Chapter 6
Z-Transforms



Motivation

Let X ~ Binomial(n,p)

What is E[X3]?

R

I
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E[x3]= ) (})piaa—p)ni- i3

l

Seems complicated to evaluate!
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Motivation

Let X ~ Poisson(A)

What is E[X>]?

'S

—/1/11'
E[X°] = e_' -

(00
_ l
1=0

Seems complicated to evaluate!
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The wonderful world of transforms

Laplace transforms
Fourier transforms

z-transforms

. . characteristic functions
moment-generating functions

Two common uses:
1. Computing higher moments of random variables
2. Solving recurrence relations
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The z-transform as an onion

Onion represents z-transform of r.v. X

E[X]
E [ X?]
E[X°]

E [X*]

Lower moments are in the outer layers = less effort/tears
Higher moments are deeper inside = more effort/tears
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z-transform of discrete r.v.

Defn: Let X be a non-negative discrete r.v. with p.m.f. px(i), wherei = 0,1, 2, ...
Then the z-transform of X is

() = Elz"] = ) px(@) -7
=0

Assume z is a constant and |z| < 1.

Note: The z-transform can be defined for any r.v., or even for just a sequence of p(i)’s.
However convergence is only guaranteed when X is a non-negative r.v. and |z| < 1.




Example of Onion

Building

X ~ Binomial(n,p)

Create the onion!

X(2) =

Zn: p(l—p)" ‘7!
=0

[

i (Zp) (1 -p)t

(=0

=(zp+ 1 -p)"

"Introduction to Probability for Computing", Harchol-Balter '24

E[X]

E[X7]
E[X°]

E [X*]



Example of Onion Building

X~G AN—
~ ] : E[X’]
eometric(p) ) N D
E[X']

Create the onion!

() = Elz"] = ) (1=p)'p 7
i=1

= zp Z(Z(l -p)t
=1

Where did we
use the fact that

_ Zp Iz| <17
1—2z(1—p)




Convergence of z-transform

Theorem: X(2) is bounded for any non-negative discrete r.v. X, assuming |z| < 1.

Proof: —-1<z<1




Getting moments: Onion peeling

Theorem: (Onion Peeling) Let X be a discrete, integer-valued, non-negative r.v.
with p.m.f. px(i), i=0,1, 2, ... Then,

X\’(Z)|z=1 -

X"(@)| _, =EXX-1)]
X"(2)| _, =EXX-1DX-2)]

IIII(Z)| EXX—1)X—-2)(X—3)]

If can’t evaluate at z = 1, instead consider limitas z = 1 (use L'Hospital’s Rule).



Proof of onion peeling theorem

X (2) = px(0)2° + px ()2 + px(2)2% + px (3)23 + px(4)z* + px(5)z° + -

X'(2) = px(1) + 2px(2)z* + 3px(3)2% + 4px (4)2% + 5px(5)z* + -
X\’(Z)|Z:1 = 1-px(1) + 2px(2) + 3 px(3) + 4px(4) + 5px(5) + - = E[X]
X"(2) =2py(2) +3-2pxy(3)z+4-3py(4)z% +5-4py(5)z3 + -

X"(2)| =2-1px(2) +3-2-px(3)+4-3- px(4) +5-4py(4) + - = E[X(X — 1)]

Zz=1

X"(2)=3-2py(3)+4-3-2py(4)z+5-4-3py(5)z2%+ -

)’(\///(Z)

=3-2-1py(3)+4-3-2px(4) +5-4-3py (5) + - = E[X(X — 1)(X — 2)]
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Example of onion peeling

. 5 Zp
X ~ Geometric(p) X(z) = =21 =) \Y bl
P e
E [X']
Q: Peel the onion to get E[X] and E[X?]
~ d Zp p 1
E[X] = (X (Z))‘z=1= dz<1—z(1—l?)) =( 1-z(1 ) p
=1 \(1—z(1-p))

2p(1—p)
E[X?] = (X" E[X]
K= o, ((1—z(1—p))3> '
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Onion to distribution

The z—transform of X is an onion that contains all moments of X.

But does it also contain the distribution of X?

The answer is YES! The distribution of X can be extracted from its z-transform.
See Exercise 6.14 in your book.
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Linearity of Transforms

Theorem 6.9: (Linearity) Let X and Y be independent discrete r.v.s.
Let

W=X+Y

Then the z-transform of W is:

W) =X(2)- Y(2)

Proof: W (z) = E[z"] = E[zX""]



Example: From Bernoulli to Binomial

X ~ Bernoulli(p) Y ~ Binomial(n,p)

Q: (a) What is X(2)?
(b) How can we use X(z) to get Y(2)?

X2D)=QA-p) z2°+p-zt =1—p+pz

n
= ZXi where X;'si.i.d. ~ X
i=1

"= (2@) = a-p+po"
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Example: Sum of Binomials

X ~ Binomial(n,p) Y ~ Binomial(m,p) X1lY

Q: What is the distributionof Z =X +Y ?

A:
2(z) =X(2)-Y (2
=(zp+A-p)"  (+Q-p)"

=(zp+ (1 —p))

= Z ~ Binomial(n + m, p)



Conditioning with Transforms

Theorem 6.12: Let X, A,and B be discrete r.v.s. where

14 w.p. D
X_{B w.p. 1—p

Then,

X(2)=p-A@) + (1 -p) B(2)

Proof: X(z) = E[z¥]
= E[zX|X = A]l -p + E[z¥X|X =B]- (1 —p)
= E[z%] -p + E[z8]- (1 —p)

= pA(z) + (1 - p)B(2)



Sum of random number of random variables

Theorem 6.13: o
Let X, X5, X3, ... be i.i.d. rv.s, where X; ~ X.

N
Let S = ZXi, where N L {X;, X5, X3, ...} Nis Fhe number
= of spins of the

wheel.

Then $(z) = N(X(2))

Get new prize every day,
until wheel says stop.

ﬁmﬁ

Proof: See Exercise 6.10.

X4



Solving recurrence relations

Defn: A linear homogeneous recurrence relation takes the form:

fi+n — a1fi+n—1 + a2fi+n—2 palibs o anfi

Such recurrences come up in many fields

Example:

fivz = fir1 + fi fo =0, fr=1

Q. Q. Q.
\\_— \\-— \\_—
S T® tw
D 3 Y. . Q. ©
\ \ \b \\—‘ \b \b \b
Goal:

Closed-form solution for f;
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Solving recurrence relations: general approach

Defn 6.14: for =t +F
Given a sequence of values: | | |
for fir f2, -, the z-transform of fis22' 12 = fi112'T2 + fizt+2

the sequence is

F(z) = ifizi
=0

(00 (00] (00]

+2 _ 1+2 [+2
E fi+2Z — § fi+1Z + § fiz
=0 =0 (=0

F(z) - fiz — fo = 2(F(2) — fo) + z*F (2)

1. Solve for F(z)

2. Express F(z) as a series expansion of the
form F(z) = X2, c;z%, where ¢; denotes

solving recurrences. some expression not involving Z.

3. Obtain f; by setting f; = ¢;

z-transform approach is
the best approach for
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