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Motivation

𝑬𝑬 𝑋𝑋3 = �
𝑖𝑖=0

𝑛𝑛
𝑛𝑛
𝑖𝑖 𝑝𝑝𝑖𝑖 1 − 𝑝𝑝 𝑛𝑛−𝑖𝑖 ⋅ 𝑖𝑖3

Let 𝑋𝑋 ∼ 𝐵𝐵𝑖𝑖𝑛𝑛𝐵𝐵𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵 𝑛𝑛,𝑝𝑝

What is 𝑬𝑬 𝑋𝑋3 ? 

Seems complicated to evaluate!
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Motivation

𝑬𝑬 𝑋𝑋5 = �
𝑖𝑖=0

∞
𝑒𝑒−𝜆𝜆 𝜆𝜆𝑖𝑖

𝑖𝑖!
⋅ 𝑖𝑖5

Let 𝑋𝑋 ∼ 𝑃𝑃𝐵𝐵𝑖𝑖𝑃𝑃𝑃𝑃𝐵𝐵𝑛𝑛(𝜆𝜆)

What is 𝑬𝑬 𝑋𝑋5 ? 

Seems complicated to evaluate!
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The wonderful world of transforms

z-transforms

Laplace transforms
Fourier transforms

moment-generating functions
characteristic functions

Two common uses:
1. Computing higher moments of random variables
2. Solving recurrence relations  
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The z-transform as an onion

Onion represents z-transform of r.v. 𝑋𝑋

Lower moments are in the outer layers  less effort/tears
Higher moments are deeper inside  more effort/tears
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z-transform of discrete r.v.

Note: The z−transform can be defined for any r.v., or even for just a sequence of 𝑝𝑝 𝑖𝑖 ′𝑃𝑃.
However convergence is only guaranteed when 𝑋𝑋 is a non-negative r.v. and 𝑧𝑧 ≤ 1.

Defn: Let 𝑋𝑋 be a non−negative discrete r.v. with p.m.f. 𝑝𝑝𝑋𝑋 𝑖𝑖 , where 𝑖𝑖 = 0, 1, 2, …
Then the z-transform of 𝑋𝑋 is

�𝑋𝑋(𝑧𝑧) = 𝑬𝑬 𝑧𝑧𝑋𝑋 = �
𝑖𝑖=0

∞

𝑝𝑝𝑋𝑋 𝑖𝑖 ⋅ 𝑧𝑧𝑖𝑖  

Assume 𝑧𝑧 is a constant and 𝑧𝑧 ≤ 1. 
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Example of Onion Building

𝑋𝑋 ∼ 𝐵𝐵𝑖𝑖𝑛𝑛𝐵𝐵𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵(𝑛𝑛,𝑝𝑝)

Create the onion!

�𝑋𝑋(𝑧𝑧) = 𝑬𝑬 𝑧𝑧𝑋𝑋 = �
𝑖𝑖=0

𝑛𝑛
𝑛𝑛
𝑖𝑖 𝑝𝑝𝑖𝑖 1 − 𝑝𝑝 𝑛𝑛−𝑖𝑖𝑧𝑧𝑖𝑖  

= �
𝑖𝑖=0

𝑛𝑛
𝑛𝑛
𝑖𝑖 (𝑧𝑧𝑝𝑝)𝑖𝑖 1 − 𝑝𝑝 𝑛𝑛−𝑖𝑖 

= 𝑧𝑧𝑝𝑝 + 1 − 𝑝𝑝 𝑛𝑛 
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Example of Onion Building

𝑋𝑋 ∼ 𝐺𝐺𝑒𝑒𝐵𝐵𝐵𝐵𝑒𝑒𝐺𝐺𝐺𝐺𝑖𝑖𝐺𝐺(𝑝𝑝)

Create the onion!

�𝑋𝑋(𝑧𝑧) = 𝑬𝑬 𝑧𝑧𝑋𝑋 = �
𝑖𝑖=1

∞

1 − 𝑝𝑝 𝑖𝑖−1𝑝𝑝 𝑧𝑧𝑖𝑖 

= 𝑧𝑧𝑝𝑝�
𝑖𝑖=1

∞

𝑧𝑧(1 − 𝑝𝑝 )𝑖𝑖−1 

=
𝑧𝑧𝑝𝑝

1 − 𝑧𝑧(1 − 𝑝𝑝)

Where did we 
use the fact that
𝑧𝑧 ≤ 1 ?
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Convergence of z-transform

Theorem:  �𝑋𝑋 𝑧𝑧  is bounded for any non−negative discrete r.v. 𝑋𝑋, assuming 𝑧𝑧 ≤ 1. 

−1 ≤ 𝑧𝑧 ≤ 1

−1 ≤ 𝑧𝑧𝑖𝑖 ≤ 1

−𝑝𝑝𝑋𝑋(𝑖𝑖) ≤ 𝑝𝑝𝑋𝑋 𝑖𝑖 𝑧𝑧𝑖𝑖 ≤ 𝑝𝑝𝑋𝑋(𝑖𝑖)

−�
𝑖𝑖

𝑝𝑝𝑋𝑋 𝑖𝑖 ≤�
𝑖𝑖

 𝑝𝑝𝑋𝑋 𝑖𝑖 𝑧𝑧𝑖𝑖 ≤�
𝑖𝑖

 𝑝𝑝𝑋𝑋(𝑖𝑖)

−1 ≤ �𝑋𝑋 𝑧𝑧 ≤ 1

Proof:
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Getting moments: Onion peeling
Theorem: (Onion Peeling)  Let 𝑋𝑋 be a discrete, integer−valued, non−negative r.v. 
 with p.m.f. 𝑝𝑝𝑋𝑋 𝑖𝑖 , i = 0, 1, 2, …  Then,

��𝑋𝑋 ′ 𝑧𝑧 z=1 = 𝐄𝐄[X] 

��𝑋𝑋 ′′ 𝑧𝑧 z=1 = 𝐄𝐄[X(X − 1)] 

��𝑋𝑋 ′′′ 𝑧𝑧 z=1 = 𝐄𝐄[X(X − 1)(X − 2)] 

��𝑋𝑋 ′′′′ 𝑧𝑧 z=1 = 𝐄𝐄[X(X − 1)(X − 2)(X − 3)] 

If canʹt evaluate at 𝑧𝑧 = 1, instead consider limit as 𝑧𝑧 → 1 (use LʹHospitalʹs Rule).
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Proof of onion peeling theorem

��𝑋𝑋 ′′ 𝑧𝑧
z=1

= 2 ⋅ 1𝑝𝑝𝑋𝑋(2)  + 3 ⋅ 2 ⋅ 𝑝𝑝𝑋𝑋 3 + 4 ⋅ 3 ⋅  𝑝𝑝𝑋𝑋 4 + 5 ⋅ 4𝑝𝑝𝑋𝑋 4 + ⋯

�𝑋𝑋 𝑧𝑧 = 𝑝𝑝𝑋𝑋 0 𝑧𝑧0 + 𝑝𝑝𝑋𝑋 1 𝑧𝑧1 + 𝑝𝑝𝑋𝑋 2 𝑧𝑧2 + 𝑝𝑝𝑋𝑋 3 𝑧𝑧3 + 𝑝𝑝𝑋𝑋 4 𝑧𝑧4 + 𝑝𝑝𝑋𝑋 5 𝑧𝑧5 + ⋯

�𝑋𝑋 ′ 𝑧𝑧 = 𝑝𝑝𝑋𝑋 1 + 2𝑝𝑝𝑋𝑋 2 𝑧𝑧1 + 3𝑝𝑝𝑋𝑋 3 𝑧𝑧2 + 4𝑝𝑝𝑋𝑋 4 𝑧𝑧3 + 5𝑝𝑝𝑋𝑋 5 𝑧𝑧4 + ⋯

�𝑋𝑋 ′′ 𝑧𝑧 = 2𝑝𝑝𝑋𝑋 2 + 3 ⋅ 2 𝑝𝑝𝑋𝑋 3 𝑧𝑧 + 4 ⋅ 3 𝑝𝑝𝑋𝑋 4 𝑧𝑧2 + 5 ⋅ 4 𝑝𝑝𝑋𝑋 5 𝑧𝑧3 + ⋯

��𝑋𝑋 ′ 𝑧𝑧 z=1 = 1 ⋅ 𝑝𝑝𝑋𝑋 1 + 2𝑝𝑝𝑋𝑋 2 + 3 𝑝𝑝𝑋𝑋 3 + 4𝑝𝑝𝑋𝑋 4 + 5 𝑝𝑝𝑋𝑋 5 + ⋯ = 𝑬𝑬[𝑋𝑋]

= 𝑬𝑬[𝑋𝑋(𝑋𝑋 − 1)]

�𝑋𝑋 ′′′ 𝑧𝑧 = 3 ⋅ 2 𝑝𝑝𝑋𝑋 3 + 4 ⋅ 3 ⋅ 2 𝑝𝑝𝑋𝑋 4 𝑧𝑧 + 5 ⋅ 4 ⋅ 3 𝑝𝑝𝑋𝑋 5 𝑧𝑧2 + ⋯

��𝑋𝑋 ′′′ 𝑧𝑧
z=1

= 3 ⋅ 2 ⋅ 1 𝑝𝑝𝑋𝑋(3) + 4 ⋅ 3 ⋅ 2 𝑝𝑝𝑋𝑋 4 + 5 ⋅ 4 ⋅ 3 𝑝𝑝𝑋𝑋 5 + ⋯ = 𝑬𝑬[𝑋𝑋(𝑋𝑋 − 1)(𝑋𝑋 − 2)]
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Example of onion peeling

𝑋𝑋 ∼ 𝐺𝐺𝑒𝑒𝐵𝐵𝐵𝐵𝑒𝑒𝐺𝐺𝐺𝐺𝑖𝑖𝐺𝐺(𝑝𝑝)

Q: Peel the onion to get 𝑬𝑬 𝑋𝑋  and 𝑬𝑬[𝑋𝑋2]

�𝑋𝑋(𝑧𝑧) =
𝑧𝑧𝑝𝑝

1 − 𝑧𝑧(1 − 𝑝𝑝)

𝐄𝐄 X =  ��𝑋𝑋′(𝑧𝑧)
z=1

=  �
𝑑𝑑
𝑑𝑑𝑧𝑧

𝑧𝑧𝑝𝑝
1 − 𝑧𝑧(1 − 𝑝𝑝)

z=1

= �
𝑝𝑝

1 − 𝑧𝑧 1 − 𝑝𝑝 2

z=1

=
1
p

𝐄𝐄 X2 =  ��𝑋𝑋′′(𝑧𝑧)
z=1

+ 𝐄𝐄 X = �
2𝑝𝑝(1 − 𝑝𝑝)

1 − 𝑧𝑧 1 − 𝑝𝑝 3

z=1

+
1
𝑝𝑝

=
2 − 𝑝𝑝
𝑝𝑝2
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Onion to distribution
The z−transform of 𝑋𝑋 is an onion that contains all moments of 𝑋𝑋. 

Where did we 
use the fact that
𝑧𝑧 ≤ 1 ?

But does it also contain the distribution of 𝑋𝑋?  

The answer is YES! The distribution of 𝑋𝑋 can be extracted from its z−transform. 
See Exercise 6.14 in your book. 
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Linearity of Transforms
Theorem 6.9: (Linearity)  Let 𝑋𝑋 and 𝑌𝑌 be independent discrete r.v.s. 
Let 

𝑊𝑊 = 𝑋𝑋 + 𝑌𝑌

�𝑊𝑊 𝑧𝑧 = 𝑬𝑬 𝑧𝑧𝑊𝑊 = 𝑬𝑬[𝑧𝑧𝑋𝑋+𝑌𝑌]

Then the z−transform of 𝑊𝑊 is: 

�𝑊𝑊 𝑧𝑧 = �𝑋𝑋 𝑧𝑧 ⋅ �𝑌𝑌 𝑧𝑧

= 𝑬𝑬 𝑧𝑧𝑋𝑋 ⋅ 𝑬𝑬 𝑧𝑧𝑌𝑌
= 𝑬𝑬[𝑧𝑧𝑋𝑋 ⋅ 𝑧𝑧𝑌𝑌]

= �𝑋𝑋 𝑧𝑧 ⋅ �𝑌𝑌 𝑧𝑧

Proof:
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Example: From Bernoulli to Binomial

𝑋𝑋 ∼ 𝐵𝐵𝑒𝑒𝐺𝐺𝑛𝑛𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖(𝑝𝑝)

Q:  (a) What is �𝑋𝑋(𝑧𝑧)?
      (b) How can we use �𝑋𝑋(𝑧𝑧)  to get �𝑌𝑌(𝑧𝑧)? 

𝑌𝑌 = �
𝑖𝑖=1

 𝑛𝑛

𝑋𝑋𝑖𝑖  where 𝑋𝑋𝑖𝑖′s i.i.d. ∼ 𝑋𝑋

�𝑌𝑌(𝑧𝑧) = �𝑋𝑋 𝑧𝑧
𝑛𝑛

 = 1 − 𝑝𝑝 + 𝑝𝑝𝑧𝑧 𝑛𝑛

𝑌𝑌 ∼ 𝐵𝐵𝑖𝑖𝑛𝑛𝐵𝐵𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵(𝑛𝑛,𝑝𝑝)

�𝑋𝑋 𝑧𝑧 = 1 − 𝑝𝑝 ⋅ 𝑧𝑧0 + 𝑝𝑝 ⋅ 𝑧𝑧1 = 1 − 𝑝𝑝 + 𝑝𝑝𝑧𝑧
A:
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Example: Sum of Binomials

𝑋𝑋 ∼ 𝐵𝐵𝑖𝑖𝑛𝑛𝐵𝐵𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵(𝑛𝑛,𝑝𝑝)

Q:  What is the distribution of  𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌 ?

= 𝑧𝑧𝑝𝑝 + 1 − 𝑝𝑝 𝑛𝑛 ⋅ 𝑧𝑧𝑝𝑝 + 1 − 𝑝𝑝 𝑚𝑚

⇒ 𝑍𝑍 ∼ 𝐵𝐵𝑖𝑖𝑛𝑛𝐵𝐵𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵(𝑛𝑛 + 𝐵𝐵,𝑝𝑝)

𝑌𝑌 ∼ 𝐵𝐵𝑖𝑖𝑛𝑛𝐵𝐵𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵(𝐵𝐵,𝑝𝑝) 𝑋𝑋 ⊥ 𝑌𝑌

�̂�𝑍 𝑧𝑧 = �𝑋𝑋 𝑧𝑧 ⋅ �𝑌𝑌 𝑧𝑧

= 𝑧𝑧𝑝𝑝 + 1 − 𝑝𝑝 𝑛𝑛+𝑚𝑚

A:
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Conditioning with Transforms
Theorem 6.12: Let 𝑋𝑋, 𝐴𝐴, and 𝐵𝐵 be discrete r.v.s. where 

𝑋𝑋 = �𝐴𝐴 w.p. 𝑝𝑝
𝐵𝐵 w.p. 1 − 𝑝𝑝

�𝑋𝑋 𝑧𝑧 = 𝑬𝑬 𝑧𝑧𝑋𝑋

Then, 

�𝑋𝑋 𝑧𝑧 = 𝑝𝑝 ⋅ �̂�𝐴 𝑧𝑧 + 1 − 𝑝𝑝 ⋅ �𝐵𝐵 𝑧𝑧

= 𝑬𝑬 𝑧𝑧𝐴𝐴 ⋅ 𝑝𝑝 +  𝑬𝑬 𝑧𝑧𝐵𝐵 ⋅ (1 − 𝑝𝑝)

= 𝑬𝑬 𝑧𝑧𝑋𝑋 𝑋𝑋 = 𝐴𝐴] ⋅ 𝑝𝑝 + 𝑬𝑬 𝑧𝑧𝑋𝑋 𝑋𝑋 = 𝐵𝐵] ⋅ (1 − 𝑝𝑝)

= 𝑝𝑝�̂�𝐴 𝑧𝑧 + (1 − 𝑝𝑝) �𝐵𝐵 𝑧𝑧

Proof:
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Sum of random number of random variables

Let 𝑆𝑆 = �
𝑖𝑖=1

𝑁𝑁

𝑋𝑋𝑖𝑖 , where 𝑁𝑁 ⊥ {𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … }

Theorem 6.13:
Let 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … be i.i.d. r.v.s, where 𝑋𝑋𝑖𝑖 ∼ 𝑋𝑋. 

Then �̂�𝑆 𝑧𝑧 = �𝑁𝑁 �𝑋𝑋(𝑧𝑧)

Proof: See Exercise 6.10. Get new prize every day,
until wheel says stop.

𝑁𝑁 is the number 
of spins of the 
wheel.
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Solving recurrence relations

Defn:  A linear homogeneous recurrence relation takes the form:

𝑓𝑓𝑖𝑖+𝑛𝑛 = 𝐵𝐵1𝑓𝑓𝑖𝑖+𝑛𝑛−1 + 𝐵𝐵2𝑓𝑓𝑖𝑖+𝑛𝑛−2 + ⋯+ 𝐵𝐵𝑛𝑛𝑓𝑓𝑖𝑖

Such recurrences come up in many fields

Example: 
𝑓𝑓𝑖𝑖+2 = 𝑓𝑓𝑖𝑖+1 + 𝑓𝑓𝑖𝑖 ,  𝑓𝑓0 = 0, 𝑓𝑓1 = 1

Goal: Closed-form solution for 𝑓𝑓𝑖𝑖   



Defn 6.14: 
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Solving recurrence relations: general approach
𝑓𝑓𝑖𝑖+2 = 𝑓𝑓𝑖𝑖+1 + 𝑓𝑓𝑖𝑖

𝑓𝑓𝑖𝑖+2𝑧𝑧𝑖𝑖+2 = 𝑓𝑓𝑖𝑖+1𝑧𝑧𝑖𝑖+2 + 𝑓𝑓𝑖𝑖𝑧𝑧𝑖𝑖+2

𝐹𝐹 𝑧𝑧 = �
𝑖𝑖=0

∞

𝑓𝑓𝑖𝑖𝑧𝑧𝑖𝑖
�
𝑖𝑖=0

∞

𝑓𝑓𝑖𝑖+2𝑧𝑧𝑖𝑖+2

 

= �
𝑖𝑖=0

∞

𝑓𝑓𝑖𝑖+1𝑧𝑧𝑖𝑖+2

 

+ �
𝑖𝑖=0

∞

𝑓𝑓𝑖𝑖𝑧𝑧𝑖𝑖+2

 

𝐹𝐹 𝑧𝑧 − 𝑓𝑓1𝑧𝑧 − 𝑓𝑓0 = 𝑧𝑧 𝐹𝐹 𝑧𝑧 − 𝑓𝑓0 + 𝑧𝑧2𝐹𝐹(𝑧𝑧)

1. Solve for 𝐹𝐹 𝑧𝑧
2. Express 𝐹𝐹 𝑧𝑧  as a series expansion of the 

form 𝐹𝐹 𝑧𝑧 = ∑𝑖𝑖=0∞ 𝐺𝐺𝑖𝑖𝑧𝑧𝑖𝑖, where 𝐺𝐺𝑖𝑖 denotes 
some expression not involving 𝑧𝑧.

3. Obtain 𝑓𝑓𝑖𝑖  by setting 𝑓𝑓𝑖𝑖 =  𝐺𝐺𝑖𝑖

z-transform approach is 
the best approach for 
solving  recurrences.

Given a sequence of values: 
𝑓𝑓0, 𝑓𝑓1,𝑓𝑓2, … , the z-transform of 
the sequence is
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