Chapter 5
Variance



Higher moments

Defn: The kth moment of r.v. X is

Can we say

E[X¥] = Z x* - P{X = x} E[X?] = E[X] - E[X]?

X

This doesn’t work because X is
Example: not independent of X.

X ~ Geometric(p).

Derive E[X?].



Higher moments

Defn: The kth moment of r.v. X is

E[X¥] = Z x® - P{X = x}

X

Example:

Not obvious how
to compute this
sum

X ~ Geometric(p).

Derive E[X?].




24 Moment of Geometric

X ~ Geometric(p). QLI LIS FITg ¢ conzti tsi g;‘i/n "

Derive E[X?]. Condition on value of 1st flip, Y.
What is

E[X?] = E[X2 Y = 1] - P{Ys e 4 E[X? |Y = 0] - P{Y = 0}

=1-pHE[X?|Y =0]| (1 -p)




Let’s try
conditioning
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Derive E[X?]. Condition on value of 1st flip, Y.

E[X?] = E[X?|Y = 1] - P{Y = 1} + E[X? |Y = 0] - P{Y = 0}

=1-p+E[X?|Y =0]-(1-Dp)

\ J
1

[X|Y=0]=X+1
[X2|Y = 0] = (X + 1)?

=1-p+E[(1+X)*]-(1—p)




Moment of Geometric

Let’s try
conditioning
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Derive E[X?]. Condition on value of 1st flip, Y.

E[X?] = E[X?|Y = 1] - P{Y = 1} + E[X? |Y = 0] - P{Y = 0}

=1-p+E[X?|Y =0]-(1-p) Result:
2—p
_ 271 —
=1-p+E[(1+X)?](1-p) EX"]=—2%
=1-p+E[1+2X+X%]-(1—p)

=1-p+ (1+2E[X]+E[X?])- (1 —-p)




Variance

Defn: The variance of r.v. X is the expected squared difference of X from its mean:

Var(X) = E[(X — E[X])?]




Choosing between Microsoft and a Startup

107 w.p. 1%
0 w.p. 99%

Work at Microsoft =» Earnings = 10° Work at Startup = {

Determine the mean and variance in each case.

E[Money at Microsoft] = 10° E[Money at Startup | = 10°

Var(Money at Microsoft) = 0 Var(Money at Startup)

= E[(Money — 10°)?]

= (107 — 105)2 - 0.01 + (0 — 105)2 - 0.99

~ 101 .0.01 + 10%°.0.99 =|10'*




Variance of Bernoulli(p)

X = value of the

coin flip :{ (1) ZVVS p

Var(X) = E

=D
=P

(X —p)?]

X —2Xp + p“]

X?] — 2pE[X] + p?
-1 —2p-p +p?

-p?> =p(1-p)
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Probability p
of heads

Recall: E[X]=p

Remember!
Variance of
Bernoulli(p)

isp(1—p).



Conditioning on Variance is NOT allowed

X = value of the coin flip = { 1 wp.p
0 o.w.

Probability p
of heads

Var(X) =Va

=0

Recall: E[X]=p

1)-p =0)-(1-p)
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Alternative definitions of variance?

Potential new defn:

What’s wrong
E[X — E[X]] with this?

Potential new defn: Legitimate, but
lacking linearity

E[|X — E[X]|] property, coming

soon.

Potential new defn:

JEICx - Exp2]




Standard deviation of X

Defn: The standard deviation of ar.v. X is:

ox = std(X) = [E[(X — E[X])2

We often write:

Var(X) = o%



The need for a different variation metric

Suppose we measure a quantity, firstin cm (r.v. X) and then in mm (r.v. Y):

—

1 = i L

W.p. 3 10  w.p. 3

X = 2 L 1
= W.p. 3 Y=+20 w.p. 3
3 L 1

i w.p. 3 _30 W.p. 3

Feels like they should have same variance, since they’re the same quantity, but they don’t:

2
Var(X) = Var(Y) = —= Need a new

metric!




Squared coefficient of variation

Defn 5.6: The squared coefficient of variation of ar.v. X is:

C2 — Var(X) The coeff of
X 7 E[x)2 variation is
popular
1 w.p. L 10 w.p. 1 because it’s
i ? scale
X=q2 wp 3 Y =520 wp. 3 invariant!
1 1
‘3 W.p. 3 §30 W.p. 3
ElX] =2 Var(X) = E|Y]| = 20 Var(Y) = —
2 _ 1 2 _ 1
CX T 6 CY — p




Equivalent definition of variance

Theorem 5.7:
Var(X) = E[X“] — E[X]2

Var(X) = E[(X — E[X])?]
= E[X* — 2XE[X] + E[X]?]

= E[X*?] — 2 E[X]E[X] + E[X]?

= E[X*] — E[X]?




Linearity of Variance

Theorem 5.8: Let X and Y be random variables where X 1 Y . Then

Var(X +Y) =Var(X) + Var(Y)

Var(X) = E[(X + Y)?] — E[X + Y]?

= E[X?] + E[Y?] + 2E|XY] — E[X]? — E[Y]? — 2 E[X]E[Y]

= Var(X) + Var(Y) + 2E[XY] — 2E[X]E[Y]
‘ Y : Where did we
0 useX 1L Y?
= Var(X) + Var(Y)




Variance of Binomial(n, p)

Experiment: Flip a coin, with probability p of Heads, n times

Random Variable X = number of heads

Key Observation:
X=X{+X,+ -+ X, ,where X; ~ Bernoulli(p) °©°

Applying Linearity of Variance:

Var(X) =Var(X,) + Var(X,) + -+ Var(X,)

=p(1l-p)+p(1—-p)+-+p(l—p)=np(l—p)
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What is E[X;] ?
What is Var(X;)?
O

Remember!
Variance of
Binomial(n, p)

isnp(1 — p).
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Sums versus copies

Let X; and X, be independent and identically distributed (i.i.d.) random variables,
where X; ~ X, ~ X.

Y =X+ X, versus Z =2X

How do E[Y] and E[Z] E[Y] = E[Z] = 2E[X]

compare?

How do Var(Y) and Var(Y) =Var(X;) + Var(X,) = 2 Var(X)
Var(Z) compare?
Var(Z) = 4Var(X) .
Why does Z yield

more variance?




Covariance

Defn 5.11: The covariance of two random variables X and Y is:

Cov(X,Y) = E|(X —E[X])- (Y —E[Y])]

Intuition: If the large values of X tend to happen with the large values of Y,
and the small values of X tend to happen with the small values of Y, then
(X — E|X]) - (Y — E|Y]) is positive on average, so Cov(X,Y) > 0, and we
say that X and Y are positively correlated.

Likewise if Cov(X,Y) < 0, we say that X and Y are negatively correlated.

Theorem 5.12: Cov(X,Y) = E|XY]| — E[X]E[Y]



Central moments

Defn 5.13: The kth central moment of r.v. X is

E[(X — E[X]D* E(x — E[X]DF- P{X = x}

The 2" central moment is the variance,

representing how much the distribution varies
from its mean.

Q: What is the 2" central
moment?

th . . . .
Q: What's the difference The 4% central moment is similar to variance,

between the 2" and 4th but outliers (those far from the mean) count a
central moments? lot more!




Third central moment and skew

The 3™ central moment of rv. X is E[(X — E[X])3].
Roughly, the 3@ moment captures the skew of the distribution.

px(i) px(i)
A A
0.3 "g 03[ g~
02 Bg- 021 | .
0.1 ZII”Z'ZIII o1l _WRER_
1234567 1234567
(a) (b) (c)
e Zero skew * Positive skew * Negative skew
e Zero 3" central  Positive 3 * Negative 3
moment central moment central moment
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Sum of random number of random variables

In many applications, we need to add a number of i.i.d. r.v.s, where the
total number of r.v.s added is itself a r.v.

N
S = ZXi N 1 (X, Xy, X5, ...}
i=1
N
Get new prize every day, Total earnings = 2 ¥,
until wheel says stop. AV

i=1
1
ﬁ ﬁ ﬁ ﬁ where N ~ Geometric (E)
X X5 X; X4

22
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Sum of random number of random variables

Let X, X5, X3, ... bei.i.d. rv.s, where X; ~ X. LetN 1 {X{, X5, X3,...}

N
Let S = Z Xi
=1

Q: Can we apply Linearity
of Expectation?
Q: Is there a way to make
N into a constant?

No, because N is not a
constant!

Yes! We can condition on

the value of N




Sum of random number of random variables

Let X, X5, X3, ... bei.i.d. rv.s, where X; ~ X. LetN 1 {X{, X5, X3,...}
N
Let S = ZXi
i=1

E[S|N =n]- P{N = n}

o

e

]
M1

=
Il
=

n

ZXi|N=n

=1

E . P{N = n}

s

=
Il
[EEY

nE[X] - P{N =n} = E[X] - E[N]

s

=
Il
=




Sum of random number of random variables

Let X, X5, X3, ... bei.i.d. rv.s, where X; ~ X. LetN 1 {X{, X5, X3,...}

N
Let S = ZXi Q: Can we get
: Var(S)
=1 o
similarly?

Var(S) = z Var|S |N = n] - P{N = n}

n=1

This is WRONG!

There’s no Total Law of
Variance




Sum of random number of random variables

Let X, X5, X3, ... bei.i.d. rv.s, where X; ~ X. LetN 1 {X{, X5, X3,...}

Let S = Z Xj Q: Instead
i—1 derive E[S?]

E[X?] - E[N] + E[X]? - (E[N?] — E[N]) = E[N]Var(X) + E[N?]E[X?]




Sum of random number of random variables

Summary Theorem 5.14:

We'll do this
much more
easily when we get to
transforms!

Let X1, X5, X3, ... bei.i.d. rv.s, where X; ~ X.

N
Let S = ZXi, where N L {X;, X5, X3, ... }
i=1

Then E[S] = E[N] - E[X]

E[S?] = E[N] - Var(X) + E[N?] - E[X]?

Var(S) = E[N] - Var(X) + Var(N) - E[X]?



Example: Epidemic growth modeling

At each time step, every leaf independently either: X is number of leaves
« forks off 2 children, w.p. % in tree after t steps.

. 1
* staysinertw.p.-

Q: Whatis E[X;]
What is Var(X;)?




Example: Epidemic growth modeling

At each time step, every leaf independently either: X is number of leaves
« forks off 2 children, w.p. % in tree after t steps.

. 1
* staysinertw.p.-

See book
for solution




Tail bounds

Defn: The tail of random variable X is P{X > x}.

Example: T denotes response time at a web service.
Want to ensure the fraction of people with
response time > 0.5s is not too high.

Want an upper bound on P{T > 0.5}. This is called a tail bound.



Tail bounds

Another Example: n items are hashed into a table of size n.
Assume each item ends up in a random bucket.
Ideally, we have 1 item per bucket.
What is the fraction of time that your search time > k?
(i.e., what’s the probability your bucket has > k items?)

1
Let N = #items in bucket 1 How is N distributed? N ~ Binomial <n, —)
n

n We don’t know how to

P{N >k} = zn: P{N =i} = Z (?) (%)l <1 —%)n_i compute such bounds

i=k+1 i=k+1 in general.

Point: We'll see that just knowing the mean and variance suffices for a tail bound.
In some cases, the mean alone suffices (although this bound is quite weak).



Markov's inequality

Theorem: (Markov’s inequality) If r.v. X is non-negative, then Va > 0,

P{XZa}SEElX]
E[X] = zx'PX(x) > Zx-px(x)
x=0 x=a

= Z a - px(x)

X

=aZpX(x) =a-P{X > a}




Chebyshev’s inequality

Theorem: (Chebyshev’s inequality) Let X be any r.v. with finite mean, u, and
finite variance. Then Va > 0,

Q: Can you see how to apply
Markov’s inequality here?




Chebyshev’s inequality

Theorem: (Chebyshev’s inequality) Let X be any r.v. with finite mean, u, and
finite variance. ThenVa > 0,

Var(X)
"

P{|X —u| = a} <

Example: P{N > 6} < P{|N — 1| = 5}

1
N ~ Binomial (n,—)

n - Var(N)

25

Provide upper bound
on: P{N = 6}

p—

S_




Stochastic dominance

Defn 5.18: Given two random variables X and Y, if

PIX>i}>P{Yy>i}, Vi

we say that X stochastically dominates Y:

"Introduction to Probability for Computing", Harchol-Balter '24
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Stochastic dominance

X = Number pairs of shoes owned by women ~ Poisson(A = 27)

Y = Number pairs of shoes owned by men ~ Poisson(A = 12)

Most, but not all, women

But women stochastically

have more shoes than men

dominate men w.r.t. shoes

y
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0.04
0.02

0

0 50

0.8
0.6
0.4
0.2

0

100

A
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Jensen’s inequality: motivation

We already know that
E[X?] = E[X]?

Is it also the case that
E[X3: > E:X:?’ ?
E[X*] = E[X]*?

his is a
consequence of
Jensen’s inequality!
(Exercise 5.32

E[X*°] = E[X]*>?

Theorem: Let X be any positive rv. Then Va € Reals,

E|X%] = E[X]?



Jensen’s inequality

Defn 5.21: A function g(x) is convex on interval S if, for any x4, x, € S, and
any a € [0,1], we have:

glax; + (1 —a)xz) < ag(xy) + (1 —a)g(xz)

g(x)

The curve
always lies
below the line
segment.

g(x)is convexon Siff g’ (x) = 0, Vx € S.




Jensen’s inequality

Defn 5.22: A function g(x) is convex on interval S if, for any x4, x5, ..., x,, € S, and
any a4, @y, ..., &, € [0,1], where };; @; = 1, we have:

glagx) + azxy + -+ apxy) < a1g(x1) + azg(xy) + -+ a,g(xy,)

9J(ox(x1)x1 + -+ 0x(xn)xn) < Px(x1)g(x1) + -+ + px (x,) g (%)

m=) g(E[X]) < E[g(X)]

o

Xy W.p. px(xq)
X; W.p. Dpx(xz)

Xn W.D. pX(xn)

—




Jensen’s inequality

Theorem 5.23: (Jensen’s inequality) If g(x) is convex on interval S and X takes on
values on interval S, then:

g(E[X]) < E[g(X)]

9J(ox(x1)x1 + -+ 0x(xn)xn) < Px(x1)g(x1) + -+ + px (x,) g (%)

_ m=) g(E[X]) < E[g(X)]

Xy W.p. px(xq)
X; W.p. Dpx(xz)

Xn W.D. pX(xn)

—
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Inspection paradox: Consequence of high variability

Defn: The inspection paradox says that, in high-variability settings, the mean seen
by a random observer can be very different from the true mean.

Mean time between

buses is 10 minutes. Phr—— : : ——
However if there is some variability in the time i

between buses, then a randomly arriving person
will wait more than 5 minutes. b |

Expected wait can even be >10 minutes!

How can this be?




Inspection paradox: Consequence of high variability

Defn: The inspection paradox says that, in high-variability settings, the mean seen
by a random observer can be very different from the true mean.

class size 130

Average class size
reported by students
is 100.

But the dean claims average class
size is 30.

No one is lying.
How can this be?



Inspection paradox: Consequence of high variability

Defn: The inspection paradox says that, in high-variability settings, the mean seen
by a random observer can be very different from the true mean.

class size 130

Average class size
reported by students
is 100.

But the dean claims average class
size is 30.

No one is lying.

How can this be? 180 students in 6 classes =» 30 students/class.

Avg observed class size = 2% 10 +229.130 ~ 97
180 180




Inspection paradox: Consequence of high variability

Defn: The inspection paradox says that, in high-variability settings, the mean seen
by a random observer can be very different from the true mean.

The average Facebook user has 44
friends.

But the average friend of a Facebook
user has 104 friends.

In fact, with probability 76%, your
friend is more popular than you are.

Most people have few friends.
A few people are very popular with many friends.

How can this be?

Which classification most likely describes you?
Which most likely describes your friend?
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