Chapter 6 z-Transforms

Motivation

Let $X \sim Binomial(n, p)$

What is $E[X^3]$?

$$
E[X^{3}] = \sum_{i=0}^{n} {n \choose i} p^{i} (1-p)^{n-i} \cdot i^{3}
$$

Seems complicated to evaluate!

Motivation

Let $X \sim Poisson(\lambda)$

What is $E[X^5]$?

$$
E[X^5] = \sum_{i=0}^{\infty} \frac{e^{-\lambda} \lambda^i}{i!} \cdot i^5
$$

Seems complicated to evaluate!

The wonderful world of transforms

Two common uses:

- 1. Computing higher moments of random variables
- 2. Solving recurrence relations

The z-transform as an onion

Lower moments are in the outer layers \rightarrow less effort/tears Higher moments are deeper inside \rightarrow more effort/tears

z-transform of discrete r.v.

Defn: Let X be a non-negative discrete r.v. with p.m.f. $p_X(i)$, where $i = 0, 1, 2, ...$ Then the **z-transform** of X is

$$
\widehat{X}(z) = E[z^X] = \sum_{i=0}^{\infty} p_X(i) \cdot z^i
$$

Assume z is a constant and $|z| \leq 1$.

Note: The z−transform can be defined for any r.v., or even for just a sequence of $p(i)'s$. However convergence is only guaranteed when X is a non-negative r.v. and $|z| \leq 1$.

Example of Onion Building

 $X \sim Binomial(n, p)$

Create the onion!

$$
\hat{X}(z) = E[z^X] = \sum_{i=0}^n {n \choose i} p^i (1-p)^{n-i} z^i
$$

$$
= \sum_{i=0}^n {n \choose i} (zp)^i (1-p)^{n-i}
$$

$$
= (zp + (1-p))^n
$$

 $\mathbb{E}[X]$ $\mathbf{E}[X^2]$

 $\mathbb{E}[X^3]$ $\mathbb{E}[X^4]$

Example of Onion Building

 $X \sim Geometric(p)$

Create the onion!

 $\mathbb{E}[X]$ $\mathbb{E}[X^2]$ $\mathbb{E}[X^3]$ $\mathbb{E}[X^4]$

Convergence of z-transform

Theorem: $\hat{X}(z)$ is bounded for any non-negative discrete r.v. X, assuming $|z| \leq 1$.

Getting moments: Onion peeling

Theorem: (Onion Peeling) Let *X* be a discrete, integer-valued, non-negative r.v. with p.m.f. $p_X(i)$, $i = 0, 1, 2, ...$ Then,

$$
\widehat{X}'(z)|_{z=1} = \mathbf{E}[X]
$$

$$
\widehat{X}''(z)|_{z=1} = \mathbf{E}[X(X-1)]
$$

$$
\widehat{X}'''(z)|_{z=1} = \mathbf{E}[X(X-1)(X-2)]
$$

$$
\widehat{X}'''(z)|_{z=1} = \mathbf{E}[X(X-1)(X-2)(X-3)]
$$

If can't evaluate at $z = 1$, instead consider limit as $z \to 1$ (use L'Hospital's Rule).

Proof of onion peeling theorem

$$
\widehat{X}(z) = p_X(0)z^0 + p_X(1)z^1 + p_X(2)z^2 + p_X(3)z^3 + p_X(4)z^4 + p_X(5)z^5 + \cdots
$$

 $\overline{X}^{\prime}(z) = p_X(1) + 2p_X(2)z^1 + 3p_X(3)z^2 + 4p_X(4)z^3 + 5p_X(5)z^4 + \cdots$

 $\overline{X}'(z)$ $\sum_{z=1}$ = 1 · $p_X(1)$ + 2 $p_X(2)$ + 3 $p_X(3)$ + 4 $p_X(4)$ + 5 $p_X(5)$ + … = $E[X]$

$$
\widehat{X}^{\prime\prime}(z) = 2p_X(2) + 3 \cdot 2 p_X(3)z + 4 \cdot 3 p_X(4)z^2 + 5 \cdot 4 p_X(5)z^3 + \cdots
$$

 $\widetilde{X}^{\prime\prime}(z)$ $z=1$ $= 2 \cdot 1 p_X(2) + 3 \cdot 2 \cdot p_X(3) + 4 \cdot 3 \cdot p_X(4) + 5 \cdot 4 p_X(4) + \cdots = E[X(X-1)]$

$$
\widehat{X}^{\prime\prime\prime}(z) = 3 \cdot 2 \, p_X(3) + 4 \cdot 3 \cdot 2 \, p_X(4)z + 5 \cdot 4 \cdot 3 \, p_X(5)z^2 + \cdots
$$

$$
\widehat{X}'''(z)\Big|_{z=1} = 3 \cdot 2 \cdot 1 \ p_X(3) + 4 \cdot 3 \cdot 2 \ p_X(4) + 5 \cdot 4 \cdot 3 \ p_X(5) + \cdots = E[X(X-1)(X-2)]
$$

Example of onion peeling

$$
X \sim Geometric(p) \qquad \hat{X}(z) = \frac{zp}{1 - z(1 - p)}
$$

Q: Peel the onion to get $E[X]$ and $E[X^2]$

$$
\mathbf{E}[X] = (\hat{X}'(z))\Big|_{z=1} = \frac{d}{dz} \left(\frac{zp}{1 - z(1 - p)}\right)\Big|_{z=1} = \left(\frac{p}{\left(1 - z(1 - p)\right)^2}\right)\Big|_{z=1} = \frac{1}{p}
$$

$$
\mathbf{E}[X^2] = (\hat{X}''(z))\Big|_{z=1} + \mathbf{E}[X] = \left(\frac{2p(1 - p)}{\left(1 - z(1 - p)\right)^3}\right)\Big|_{z=1} + \frac{1}{p} = \frac{2 - p}{p^2}
$$

 $\mathbb{E}[X]$ $\mathbb{E}[X^2]$

 $\mathbf{E}[X^3]$ $\mathbb{E}[X^4]$

Onion to distribution

The z-transform of X is an onion that contains all moments of X.

But does it also contain the distribution of X ?

 m its $z-t$ The answer is YES! The distribution of X can be extracted from its z−transform. See Exercise 6.14 in your book.

Linearity of Transforms

Theorem 6.9: (Linearity) Let X and Y be **independent** discrete r.v.s. Let

$$
W = X + Y
$$

Then the z-transform of W is:

$$
\widehat{W}(z) = \widehat{X}(z) \cdot \widehat{Y}(z)
$$

Proof:
$$
\widehat{W}(z) = E[z^W] = E[z^{X+Y}]
$$

\n
$$
= E[z^X \cdot z^Y]
$$
\n
$$
= E[z^X] \cdot E[z^Y]
$$
\n
$$
= \widehat{X}(z) \cdot \widehat{Y}(z)
$$

"Introduction to Probability for Computing", Harchol-Balter '24

Example: From Bernoulli to Binomial

 $X \sim Bernoulli(p)$ $Y \sim Binomial(n, p)$

Q: (a) What is $\hat{X}(z)$? (b) How can we use $\widehat{X}(z)$ to get $\widehat{Y}(z)$?

A:
\n
$$
\hat{X}(z) = (1 - p) \cdot z^{0} + p \cdot z^{1} = 1 - p + pz
$$
\n
$$
Y = \sum_{i=1}^{n} X_{i} \text{ where } X_{i}' \text{ s i.i.d. } \sim X
$$
\n
$$
\hat{Y}(z) = (\hat{X}(z))^{n} = (1 - p + pz)^{n}
$$

Example: Sum of Binomials

 $X \sim Binomial(n,p)$ $Y \sim Binomial(m,p)$ $X \perp Y$

Q: What is the distribution of $Z = X + Y$?

A:

$$
\begin{aligned} \hat{Z}(z) &= \hat{X}(z) \cdot \hat{Y}(z) \\ &= \left(zp + (1-p) \right)^n \cdot \left(zp + (1-p) \right)^m \\ &= \left(zp + (1-p) \right)^{n+m} \\ &\Rightarrow Z \sim Binomial(n+m, p) \end{aligned}
$$

Conditioning with Transforms

Theorem 6.12: Let X , A , and B be discrete r.v.s. where

$$
X = \begin{cases} A & \text{w.p.} \\ B & \text{w.p.} \end{cases} \quad \begin{array}{c} p \\ 1 - p \end{array}
$$

Then,

$$
\hat{X}(z) = p \cdot \hat{A}(z) + (1 - p) \cdot \hat{B}(z)
$$

Proof:

$$
\widehat{X}(z) = E[z^X]
$$

 $= E[z^A] \cdot p + E[z^B] \cdot (1-p)$ $= E[z^X|X = A] \cdot p + E[z^X|X = B] \cdot (1-p)$ $= p\hat{A}(z) + (1-p)\hat{B}(z)$

Sum of random number of random variables

Theorem 6.13:
Let
$$
X_1, X_2, X_3, ...
$$
 be i.i.d. r.v.s, where $X_i \sim X$.
Let $S = \sum_{i=1}^{N} X_i$, where $N \perp \{X_1, X_2, X_3, ... \}$
Then $\hat{S}(z) = \hat{N}(\hat{X}(z))$

 \overline{N} is the number of spins of the wheel.

"Introduction to Probability for Computing", Harchol-Balter '24

Solving recurrence relations

Defn: A linear homogeneous recurrence relation takes the form:

$$
f_{i+n} = a_1 f_{i+n-1} + a_2 f_{i+n-2} + \dots + a_n f_i
$$

Such recurrences come up in many fields

Example:

$$
f_{i+2} = f_{i+1} + f_i, \qquad f_0 = 0, \qquad f_1 = 1
$$

Goal: Closed-form solution for f_i

Solving recurrence relations: general approach

Defn 6.14:

Given a sequence of values: f_0 , f_1 , f_2 , ..., the **z-transform of the sequence** is

$$
F(z) = \sum_{i=0}^{\infty} f_i z^i
$$

z-transform approach is the best approach for solving recurrences.

$$
f_{i+2} = f_{i+1} + f_i
$$

\n
$$
f_{i+2}z^{i+2} = f_{i+1}z^{i+2} + f_i z^{i+2}
$$

\n
$$
\sum_{i=0}^{\infty} f_{i+2}z^{i+2} = \sum_{i=0}^{\infty} f_{i+1}z^{i+2} + \sum_{i=0}^{\infty} f_i z^{i+2}
$$

\n
$$
F(z) - f_1 z - f_0 = z(F(z) - f_0) + z^2 F(z)
$$

\n1. Solve for $F(z)$

- 2. Express $F(z)$ as a series expansion of the form $F(z) = \sum_{i=0}^{\infty} c_i z^i$, where c_i denotes some expression not involving z.
- 3. Obtain f_i by setting $f_i = c_i$