⋅ (𝑌𝑌 − 𝑬𝑬 𝑌𝑌 )

Intuition:  If the large values of 𝑋𝑋 tend to happen with the large values of 𝑌𝑌, 
and the small values of 𝑋𝑋 tend to happen with the small values of 𝑌𝑌, then
𝑋𝑋 − 𝑬𝑬 𝑋𝑋 ⋅ 𝑌𝑌 − 𝑬𝑬 𝑌𝑌  is positive on average, so 𝑪𝑪𝑪𝑪𝒗𝒗 𝑋𝑋,𝑌𝑌 > 0,  and we 

say that 𝑋𝑋 and 𝑌𝑌 are positively correlated.

Likewise if 𝑪𝑪𝑪𝑪𝒗𝒗 𝑋𝑋,𝑌𝑌 < 0,  we say that 𝑋𝑋 and 𝑌𝑌 are negatively correlated.

Theorem 5.12: 𝑪𝑪𝑪𝑪𝑪𝑪 𝑋𝑋,𝑌𝑌 = 𝑬𝑬 𝑋𝑋𝑌𝑌 − 𝑬𝑬 𝑋𝑋 𝑬𝑬[𝑌𝑌]

"Introduction to Probability for Computing", Harchol-Balter '24
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Central moments
Defn 5.13:   The kth central moment of r.v. 𝑋𝑋 is

𝑬𝑬 (𝑋𝑋 − 𝑬𝑬 𝑋𝑋 )𝑘𝑘 = �
𝑥𝑥

(𝑥𝑥 − 𝑬𝑬 𝑋𝑋 )𝑘𝑘⋅ 𝑷𝑷{𝑋𝑋 = 𝑥𝑥}

Q: What is the 2nd central 
moment?

Q: What’s the difference 
between the 2nd  and 4th 

central moments?

The 2nd central moment is the variance, 
representing how much the distribution varies 
from its mean.

The 4th  central moment is similar to variance, 
but outliers (those far from the mean) count a 
lot more!
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Third central moment and skew
The 3rd  central moment of r.v. 𝑋𝑋 is  𝑬𝑬 (𝑋𝑋 − 𝑬𝑬 𝑋𝑋 )3 . 
Roughly, the 3rd moment captures the skew of the distribution.

• Zero skew
• Zero 3rd central 

moment

• Positive skew
• Positive 3rd 

central moment

• Negative skew
• Negative 3rd 

central moment
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Sum of random number of random variables

In many applications, we need to add a number of i.i.d. r.v.s, where the 
total number of r.v.s added is itself a r.v.

𝑆𝑆 = �
𝑖𝑖=1

𝑁𝑁

𝑋𝑋𝑖𝑖

Total earnings = �
𝑖𝑖=1

𝑁𝑁

𝑋𝑋𝑖𝑖
Get new prize every day,
until wheel says stop.

where 𝑁𝑁 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
1
6

𝑁𝑁 ⊥ {𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … }
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Sum of random number of random variables
Let 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … be i.i.d. r.v.s, where 𝑋𝑋𝑖𝑖 ∼ 𝑋𝑋. 

Let 𝑆𝑆 = �
𝑖𝑖=1

𝑁𝑁

𝑋𝑋𝑖𝑖

Let 𝑁𝑁 ⊥ {𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … }

Q: What is 𝑬𝑬 𝑆𝑆 ? 
Q: Can we apply Linearity 

of Expectation?

No, because 𝑁𝑁 is not a 
constant!

Q: Is there a way to make 
𝑁𝑁 into a constant?

Yes!  We can condition on
the value of 𝑁𝑁
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Sum of random number of random variables
Let 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … be i.i.d. r.v.s, where 𝑋𝑋𝑖𝑖 ∼ 𝑋𝑋. 

Let 𝑆𝑆 = �
𝑖𝑖=1

𝑁𝑁

𝑋𝑋𝑖𝑖

Let 𝑁𝑁 ⊥ {𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … }

𝑬𝑬[𝑆𝑆] =  �
𝑛𝑛=1

∞

𝑬𝑬 𝑆𝑆 𝑁𝑁 = 𝑛𝑛] ⋅ 𝑷𝑷 𝑁𝑁 = 𝑛𝑛

= �
𝑛𝑛=1

∞

𝑬𝑬 �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 | 𝑁𝑁 = 𝑛𝑛 ⋅ 𝑷𝑷 𝑁𝑁 = 𝑛𝑛

= �
𝑛𝑛=1

∞

𝑛𝑛𝑬𝑬 𝑋𝑋 ⋅ 𝑷𝑷 𝑁𝑁 = 𝑛𝑛 = 𝑬𝑬 𝑋𝑋] ⋅ 𝑬𝑬[𝑁𝑁
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Sum of random number of random variables
Let 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … be i.i.d. r.v.s, where 𝑋𝑋𝑖𝑖 ∼ 𝑋𝑋. 

Let 𝑆𝑆 = �
𝑖𝑖=1

𝑁𝑁

𝑋𝑋𝑖𝑖

Let 𝑁𝑁 ⊥ {𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … }

𝑽𝑽𝑽𝑽𝑽𝑽(𝑆𝑆) =  �
𝑛𝑛=1

∞

𝑽𝑽𝑽𝑽𝑽𝑽 𝑆𝑆 𝑁𝑁 = 𝑛𝑛] ⋅ 𝑷𝑷 𝑁𝑁 = 𝑛𝑛

Q: Can we get
𝑽𝑽𝑽𝑽𝑽𝑽(𝑆𝑆)

similarly? 

This is WRONG!
There’s no Total Law of 

Variance
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Sum of random number of random variables
Let 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … be i.i.d. r.v.s, where 𝑋𝑋𝑖𝑖 ∼ 𝑋𝑋. 

Let 𝑆𝑆 = �
𝑖𝑖=1

𝑁𝑁

𝑋𝑋𝑖𝑖

Let 𝑁𝑁 ⊥ {𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … }

𝑬𝑬[𝑆𝑆2] =  �
𝑛𝑛=1

∞

𝑬𝑬 𝑆𝑆2 𝑁𝑁 = 𝑛𝑛] ⋅ 𝑷𝑷 𝑁𝑁 = 𝑛𝑛

= �
𝑛𝑛=1

∞

𝑬𝑬 𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛 2 ⋅ 𝑷𝑷 𝑁𝑁 = 𝑛𝑛

= �
𝑛𝑛=1

∞

𝑛𝑛𝑬𝑬 𝑋𝑋12 + (𝑛𝑛2 − 𝑛𝑛)𝑬𝑬 𝑋𝑋1𝑋𝑋2 ⋅ 𝑷𝑷 𝑁𝑁 = 𝑛𝑛

= 𝑬𝑬 𝑋𝑋2] ⋅ 𝑬𝑬[𝑁𝑁 + 𝑬𝑬 𝑋𝑋 2 ⋅ (𝑬𝑬 𝑁𝑁2 − 𝑬𝑬 𝑁𝑁 )

Q: Instead 
derive 𝑬𝑬 𝑆𝑆2  

= 𝑬𝑬 𝑁𝑁 𝑽𝑽𝑽𝑽𝑽𝑽(𝑋𝑋) + 𝑬𝑬 𝑁𝑁2 𝑬𝑬 𝑋𝑋2
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Sum of random number of random variables

Then

Let 𝑆𝑆 = �
𝑖𝑖=1

𝑁𝑁

𝑋𝑋𝑖𝑖 , where 𝑁𝑁 ⊥ {𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … }

Summary Theorem 5.14:

Let 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … be i.i.d. r.v.s, where 𝑋𝑋𝑖𝑖 ∼ 𝑋𝑋. 

𝑬𝑬 𝑆𝑆2 = 𝑬𝑬 𝑁𝑁 ⋅ 𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋 + 𝑬𝑬 𝑁𝑁2 ⋅ 𝑬𝑬 𝑋𝑋 2

𝑬𝑬 𝑆𝑆 = 𝑬𝑬 𝑁𝑁 ⋅ 𝑬𝑬[𝑋𝑋]

𝑽𝑽𝑽𝑽𝑽𝑽(𝑆𝑆) = 𝑬𝑬 𝑁𝑁 ⋅ 𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋 + 𝑽𝑽𝑽𝑽𝑽𝑽(𝑁𝑁) ⋅ 𝑬𝑬 𝑋𝑋 2

We’ll do this
much more

easily when we get to 
transforms!
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Example: Epidemic growth modeling
At each time step, every leaf independently either:

•  forks off 2 children, w.p. 1
2
 

•  stays inert w.p. 1
2

𝑋𝑋𝑡𝑡 is number of leaves
in tree after 𝑡𝑡 steps.

Q:  What is 𝑬𝑬[𝑋𝑋𝑡𝑡]
What is 𝑽𝑽𝑽𝑽𝑽𝑽 𝑋𝑋𝑡𝑡 ?
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Example: Epidemic growth modeling
At each time step, every leaf independently either:

•  forks off 2 children, w.p. 1
2
 

•  stays inert w.p. 1
2

𝑋𝑋𝑡𝑡 is number of leaves
in tree after 𝑡𝑡 steps.

𝑋𝑋𝑡𝑡 = �
𝑖𝑖=1

𝑋𝑋𝑡𝑡−1

𝑌𝑌𝑖𝑖

What is 𝑌𝑌𝑖𝑖?

Hint:

See book
for solution
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Tail bounds
Defn:   The tail of random variable 𝑋𝑋 is 𝑷𝑷 𝑋𝑋 > 𝑥𝑥 .

Example:  𝑇𝑇 denotes response time at a web service.  
                   Want to ensure the fraction of people with 
                   response time > 0.5𝑠𝑠 is not too high. 

Want an upper bound on 𝑷𝑷 𝑇𝑇 > 0.5 .   This is called a tail bound.      

30
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Tail bounds
Another Example:  𝑛𝑛 items are hashed into a table of size 𝑛𝑛.
                                  Assume each item ends up in a random bucket.  
                                  Ideally, we have 1 item per bucket.  
                                  What is the fraction of time that your search time > 𝑘𝑘?
                                  (i.e., what’s the probability your bucket has > 𝑘𝑘 items?)

Let 𝑁𝑁 = #items in bucket 1

We don’t know how to 
compute such bounds
in general. 

31

How is 𝑁𝑁 distributed? 𝑁𝑁 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑛𝑛,
1
𝑛𝑛

𝑷𝑷 𝑁𝑁 > 𝑘𝑘 = �
𝑖𝑖=𝑘𝑘+1

𝑛𝑛

𝑷𝑷{𝑁𝑁 = 𝑖𝑖} = �
𝑖𝑖=𝑘𝑘+1

𝑛𝑛
𝑛𝑛
𝑖𝑖

1
𝑛𝑛

𝑖𝑖

1 −
1
𝑛𝑛

𝑛𝑛−𝑖𝑖

Point:  We’ll see that just knowing the mean and variance suffices for a tail bound.
             In some cases, the mean alone suffices (although this bound is quite weak).
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Markov’s inequality

𝑷𝑷 𝑋𝑋 ≥ 𝑎𝑎 ≤
𝑬𝑬[𝑋𝑋]
𝑎𝑎

Theorem:  (Markov’s inequality)  If r.v. 𝑋𝑋 is non-negative, then ∀𝑎𝑎 > 0, 

𝑬𝑬[𝑋𝑋] =  �
𝑥𝑥=0

∞

𝑥𝑥 ⋅ 𝑝𝑝𝑋𝑋(𝑥𝑥) ≥ �
𝑥𝑥=𝑎𝑎

∞

𝑥𝑥 ⋅ 𝑝𝑝𝑋𝑋 𝑥𝑥

≥ �
𝑥𝑥=𝑎𝑎

∞

𝑎𝑎 ⋅ 𝑝𝑝𝑋𝑋 𝑥𝑥

= 𝑎𝑎�
𝑥𝑥=𝑎𝑎

∞

𝑝𝑝𝑋𝑋 𝑥𝑥 = 𝑎𝑎 ⋅ 𝑷𝑷{𝑋𝑋 ≥ 𝑎𝑎}
32
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Chebyshev’s inequality

𝑷𝑷 |𝑋𝑋 − 𝜇𝜇| ≥ 𝑎𝑎 ≤
𝑽𝑽𝑽𝑽𝑽𝑽(𝑋𝑋)
𝑎𝑎2

Theorem:  (Chebyshev’s inequality)  Let 𝑋𝑋 be any r.v. with finite mean, 𝜇𝜇, and 
finite variance.  Then ∀𝑎𝑎 > 0, 

𝑷𝑷 𝑋𝑋 − 𝜇𝜇 ≥ 𝑎𝑎 = 𝑷𝑷 𝑋𝑋 − 𝜇𝜇 2 ≥ 𝑎𝑎2

≤
𝑬𝑬 𝑋𝑋 − 𝜇𝜇 2

𝑎𝑎2

Q: Can you see how to apply 
Markov’s inequality here?

=
𝑽𝑽𝑽𝑽𝑽𝑽(𝑋𝑋)
𝑎𝑎2

33
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Chebyshev’s inequality

𝑷𝑷 |𝑋𝑋 − 𝜇𝜇| ≥ 𝑎𝑎 ≤
𝑽𝑽𝑽𝑽𝑽𝑽(𝑋𝑋)
𝑎𝑎2

Theorem:  (Chebyshev’s inequality)  Let 𝑋𝑋 be any r.v. with finite mean, 𝜇𝜇, and 
finite variance.  Then ∀𝑎𝑎 > 0, 

𝑷𝑷 𝑁𝑁 ≥ 6} ≤ 𝑷𝑷{ 𝑁𝑁 − 1 ≥ 5

≤
𝑽𝑽𝑽𝑽𝑽𝑽(𝑁𝑁)

25

34

Example:

𝑁𝑁 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑛𝑛 ,
1
𝑛𝑛

Provide upper bound 
on:  𝑷𝑷{𝑁𝑁 ≥ 6}

≤
1

25



Stochastic dominance
Defn 5.18:   Given two random variables 𝑋𝑋 and 𝑌𝑌, if

 𝑷𝑷 𝑋𝑋 > 𝑖𝑖 ≥ 𝑷𝑷 𝑌𝑌 > 𝑖𝑖 , ∀𝑖𝑖

we say that 𝑋𝑋 stochastically dominates 𝑌𝑌:

𝑋𝑋 ≥𝑠𝑠𝑠𝑠 𝑌𝑌

"Introduction to Probability for Computing", Harchol-Balter '24
35



Test page – EPS File converted to png

"Introduction to Probability for Computing", Harchol-Balter '24
36



Test page – EPS File converted to EMF

"Introduction to Probability for Computing", Harchol-Balter '24
37



Test page– pdf file converted to EMF

"Introduction to Probability for Computing", Harchol-Balter '24
38



Test page– pdf file converted to png

"Introduction to Probability for Computing", Harchol-Balter '24
39



"Introduction to Probability for Computing", Harchol-Balter '24

Stochastic dominance
𝑋𝑋 = Number pairs of shoes owned by women ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆 = 27)

𝑌𝑌 = Number pairs of shoes owned by men ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆 = 12)

Most, but not all, women 
have more shoes than men

But women stochastically 
dominate men w.r.t. shoes

40
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Jensen’s inequality: motivation

𝑬𝑬 𝑋𝑋2 ≥ 𝑬𝑬 𝑋𝑋 2

We already know that 

Is it also the case that

𝑬𝑬 𝑋𝑋3 ≥ 𝑬𝑬 𝑋𝑋 3 ?
𝑬𝑬 𝑋𝑋4 ≥ 𝑬𝑬 𝑋𝑋 4 ?

𝑬𝑬 𝑋𝑋4.5 ≥ 𝑬𝑬 𝑋𝑋 4.5 ?

𝑬𝑬 𝑋𝑋𝑎𝑎 ≥ 𝑬𝑬 𝑋𝑋 𝑎𝑎

Theorem: Let 𝑋𝑋 be any positive r.v.   Then ∀𝑎𝑎 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,                           

This is a 
consequence of 

Jensen’s inequality!
(Exercise 5.32) 

41
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Jensen’s inequality
Defn 5.21: A function 𝑔𝑔(𝑥𝑥) is convex on interval 𝑆𝑆 if, for any 𝑥𝑥1, 𝑥𝑥2 ∈ 𝑆𝑆, and 
any 𝛼𝛼 ∈ 0,1 , we have:

 𝑔𝑔 𝛼𝛼𝑥𝑥1 + 1 − 𝛼𝛼 𝑥𝑥2 ≤ 𝛼𝛼𝛼𝛼 𝑥𝑥1 + 1 − 𝛼𝛼 𝑔𝑔(𝑥𝑥2)

The curve 
always lies 
below the line 
segment.

𝑔𝑔 𝑥𝑥  is convex on 𝑆𝑆 iff 𝑔𝑔′′(𝑥𝑥) ≥ 0, ∀𝑥𝑥 ∈ 𝑆𝑆.

𝑥𝑥1 𝑥𝑥2
𝑥𝑥

𝑔𝑔(𝑥𝑥)



"Introduction to Probability for Computing", Harchol-Balter '24
43

Jensen’s inequality
Defn 5.22: A function 𝑔𝑔(𝑥𝑥) is convex on interval 𝑆𝑆 if, for any 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ∈ 𝑆𝑆, and 
any 𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛 ∈ 0,1 , where ∑𝑖𝑖 𝛼𝛼𝑖𝑖 = 1, we have:

 𝑔𝑔 𝛼𝛼1𝑥𝑥1 + 𝛼𝛼2𝑥𝑥2 + ⋯+ 𝛼𝛼𝑛𝑛𝑥𝑥𝑛𝑛 ≤ 𝛼𝛼1𝑔𝑔 𝑥𝑥1 + 𝛼𝛼2𝑔𝑔 𝑥𝑥2 + ⋯+ 𝛼𝛼𝑛𝑛𝑔𝑔(𝑥𝑥𝑛𝑛)

𝑋𝑋 =

𝑥𝑥1 w. p.  𝑝𝑝𝑋𝑋 𝑥𝑥1
𝑥𝑥2 w. p. 𝑝𝑝𝑋𝑋 𝑥𝑥2
⋮
𝑥𝑥n w. p. 𝑝𝑝𝑋𝑋 𝑥𝑥𝑛𝑛

𝑔𝑔 𝑝𝑝𝑋𝑋 𝑥𝑥1 𝑥𝑥1 + ⋯+ 𝑝𝑝𝑋𝑋(𝑥𝑥𝑛𝑛)𝑥𝑥𝑛𝑛 ≤ 𝑝𝑝𝑋𝑋(𝑥𝑥1)𝑔𝑔 𝑥𝑥1 + ⋯+ 𝑝𝑝𝑋𝑋(𝑥𝑥𝑛𝑛)𝑔𝑔(𝑥𝑥𝑛𝑛)

𝑔𝑔 𝑬𝑬[𝑋𝑋] ≤ 𝑬𝑬 𝑔𝑔 𝑋𝑋
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Jensen’s inequality

𝑋𝑋 =

𝑥𝑥1 w. p.  𝑝𝑝𝑋𝑋 𝑥𝑥1
𝑥𝑥2 w. p. 𝑝𝑝𝑋𝑋 𝑥𝑥2
⋮
𝑥𝑥n w. p. 𝑝𝑝𝑋𝑋 𝑥𝑥𝑛𝑛

𝑔𝑔 𝑝𝑝𝑋𝑋 𝑥𝑥1 𝑥𝑥1 + ⋯+ 𝑝𝑝𝑋𝑋(𝑥𝑥𝑛𝑛)𝑥𝑥𝑛𝑛 ≤ 𝑝𝑝𝑋𝑋(𝑥𝑥1)𝑔𝑔 𝑥𝑥1 + ⋯+ 𝑝𝑝𝑋𝑋(𝑥𝑥𝑛𝑛)𝑔𝑔(𝑥𝑥𝑛𝑛)

𝑔𝑔 𝑬𝑬[𝑋𝑋] ≤ 𝑬𝑬 𝑔𝑔 𝑋𝑋

Theorem 5.23:  (Jensen’s inequality)  If 𝑔𝑔(𝑥𝑥) is convex on interval 𝑆𝑆 and X takes on 
values on interval 𝑆𝑆,  then:

 𝑔𝑔 𝑬𝑬[𝑋𝑋] ≤ 𝑬𝑬[𝑔𝑔 𝑋𝑋 ]
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Inspection paradox: Consequence of high variability
Defn: The inspection paradox says that, in high-variability settings, the mean seen 
by a random observer can be very different from the true mean.

Mean time between 
buses is 10 minutes.

However if there is some variability in the time 
between buses, then a randomly arriving person 
will wait more than 5 minutes.  

Expected wait can even be >10 minutes!

How can this be?  
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Inspection paradox: Consequence of high variability
Defn: The inspection paradox says that, in high-variability settings, the mean seen 
by a random observer can be very different from the true mean.

Average class size 
reported by students 
is 100.

But the dean claims average class 
size is 30.

No one is lying.
How can this be?  
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Inspection paradox: Consequence of high variability
Defn: The inspection paradox says that, in high-variability settings, the mean seen 
by a random observer can be very different from the true mean.

Average class size 
reported by students 
is 100.

But the dean claims average class 
size is 30.

No one is lying.
How can this be?  180 students in 6 classes  30 students/class.

Avg observed class size = 50
180

⋅ 10 + 130
180

⋅ 130 ≈ 97
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Inspection paradox: Consequence of high variability
Defn: The inspection paradox says that, in high-variability settings, the mean seen 
by a random observer can be very different from the true mean.

The average Facebook user has 44 
friends.

But the average friend of a Facebook 
user has 104 friends.  

In fact, with probability 76%, your 
friend is more popular than you are.

How can this be?  

Most people have few friends.
A few people are very popular with many friends.
Which classification most likely describes you?  
Which most likely describes your friend?
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