Chapter 7 Continuous Random Variables

Continuous Random Variable

Defn: A **continuous random variable (r.v.)** has a continuous range of values that it can take on. This might be an interval or set of intervals. Thus a continuous r.v. can take on an **uncountable** set of possible values.

Examples:

- \Box Time of an event
- \Box Response time of a job
- \Box Speed of a device
- **Q** Location of a satellite
- \Box Distance between people's eyeballs

Probability for Continuous Random Variable

The probability that a continuous r.v. is equal to any particular value is defined to be 0.

Probability for a continuous r.v. is defined via a density function.

Defn 7.2: The **probability density function (p.d.f.)** of a continuous r.v. *X* is a non-negative function $f_X(\cdot)$, where

$$
P\{a \le X \le b\} = \int_{a}^{b} f_X(x)dx \quad \text{and} \quad \int_{-\infty}^{\infty} f_X(x)dx = 1
$$

Probability for Continuous Random Variable

 $f(x)dx \approx P\{x \leq X \leq x + dx\}$

Density as a rate

Density functions are not necessarily related to probability.

Example: Filling a bathtub at rate $f_X(t) = t^2$ gallons/sec, where $t \ge 0$

Example: Computing probability from p.d.f.

Weight of two-year-olds ranges between 15 and 35 pounds with p.d.f. $f_W(x)$:

$$
f_W(x) = \begin{cases} \frac{3}{40} - \frac{3}{4000} (x - 25)^2 & \text{if } 15 \le x \le 35 \\ 0 & \text{otherwise} \end{cases}
$$

Q: What is the fraction of two-year-olds that weigh $>$ 30 pounds?

A:

$$
\int_{30}^{\infty} f_W(x) dx = \int_{30}^{35} \frac{3}{40} - \frac{3}{4000} (x - 25)^2 dx \approx 16\%
$$

Cumulative distribution function

Defn: The **cumulative distribution function (c.d.f.)** of a continuous r.v. *X* is given by:

$$
F_X(a) = P\{-\infty < X \le a\} = \int_{-\infty}^a f_X(x) \, dx
$$

The **tail** of X is given by:

$$
\overline{F}_X(a)=1-F_X(a)=P\{X>a\}
$$

Q: How do we get $f_X(x)$ from $F_X(x)$?

4.
$$
f_X(x) = \frac{d}{dx} \int_{-\infty}^{x} f_X(t) dt = \frac{d}{dx} F_X(x)
$$

(See Section 1.3 of your book)

Uniform distribution

Defn: **Uniform** (a, b) , often written $U(a, b)$, models the fact that any interval of length δ between a and b is equally likely. Specifically, if $X \sim U(a, b)$, then

$$
f_X(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b \\ 0 & \text{otherwise} \end{cases}
$$

Q: If $X \sim U(a, b)$, what is $F_X(x)$?

A:
$$
F_X(x) = \int_a^x \frac{1}{b-a} dt = \frac{x-a}{b-a}
$$

Graphical depiction of Uniform distribution

Area of shaded pink region on left $=$ Height of blue line on right

Exponential distribution

Defn: $Exp(\lambda)$ denotes the Exponential distribution with rate λ .

$$
f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}
$$

$$
F_X(x) = \int_{-\infty}^x f_X(t)dt = \begin{cases} 1 - e^{-\lambda x} & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}
$$

$$
\overline{F}_X(x) = e^{-\lambda x}, \qquad x \ge 0
$$

Memorylessness

Defn: Random variable X has the **memoryless property** if

$$
P\{X > t + s \mid X > s\} = P\{X > t\} \qquad \forall s, t \ge 0
$$

 $X =$ Time to win lottery.

Suppose I haven't won the lottery by time s. Then the probability that I'll need $> t$ more time to win is independent of s.

Equivalently: X has the **memoryless property** if

$$
[X \mid X > s] =^d s + X \qquad \forall s \ge 0
$$

That is, the r.v.s $[X \mid X > s]$ and $s + X$ have the same distribution.

Memorylessness

Defn: Random variable X has the **memoryless property** if

$$
P\{X > t + s \mid X > s\} = P\{X > t\} \qquad \forall s, t \ge 0
$$

Q: Prove that if
$$
X \sim Exp(\lambda)
$$
, then X has the memoryless property.

A: First recall that:
$$
\overline{F}_X(x) = e^{-\lambda x}
$$
, $x \ge 0$
\n
$$
P\{X > t + s \mid X > s\} = \frac{P\{X > t + s\}}{P\{X > s\}} = \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t} = P\{X > t\}
$$

Memorylessness

Defn: Random variable X has the **memoryless property** if $P\{X > t + s \mid X > s\} = P\{X > t\}$ $\forall s, t \ge 0$

Q: What other distribution has the memoryless property?

A: The Geometric distribution

Q: Does $X \sim Uniform(a, b)$ also have the memoryless property?

A: No. If $X \sim Uniform(a, b)$ and we're given that $X > b - \epsilon$, then we know that X will end soon.

Memorylessness Example

Mortality rate normally increases with age. But not for the naked mole-rat! Its remaining lifetime is independent of its age.

Q: Let $X \sim Exp(1)$ denote the lifetime of the naked mole-rat in years. If a naked mole-rate is 4 years old, what is the probability of surviving at least one more year?

A:
$$
P\{X > 4 + 1 | X > 4\} = \frac{P\{X > 5\}}{P\{X > 4\}} = \frac{e^{-5}}{e^{-4}} = e^{-1} = P\{X > 1\}
$$

Post Office Example

A post office has 2 clerks. When customer A walks in, customer B is being served by one clerk, and customer C is being served by the other. All service times $\sim Exp(\lambda)$.

Q: What is $P\{A$ is last to leave}?

A: 1 $\frac{1}{2}$ One of B or C will leave first. At that point, the remaining customer's lifetime restarts. A will then compete with that remaining customer.

Expectation, Variance, and Higher Moments

Defn: For a continuous r.v. X with p.d.f. $f_X(\cdot)$, we have:

$$
E[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx
$$

$$
E[X^i] = \int_{-\infty}^{\infty} x^i \cdot f_X(x) dx
$$

 $J_{-\infty}$

$$
E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx
$$

$$
Var(X) = E[(X - E[X])^2] = \int_{-\infty}^{\infty} (x - E[X])^2 f_X(x) dx = E[X^2] - E[X]^2
$$

Uniform distribution: Mean and Variance

Q: Derive mean and variance of $X \sim U(a, b)$.

$$
X \sim Uniform(a, b)
$$

$$
f_X(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b \\ 0 & \text{otherwise} \end{cases}
$$

A:
\n
$$
E[X] = \int_{a}^{b} \frac{1}{b-a} \cdot t \, dt = \frac{1}{b-a} \cdot \frac{b^2 - a^2}{2} = \frac{a+b}{2}
$$
\n
$$
E[X^2] = \int_{a}^{b} \frac{1}{b-a} \cdot t^2 \, dt = \frac{1}{b-a} \cdot \frac{b^3 - a^3}{3} = \frac{b^2 + ab + a^2}{3}
$$
\n
$$
Var(X) = E[X^2] - E[X]^2 = \frac{(b-a)^2}{12}
$$

Exponential distribution: Mean and Variance

Q: Derive mean and variance of $X \sim Exp(\lambda)$.

A:
\n
$$
E[X] = \int_{-\infty}^{\infty} \lambda e^{-\lambda t} t dt = \frac{1}{\lambda}
$$
\n
$$
E[X^2] = \int_{-\infty}^{\infty} \lambda e^{-\lambda t} \cdot t^2 dt = \frac{2}{\lambda^2}
$$
\n
$$
Var(X) = E[X^2] - E[X]^2 = \frac{1}{\lambda^2}
$$

"Introduction to Probability for Computing", Harchol-Balter '24

$$
X \sim Exp(\lambda)
$$

$$
f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}
$$

Example: Time to get from NYC to Boston

Distance from NYC to Boston is 180 miles. Motorized bikes have speeds $\sim U(30,60)$. You buy a random motorized bike.

 $T =$ Your time to get from NYC to Boston.

Goal: Derive $E[T]$.

Idea 1: Avg. speed is 45 mph. Thus $E[T] = \frac{180}{45}$ 45 $= 4$ hours.

Idea 2:
$$
E[T]
$$
 is the average of $\frac{180}{30} = 6$ and $\frac{180}{60} = 3$. So $E[T] = 4.5$ hours.

Q: Which is correct, Idea 1 or Idea 2?

A: Neither!

Example: Time to get from NYC to Boston

New York City

180 miles

Distance from NYC to Boston is 180 miles. Motorized bikes have speeds $\sim U(30,60)$. You buy a random motorized bike.

 $T =$ Your time to get from NYC to Boston.

Q: What is $E[T]$?

Boston

Law of Total Probability for Continuous

Recall the Law of Total Probability for event A and **discrete** r.v. X :

$$
P\{A\} = \sum_{x} P\{A \cap (X = x)\} = \sum_{x} P\{A \mid X = x\} \cdot p_X(x)
$$

The same Law of Total Probability holds for event A and **continuous** r.v. X :

$$
\mathbf{P}{A} = \int_{x} f_X(x \cap A) dx = \int_{x} \mathbf{P}{A |X = x} \cdot f_X(x) dx
$$

Here $f_X(x \cap A)$ denotes the density of the intersection of the event A with $X = x$.

Law of Total Probability for Continuous

$$
\mathbf{P}{A} = \int_{x} f_X(x \cap A) dx = \int_{x} \mathbf{P}{A |X = x} \cdot f_X(x) dx
$$

Here $f_X(x \cap A)$ denotes the density of the intersection of the event A with $X = x$.

Example: Let A be the event $X > 50$.

$$
f_X(x \cap A) = \begin{cases} f_X(x) & \text{if } x > 50 \\ 0 & \text{otherwise} \end{cases}
$$

$$
P\{X > 50\} = P\{A\} = \int_{-\infty}^{\infty} f_X(x \cap A) dx = \int_{50}^{\infty} f_X(x) dx
$$

Likewise,

$$
P\{X > 50\} = \int_{-\infty}^{\infty} P\{X > 50 \mid X = x\} \cdot f_X(x) dx = \int_{50}^{\infty} 1 \cdot f_X(x) dx
$$

"Introduction to Probability for Computing", Harchol-Balter '24

Conditioning on a Zero-Probability Event

$$
P{A} = \int_{x} f_X(x \cap A) dx = \int_{x} P{A |X = x} \cdot f_X(x) dx
$$

Here $f_X(x \cap A)$ denotes the density of the intersection of the event A with $X = x$.

Q: In $P\{A \mid X = x\}$, we're conditioning on a zeroprobability event. So we have a zero in the denominator. How is this okay?

$$
f_X(x \cap A) = \begin{cases} f_X(x) & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}
$$

A:
$$
P\{A \mid X = x\} = \frac{f_X(x \cap A)}{f_X(x)}
$$

The ratio is between densities, not probabilities, and the densities are not zero!

Conditioning on a Zero-Probability Event

Example: We have a coin with unknown bias. Specifically, the coin has probability P of heads where $P \sim Uniform(0,1)$.

Q: What is P {Next 10 flips are all heads}?

A:
$$
P\{10 \text{ heads}\} = \int_0^1 P\{10 \text{ heads} \mid P = p\} \cdot f_P(p) dp
$$

= $\int_0^1 P\{10 \text{ heads} \mid P = p\} \cdot 1 dp$
= $\int_0^1 p^{10} \cdot 1 dp$
= $\frac{1}{11}$

Conditional p.d.f. and Bayes' Law

Defn: For a continuous r.v. X and an event A, the **conditional p.d.f. of r.v.** X given A is:

$$
f_{X|A}(x) = \frac{f_X(x \cap A)}{P\{A\}} = \frac{P\{A \mid X = x\} \cdot f_X(x)}{P\{A\}}
$$

Comments:

- 1. Conditional p.d.f $f_{X|A}(x)$ has value 0 outside of A.
- 2. The conditional p.d.f. is still a proper p.d.f. in that

$$
\int_{x} f_{X|A}(x)dx = 1
$$

Conditional p.d.f. and Bayes' Law

Defn: For a continuous r.v. X and an event A , the **conditional p.d.f. of r.v.** X given A is:

$$
f_{X|A}(x) = \frac{f_X(x \cap A)}{P\{A\}} = \frac{P\{A \mid X = x\} \cdot f_X(x)}{P\{A\}}
$$

Example:

X has p.d.f. $f_X(x)$ defined on $0 < x < 100$. A is the event $X > 50$.

 $f_{X|A}(x)$ is a scaled-up version of $f_X(x)$, allowing it to integrate to 1.

$$
f_{X|X>50}(x) = \frac{f_X(x \cap X > 50)}{P\{X > 50\}} = \begin{cases} \frac{f_X(x)}{P\{X > 50\}} & \text{if } x > 50\\ 0 & \text{otherwise} \end{cases}
$$

[&]quot;Introduction to Probability for Computing", Harchol-Balter '24

Conditional expectation

Defn:

For a **discrete** r.v. X and an event A, where $P\{A\} > 0$, the **conditional expectation of** *X* given A is:

$$
E[X|A] = \sum_{x} x \cdot p_{X|A}(x)
$$

For a **continuous** r.v. X and an event A, where $P\{A\} > 0$, the **conditional expectation of** *X* given A is:

$$
E[X|A] = \int_{x} x \cdot f_{X|A}(x) dx
$$

Example: **Pittsburgh Supercomputing Center (PSC)**

At the PSC, jobs are grouped into different bins based on their size. Suppose job sizes are Exponentially distributed with *mean* 1000 CPU-hours. Suppose all jobs of size $<$ 500 CPU-hours are sent to bin 1.

- a. What is $P\{\text{Job is sent to bin 1}\}$?
- b. What is $P\{\text{Job size} < 200 \mid \text{job is in bin 1}\}$?
- c. What is $f_{X|A}(x)$, where X is the job size and A is the event that the job is in bin 1?
- d. What is E [Job size | job is in bin 1]?

Example: **Pittsburgh Supercomputing Center (PSC)** At the PSC, jobs are grouped into bins based on their size. Suppose job sizes are Exponentially distributed with *mean* 1000 CPU-hours. Suppose all jobs of size < 500 CPU-hours are sent to bin 1.

a. What is $P\{\text{Job is sent to bin 1}\}$?

$$
X \sim Exp\left(\frac{1}{1000}\right)
$$

$$
f_X(x) = \begin{cases} \frac{1}{1000} e^{-\frac{1}{1000}x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}
$$

$$
\overline{F}_X(x) = P\{X > x\} = e^{-\frac{1}{1000}x}
$$

$$
P
$$
{Job is sent to bin 1} = $F_X(500) = 1 - e^{-\frac{500}{1000}} = 1 - e^{-\frac{1}{2}} \approx 0.39$

Example: **Pittsburgh Supercomputing Center (PSC)** At the PSC, jobs are grouped into bins based on their size. Suppose job sizes are Exponentially distributed with *mean* 1000 CPU-hours. Suppose all jobs of size < 500 CPU-hours are sent to bin 1.

b. What is $P\{\text{Job size} < 200 \mid \text{job is in bin 1}\}$?

$$
X \sim Exp\left(\frac{1}{1000}\right)
$$

$$
f_X(x) = \begin{cases} \frac{1}{1000} e^{-\frac{1}{1000}x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}
$$

$$
\bar{F}_X(x) = P\{X > x\} = e^{-\frac{1}{1000}x}
$$

$$
P\{\text{Job size} < 200 \mid \text{job is in bin 1}\} = \frac{P\{X < 200 \cap \text{bin 1}\}}{P\{\text{bin 1}\}} = \frac{F_X(200)}{F_X(500)} \approx 0.46
$$

Example: **Pittsburgh Supercomputing Center (PSC)** At the PSC, jobs are grouped into bins based on their size. Suppose job sizes are Exponentially distributed with *mean* 1000 CPU-hours. Suppose all jobs of size < 500 CPU-hours are sent to bin 1.

c. What is $f_{X|A}(x)$, where X is the job size and A is the event that the job is in bin 1?

$$
X \sim Exp\left(\frac{1}{1000}\right)
$$

$$
f_X(x) = \begin{cases} \frac{1}{1000} e^{-\frac{1}{1000}x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}
$$

$$
\overline{F}_X(x) = P\{X > x\} = e^{-\frac{1}{1000}x}
$$

$$
f_{X|A}(x) = \frac{f_X(x \cap A)}{P\{A\}} = \frac{f_X(x \cap A)}{F_X(500)} = \frac{\begin{cases} f_X(x)}{F_X(500)} = \frac{1}{1 - e^{-\frac{1}{2}}} \cdot \frac{1}{1000} e^{-\frac{1}{1000}x} & \text{if } x < 500 \\ 0 & \text{otherwise} \end{cases}
$$

Example: **Pittsburgh Supercomputing Center (PSC)** At the PSC, jobs are grouped into bins based on their size.

Suppose job sizes are Exponentially distributed with *mean* 1000 CPU-hours.

Suppose all jobs of size < 500 CPU-hours are sent to bin 1.

d. What is E [Job size | job is in bin 1]?

$$
X \sim Exp\left(\frac{1}{1000}\right)
$$

$$
f_X(x) = \begin{cases} \frac{1}{1000} e^{-\frac{1}{1000}x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}
$$

$$
\overline{F}_X(x) = P\{X > x\} = e^{-\frac{1}{1000}x}
$$

$$
E[\text{Job size } | \text{job is in bin 1}] = \int_{-\infty}^{\infty} x f_{X|A}(x) dx = \int_{0}^{500} x \cdot \frac{1}{1 - e^{-\frac{1}{2}}} \cdot \frac{1}{1000} e^{-\frac{1}{1000}x} dx \approx 229
$$

Example: **Pittsburgh Supercomputing Center (PSC)** At the PSC, jobs are grouped into bins based on their size. Suppose job sizes are Exponentially distributed with *mean* 1000 CPU-hours. Suppose all jobs of size < 500 CPU-hours are sent to bin 1.

d. What is E [Job size | job is in bin 1]?

```
E Job size | job is in bin 1 \approx 229
```

```
Why is the expected job 
size for bin 1 
   < 250?
```


Example: **Pittsburgh Supercomputing Center (PSC)** At the PSC, jobs are grouped into bins based on their size. Suppose job sizes are Exponentially distributed with *mean* 1000 CPU-hours. Suppose all jobs of size < 500 CPU-hours are sent to bin 1.

d. What is E [Job size | job is in bin 1]?

```
E [Job size | job is in bin 1 \approx 229
```
How would the above answer change if $X \sim Uniform(0,2000)$?

We're trying to estimate the likelihood that a human will click on an ad.

Learning the bias of a coin, or a human

We model the human as coin with unknown bias $P \sim Uniform(0,1)$. The coin has resulted in 10 heads out of the first 10 flips (call this event A).

Example:

"Introduction to Probability for Computing", Harchol-Balter '24

Learning a person's bias

Example:

We're trying to estimate the likelihood that a human will click on an ad. We model the human as coin with unknown bias $P \sim Uniform(0,1)$. The coin has resulted in 10 heads out of the first 10 flips (call this event A).

Q: What is $E[P | A]$?

A:
\n
$$
E[P | A] = \int_0^1 f_{P|A}(p) \cdot p \, dp
$$
\n
$$
f_{P|A}(p) = \frac{P\{A | P = p\} \cdot f_P(p)}{P\{A\}} = \frac{p^{10} \cdot 1}{P\{A\}}
$$
\nSo $f_{P|A}(p) = 11p^{10}$
\n
$$
P\{A\} = \int_0^1 P\{A | P = p\} \cdot f_P(p) dp = \int_0^1 p^{10} \cdot 1 dp = \frac{1}{11}
$$

Learning a person's bias

Example:

We're trying to estimate the likelihood that a human will click on an ad. We model the human as coin with unknown bias $P \sim Uniform(0,1)$. The coin has resulted in 10 heads out of the first 10 flips (call this event A).

Q: What is $E[P | A]$?

A:
\n
$$
E[P | A] = \int_0^1 f_{P|A}(p) \cdot p \, dp = \int_0^1 11p^{10} \cdot p dp = \boxed{\frac{11}{12}}
$$
\nNot 1 but close. The answer depends on the initial assumption that $P \sim Uniform(0,1)$, which is referred to as the prior (see Chpt 17).