
Chapter 7
Continuous Random Variables
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Continuous Random Variable

Defn: A continuous random variable (r.v.) has a continuous range of values that it can 
take on.  This might be an interval or set of intervals.  
Thus a continuous r.v. can take on an uncountable set of possible values.

Examples:
 Time of an event
 Response time of a job
 Speed of a device
 Location of a satellite
 Distance between people’s eyeballs 
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Probability for Continuous Random Variable
The probability that a continuous r.v. is equal to any particular value is defined to be 0.  

Probability for a continuous r.v. is defined via a density function.  

Defn 7.2: The probability density function (p.d.f.) of a continuous r.v. 𝑋𝑋 is a non-negative
function 𝑓𝑓𝑋𝑋 ⋅ , where

�
−∞

∞
𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥 = 1and𝑃𝑃 𝑎𝑎 ≤ 𝑋𝑋 ≤ 𝑏𝑏 = �

𝑎𝑎

𝑏𝑏
𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥
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Probability for Continuous Random Variable

𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥 ≈ 𝑷𝑷 𝑥𝑥 ≤ 𝑋𝑋 ≤ 𝑥𝑥 + 𝑑𝑑𝑥𝑥

𝑥𝑥 𝑥𝑥 + 𝑑𝑑𝑥𝑥

How do 𝑷𝑷 5 ≤ 𝑋𝑋 ≤ 6   and 
𝑷𝑷 5 < 𝑋𝑋 < 6  compare?

Can 𝑓𝑓𝑋𝑋(𝑥𝑥)  be larger 
than 1?  
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Density as a rate
Density functions are not necessarily related to probability.

Example:  Filling a bathtub at rate 𝑓𝑓𝑋𝑋 𝑡𝑡 = 𝑡𝑡2 gallons/sec, where 𝑡𝑡 ≥ 0

�
0

4
𝑓𝑓𝑋𝑋 𝑡𝑡 𝑑𝑑𝑡𝑡 = �

0

4
𝑡𝑡2𝑑𝑑𝑡𝑡 =

64
3  

A: gallons

Q:  How much 
water after 4 

seconds?

Q:  Is  𝑓𝑓𝑋𝑋  (𝑡𝑡)  
a p.d.f.?  
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Example: Computing probability from p.d.f.
Weight of two-year-olds ranges between 
15 and 35 pounds with p.d.f. 𝑓𝑓𝑊𝑊(𝑥𝑥) :

A:

𝑓𝑓𝑊𝑊(𝑥𝑥) =

3
40

−
3

4000
𝑥𝑥 − 25 2 if 15 ≤ 𝑥𝑥 ≤ 35  

0 otherwise
 

Q:  What is the fraction of two-year-olds 
       that weigh > 30 pounds? 

�
30

∞
𝑓𝑓𝑊𝑊 𝑥𝑥 𝑑𝑑𝑥𝑥 = �

30

35 3
40

−
3

4000
𝑥𝑥 − 25 2𝑑𝑑𝑥𝑥 ≈ 16%
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Cumulative distribution function
Defn: The cumulative distribution function (c.d.f.) of a continuous r.v. 𝑋𝑋 is given by:

Q:  How do we get 𝑓𝑓𝑋𝑋(𝑥𝑥)  from 𝐹𝐹𝑋𝑋(𝑥𝑥) ?

𝐹𝐹𝑋𝑋 𝑎𝑎 = 𝑷𝑷 −∞ < 𝑋𝑋 ≤ 𝑎𝑎 =  �
−∞

𝑎𝑎
𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥

The tail of 𝑋𝑋 is given by:

�𝐹𝐹𝑋𝑋 𝑎𝑎 = 1 − 𝐹𝐹𝑋𝑋 𝑎𝑎 = 𝑷𝑷{𝑋𝑋 > 𝑎𝑎}

A:   𝑓𝑓𝑋𝑋 𝑥𝑥 = 𝑑𝑑
𝑑𝑑𝑑𝑑 ∫−∞

𝑑𝑑 𝑓𝑓𝑋𝑋 𝑡𝑡 𝑑𝑑𝑡𝑡 = 𝑑𝑑
𝑑𝑑𝑑𝑑
𝐹𝐹𝑋𝑋 𝑥𝑥

F.T.C.

(See Section 1.3 of your book)
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Uniform distribution

Q:  If 𝑋𝑋 ∼ 𝑈𝑈(𝑎𝑎, 𝑏𝑏), what is 𝐹𝐹𝑋𝑋(𝑥𝑥)?

Defn: Uniform 𝒂𝒂,𝒃𝒃 , often written 𝑈𝑈(𝑎𝑎, 𝑏𝑏), models the fact that any interval of 
length 𝛿𝛿 between 𝑎𝑎 and 𝑏𝑏 is equally likely.   Specifically, if 𝑋𝑋 ∼ 𝑈𝑈 𝑎𝑎, 𝑏𝑏 , then

1
𝑏𝑏 − 𝑎𝑎 

if 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
 
0 otherwise 

𝑓𝑓𝑋𝑋 𝑥𝑥 =

A:   𝐹𝐹𝑋𝑋 𝑥𝑥 = ∫𝑎𝑎
𝑑𝑑 1
𝑏𝑏−𝑎𝑎

𝑑𝑑𝑡𝑡 = 𝑑𝑑−𝑎𝑎
𝑏𝑏−𝑎𝑎
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Graphical depiction of Uniform distribution

Area of shaded pink region on left = Height of blue line on right
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Exponential distribution

Defn: E𝐱𝐱𝐱𝐱(𝝀𝝀) denotes the 
Exponential distribution with rate 𝝀𝝀.   

𝜆𝜆𝑒𝑒−𝜆𝜆𝑑𝑑 if 𝑥𝑥 ≥ 0
 
0 if 𝑥𝑥 < 0

𝑓𝑓𝑋𝑋 𝑥𝑥 =

1 − 𝑒𝑒−𝜆𝜆𝑑𝑑 if 𝑥𝑥 ≥ 0
 
0 if 𝑥𝑥 < 0

𝐹𝐹𝑋𝑋 𝑥𝑥 = �
−∞

𝑑𝑑
𝑓𝑓𝑋𝑋 𝑡𝑡 𝑑𝑑𝑡𝑡 = �𝐹𝐹𝑋𝑋 𝑥𝑥 = 𝑒𝑒−𝜆𝜆𝑑𝑑 ,  𝑥𝑥 ≥ 0

The p.d.f. and tail 
both drop off by a 
constant factor, 
𝑒𝑒−𝜆𝜆𝑑𝑑, with each 
unit increase in 𝑥𝑥.
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Memorylessness

Defn: Random variable 𝑋𝑋 has the memoryless property if

𝑷𝑷 𝑋𝑋 > 𝑡𝑡 + 𝑠𝑠 𝑋𝑋 > 𝑠𝑠} = 𝑷𝑷{𝑋𝑋 > 𝑡𝑡} ∀𝑠𝑠, 𝑡𝑡 ≥ 0

𝑋𝑋 = Time to win lottery.
Suppose I havenʹt won the lottery by time 𝑠𝑠. Then the probability 
that I’ll need > 𝑡𝑡  more time to win is independent of 𝑠𝑠.

Equivalently:  𝑋𝑋 has the memoryless property if

That is, the r.v.s 𝑋𝑋 𝑋𝑋 > 𝑠𝑠] and 𝑠𝑠 + 𝑋𝑋  have the same distribution.

𝑋𝑋 𝑋𝑋 > 𝑠𝑠]  =𝑑𝑑  𝑠𝑠 + 𝑋𝑋 ∀𝑠𝑠 ≥ 0
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Memorylessness

Defn: Random variable 𝑋𝑋 has the memoryless property if

𝑷𝑷 𝑋𝑋 > 𝑡𝑡 + 𝑠𝑠 𝑋𝑋 > 𝑠𝑠} = 𝑷𝑷{𝑋𝑋 > 𝑡𝑡} ∀𝑠𝑠, 𝑡𝑡 ≥ 0

Q: Prove that if 𝑋𝑋 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸(𝜆𝜆), then 𝑋𝑋 has the memoryless property.

�𝐹𝐹𝑋𝑋 𝑥𝑥 = 𝑒𝑒−𝜆𝜆𝑑𝑑 ,  𝑥𝑥 ≥ 0A: First recall that:  

𝑷𝑷 𝑋𝑋 > 𝑡𝑡 + 𝑠𝑠 𝑋𝑋 > 𝑠𝑠} =
𝑒𝑒−𝜆𝜆(𝑡𝑡+𝑠𝑠)

𝑒𝑒−𝜆𝜆𝑠𝑠
=
𝑷𝑷{𝑋𝑋 > 𝑡𝑡 + 𝑠𝑠}
𝑷𝑷{𝑋𝑋 > 𝑠𝑠} = 𝑒𝑒−𝜆𝜆𝑡𝑡 = 𝑷𝑷{𝑋𝑋 > 𝑡𝑡}
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Memorylessness

Defn: Random variable 𝑋𝑋 has the memoryless property if

𝑷𝑷 𝑋𝑋 > 𝑡𝑡 + 𝑠𝑠 𝑋𝑋 > 𝑠𝑠} = 𝑷𝑷{𝑋𝑋 > 𝑡𝑡} ∀𝑠𝑠, 𝑡𝑡 ≥ 0

Q: What other distribution has the memoryless property? 

A: The Geometric distribution

Q: Does 𝑋𝑋 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑓𝑓𝑈𝑈𝑈𝑈𝑈𝑈(𝑎𝑎, 𝑏𝑏)  also have the memoryless property? 

A: No.  If  𝑋𝑋 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑓𝑓𝑈𝑈𝑈𝑈𝑈𝑈(𝑎𝑎, 𝑏𝑏)  and we’re given that 𝑋𝑋 > 𝑏𝑏 − 𝜖𝜖, 
then we know that 𝑋𝑋 will end soon.  
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Memorylessness Example
Mortality rate normally increases with age.
But not for the naked mole-rat!
Its remaining lifetime is independent of its age.

Q: Let 𝑋𝑋 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸(1)  denote the lifetime of the naked mole-rat in years.  
If a naked mole-rate is 4 years old, what is the probability of surviving at least 
one more year? 

A:
𝑷𝑷 𝑋𝑋 > 4 + 1 𝑋𝑋 > 4} =

𝑷𝑷{𝑋𝑋 > 5}
𝑷𝑷{𝑋𝑋 > 4}

=
𝑒𝑒−5

𝑒𝑒−4
= 𝑒𝑒−1 = 𝑷𝑷{𝑋𝑋 > 1}
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Post Office Example
A post office has 2 clerks.   
When customer A walks in, customer B is being served by one  clerk, and 
customer C is being served by the other.   
All service times ∼ 𝐸𝐸𝑥𝑥𝐸𝐸(𝜆𝜆). 

Q: What is 𝑷𝑷{A is last to leave}?

A: 1
2

B C

One of B or C will leave first.  At that point, the remaining customer’s 
lifetime restarts.  A will then compete with that remaining customer.  
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Expectation, Variance, and Higher Moments

Defn: For a continuous r.v. 𝑋𝑋 with p.d.f. 𝑓𝑓𝑋𝑋(⋅), we have:

𝑬𝑬 𝑋𝑋 = �
−∞

∞
𝑥𝑥 ⋅ 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥

𝑬𝑬 𝑋𝑋𝑖𝑖 = �
−∞

∞
𝑥𝑥𝑖𝑖 ⋅ 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥

𝑬𝑬 𝑔𝑔(𝑋𝑋) = �
−∞

∞
𝑔𝑔(𝑥𝑥) ⋅ 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥

𝑽𝑽𝒂𝒂𝑽𝑽 𝑋𝑋 = 𝑬𝑬 𝑋𝑋 − 𝑬𝑬 𝑋𝑋 2 = �
−∞

∞
𝑥𝑥 − 𝑬𝑬 𝑋𝑋 2𝑓𝑓𝑋𝑋(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑬𝑬 𝑋𝑋2 − 𝑬𝑬 𝑋𝑋 2
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Uniform distribution: Mean and Variance

Q:  Derive mean and variance of 𝑋𝑋 ∼ 𝑈𝑈 𝑎𝑎, 𝑏𝑏 .
𝑋𝑋 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑓𝑓𝑈𝑈𝑈𝑈𝑈𝑈 𝑎𝑎, 𝑏𝑏

1
𝑏𝑏 − 𝑎𝑎 

if 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
 
0 otherwise 

𝑓𝑓𝑋𝑋 𝑥𝑥 =

A:
𝑬𝑬 𝑋𝑋 = �

𝑎𝑎

𝑏𝑏 1
𝑏𝑏 − 𝑎𝑎

⋅ 𝑡𝑡 𝑑𝑑𝑡𝑡 =
1

𝑏𝑏 − 𝑎𝑎
⋅
𝑏𝑏2 − 𝑎𝑎2

2
=
𝑎𝑎 + 𝑏𝑏

2

𝑬𝑬 𝑋𝑋2 = �
𝑎𝑎

𝑏𝑏 1
𝑏𝑏 − 𝑎𝑎

⋅ 𝑡𝑡2𝑑𝑑𝑡𝑡 =
1

𝑏𝑏 − 𝑎𝑎
⋅
𝑏𝑏3 − 𝑎𝑎3

3
=
𝑏𝑏2 + 𝑎𝑎𝑏𝑏 + 𝑎𝑎2

3

𝑽𝑽𝒂𝒂𝑽𝑽 𝑋𝑋 = 𝑬𝑬 𝑋𝑋2 − 𝑬𝑬 𝑋𝑋 2 =
𝑏𝑏 − 𝑎𝑎 2

12
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Exponential distribution: Mean and Variance

Q:  Derive mean and variance of 𝑋𝑋 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸(𝜆𝜆).

A:

𝑬𝑬 𝑋𝑋 = �
−∞

∞
𝜆𝜆𝑒𝑒−𝜆𝜆𝑡𝑡 𝑡𝑡 𝑑𝑑𝑡𝑡 =

1
𝜆𝜆

𝑬𝑬 𝑋𝑋2 = �
−∞

∞
𝜆𝜆𝑒𝑒−𝜆𝜆𝑡𝑡 ⋅ 𝑡𝑡2𝑑𝑑𝑡𝑡 =

2
𝜆𝜆2

𝑽𝑽𝒂𝒂𝑽𝑽 𝑋𝑋 = 𝑬𝑬 𝑋𝑋2 − 𝑬𝑬 𝑋𝑋 2 =
1
𝜆𝜆2

𝜆𝜆𝑒𝑒−𝜆𝜆𝑑𝑑 if 𝑥𝑥 ≥ 0
 
0 if 𝑥𝑥 < 0

𝑓𝑓𝑋𝑋 𝑥𝑥 =

𝑋𝑋 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸(𝜆𝜆)

The 𝜆𝜆 parameter is 
the reciprocal of 

the mean
(hence “the rate”).
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Example: Time to get from NYC to Boston
Distance from NYC to Boston is 180 miles.
Motorized bikes have speeds ∼ 𝑈𝑈 30,60 . 
You buy a random motorized bike.
𝑇𝑇 = Your time to get from NYC to Boston.

Goal:  Derive 𝑬𝑬 𝑇𝑇 .

Q:  Which is correct, Idea 1 or Idea 2?

A:  Neither!

Idea 1:  Avg. speed is 45 mph.   Thus 𝑬𝑬 𝑇𝑇 = 180
45

= 4 hours.

Idea 2:  𝑬𝑬 𝑇𝑇  is the average of 180
 30 

= 6 and 180
 60 

= 3. So 𝑬𝑬 𝑇𝑇 = 4.5 hours.
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Example: Time to get from NYC to Boston
Distance from NYC to Boston is 180 miles.
Motorized bikes have speeds ∼ 𝑈𝑈 30,60 . 
You buy a random motorized bike.
𝑇𝑇 = Your time to get from NYC to Boston.

Q:  What is 𝑬𝑬 𝑇𝑇 ?

A: Then  𝑇𝑇 = 180
𝑆𝑆

𝑬𝑬 𝑇𝑇 = 𝑬𝑬
180
𝑆𝑆

= �
30

60 180
𝑠𝑠
𝑓𝑓𝑆𝑆 𝑠𝑠 𝑑𝑑𝑠𝑠 = �

30

60 180
𝑠𝑠

⋅
1

30
𝑑𝑑𝑠𝑠

= 6 (ln 60 − ln 30)

= 6 (ln 2) ≈ 4.15 hours

Let 𝑆𝑆 ∼ 𝑈𝑈(30,60) represent the speed of your bike.
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Law of Total Probability for Continuous

Recall the Law of Total Probability for event 𝐴𝐴 and discrete r.v. 𝑋𝑋 :

𝑷𝑷 𝐴𝐴 = �
𝑑𝑑
𝑓𝑓𝑋𝑋 𝑥𝑥 ∩ 𝐴𝐴 𝑑𝑑𝑥𝑥 = �

𝑑𝑑
𝑷𝑷 𝐴𝐴 𝑋𝑋 = 𝑥𝑥} ⋅ 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥

The same Law of Total Probability holds for event 𝐴𝐴 and continuous r.v. 𝑋𝑋 :

𝑷𝑷 𝐴𝐴 = �
𝑑𝑑

𝑷𝑷 𝐴𝐴 ∩ (𝑋𝑋 = 𝑥𝑥) = �
𝑑𝑑

𝑷𝑷 𝐴𝐴 𝑋𝑋 = 𝑥𝑥 ⋅ 𝐸𝐸𝑋𝑋(𝑥𝑥)

Here 𝑓𝑓𝑋𝑋 𝑥𝑥 ∩ 𝐴𝐴  denotes the density of the intersection of the event 𝐴𝐴 with 𝑋𝑋 = 𝑥𝑥.
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Law of Total Probability for Continuous

𝑷𝑷 𝐴𝐴 = �
𝑑𝑑
𝑓𝑓𝑋𝑋 𝑥𝑥 ∩ 𝐴𝐴 𝑑𝑑𝑥𝑥 = �

𝑑𝑑
𝑷𝑷 𝐴𝐴 𝑋𝑋 = 𝑥𝑥} ⋅ 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥

Here 𝑓𝑓𝑋𝑋 𝑥𝑥 ∩ 𝐴𝐴  denotes the density of the intersection of the event 𝐴𝐴 with 𝑋𝑋 = 𝑥𝑥.

𝑓𝑓𝑋𝑋(𝑥𝑥) if 𝑥𝑥 > 50
 
0 otherwise 

𝑓𝑓𝑋𝑋 𝑥𝑥 ∩ 𝐴𝐴 =Example:  Let 𝐴𝐴 be the event 𝑋𝑋 > 50.  

𝑷𝑷 𝑋𝑋 > 50 = 𝑷𝑷 𝐴𝐴 = �
−∞

∞
𝑓𝑓𝑋𝑋 𝑥𝑥 ∩ 𝐴𝐴 𝑑𝑑𝑥𝑥 = �

50

∞
𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥 

𝑷𝑷 𝑋𝑋 > 50 = �
−∞

∞
𝑷𝑷 𝑋𝑋 > 50 𝑋𝑋 = 𝑥𝑥} ⋅ 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑑𝑑𝑥𝑥 = �

50

∞
1 ⋅ 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥 

Likewise,



"Introduction to Probability for Computing", Harchol-Balter '24
23

Conditioning on a Zero-Probability Event 

𝑷𝑷 𝐴𝐴 = �
𝑑𝑑
𝑓𝑓𝑋𝑋 𝑥𝑥 ∩ 𝐴𝐴 𝑑𝑑𝑥𝑥 = �

𝑑𝑑
𝑷𝑷 𝐴𝐴 𝑋𝑋 = 𝑥𝑥} ⋅ 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥

Here 𝑓𝑓𝑋𝑋 𝑥𝑥 ∩ 𝐴𝐴  denotes the density of the intersection of the event 𝐴𝐴 with 𝑋𝑋 = 𝑥𝑥.

𝑓𝑓𝑋𝑋(𝑥𝑥) if 𝑥𝑥 ∈ 𝐴𝐴
 
0 otherwise 

𝑓𝑓𝑋𝑋 𝑥𝑥 ∩ 𝐴𝐴 =

𝑷𝑷 𝐴𝐴 | 𝑋𝑋 = 𝑥𝑥 =
𝑓𝑓𝑋𝑋(𝑥𝑥 ∩ 𝐴𝐴)
𝑓𝑓𝑋𝑋(𝑥𝑥)

Q: In 𝑷𝑷 𝐴𝐴 𝑋𝑋 = 𝑥𝑥}, we’re conditioning on a zero-
probability event.   So we have a zero in the 
denominator.  How is this okay?  

A:

The ratio is between densities, not probabilities,
and the densities are not zero!
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Conditioning on a Zero-Probability Event

𝑷𝑷 10 ℎ𝑒𝑒𝑎𝑎𝑑𝑑𝑠𝑠 = �
0

1
𝑃𝑃 10 ℎ𝑒𝑒𝑎𝑎𝑑𝑑𝑠𝑠 𝑃𝑃 = 𝐸𝐸} ⋅ 𝑓𝑓𝑃𝑃 𝐸𝐸 𝑑𝑑𝐸𝐸

Q: What is 𝑷𝑷{Next 10 flips are all heads}?  

A:

Example:  We have a coin with unknown bias.
Specifically, the coin has probability 𝑃𝑃 of heads where 𝑃𝑃 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑓𝑓𝑈𝑈𝑈𝑈𝑈𝑈 0,1 .

= �
0

1
𝑃𝑃 10 ℎ𝑒𝑒𝑎𝑎𝑑𝑑𝑠𝑠 𝑃𝑃 = 𝐸𝐸} ⋅ 1𝑑𝑑𝐸𝐸

= �
0

1
𝐸𝐸10 ⋅ 1𝑑𝑑𝐸𝐸

=
1

11
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Conditional p.d.f. and Bayes’ Law

Defn: For a continuous r.v. 𝑋𝑋 and an event 𝐴𝐴, 
the conditional p.d.f. of r.v. 𝑿𝑿 given 𝑨𝑨 is:

𝑓𝑓𝑋𝑋|𝐴𝐴 𝑥𝑥 =
𝑓𝑓𝑋𝑋(𝑥𝑥 ∩ 𝐴𝐴)
𝑷𝑷{𝐴𝐴}

=
𝑷𝑷 𝐴𝐴 𝑋𝑋 = 𝑥𝑥} ⋅ 𝑓𝑓𝑋𝑋(𝑥𝑥) 

𝑷𝑷{𝐴𝐴}

Comments: 
1. Conditional p.d.f 𝑓𝑓𝑋𝑋|𝐴𝐴 𝑥𝑥 has value 0 outside of 𝐴𝐴.
2. The conditional p.d.f. is still a proper p.d.f. in that

�
𝑑𝑑
𝑓𝑓𝑋𝑋|𝐴𝐴 𝑥𝑥 𝑑𝑑𝑥𝑥 = 1
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Conditional p.d.f. and Bayes’ Law

Defn: For a continuous r.v. 𝑋𝑋 and an event 𝐴𝐴, 
the conditional p.d.f. of r.v. 𝑿𝑿 given 𝑨𝑨 is:

𝑓𝑓𝑋𝑋|𝐴𝐴 𝑥𝑥 =
𝑓𝑓𝑋𝑋(𝑥𝑥 ∩ 𝐴𝐴)
𝑷𝑷{𝐴𝐴}

=
𝑷𝑷 𝐴𝐴 𝑋𝑋 = 𝑥𝑥} ⋅ 𝑓𝑓𝑋𝑋(𝑥𝑥) 

𝑷𝑷{𝐴𝐴}

Example: 
𝑋𝑋 has p.d.f. 𝑓𝑓𝑋𝑋 𝑥𝑥  defined on 0 < 𝑥𝑥 < 100.
𝐴𝐴 is the event 𝑋𝑋 > 50. 

𝑓𝑓𝑋𝑋|𝐴𝐴 𝑥𝑥  is a scaled-up version of 𝑓𝑓𝑋𝑋 𝑥𝑥  , 
allowing it to integrate to 1. 

𝑓𝑓𝑋𝑋|𝑋𝑋>50 𝑥𝑥 =
𝑓𝑓𝑋𝑋(𝑥𝑥 ∩ 𝑋𝑋 > 50)
𝑷𝑷{𝑋𝑋 > 50}

=
𝑓𝑓𝑋𝑋(𝑥𝑥)

𝑷𝑷{𝑋𝑋 > 50}
if 𝑥𝑥 > 50

 
0 otherwise 
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Conditional expectation

Defn: 
For a discrete r.v. 𝑋𝑋 and an event 𝐴𝐴, where 𝑃𝑃 𝐴𝐴 > 0, the conditional expectation of 
𝑿𝑿 given 𝑨𝑨 is:

For a continuous r.v. 𝑋𝑋 and an event 𝐴𝐴, where 𝑃𝑃 𝐴𝐴 > 0, the conditional expectation of 
𝑿𝑿 given 𝑨𝑨 is:

𝑬𝑬 𝑋𝑋 𝐴𝐴 = �
𝑑𝑑

𝑥𝑥 ⋅ 𝐸𝐸𝑋𝑋|𝐴𝐴(𝑥𝑥)

𝑬𝑬 𝑋𝑋 𝐴𝐴 = �
𝑑𝑑
𝑥𝑥 ⋅ 𝑓𝑓𝑋𝑋|𝐴𝐴 𝑥𝑥 𝑑𝑑𝑥𝑥
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Conditional expectation example

Example:  Pittsburgh Supercomputing Center (PSC)
At the PSC, jobs are grouped into different bins based on their size.  
Suppose job sizes are Exponentially distributed with 
mean 1000 CPU-hours. 
Suppose all jobs of size < 500 CPU-hours are sent to bin 1. 

a. What is 𝑷𝑷 Job is sent to bin 1 ? 

b. What is 𝑷𝑷 Job size < 200 | job is in bin 1 ? 

c.  What is 𝑓𝑓𝑋𝑋|𝐴𝐴(𝑥𝑥), where 𝑋𝑋 is the job size and 𝐴𝐴 is the event that the job is in bin 1?

d.  What is 𝑬𝑬[Job size | job is in bin 1]? 
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Conditional expectation example

Example:  Pittsburgh Supercomputing Center (PSC)
At the PSC, jobs are grouped into bins based on their size.  
Suppose job sizes are Exponentially distributed with 
mean 1000 CPU-hours. 
Suppose all jobs of size < 500 CPU-hours are sent to bin 1. 

a. What is 𝑷𝑷 Job is sent to bin 1 ? 

𝑷𝑷 Job is sent to bin 1 = 𝐹𝐹𝑋𝑋(500) = 1 − 𝑒𝑒−
500
1000 = 1 − 𝑒𝑒−

1
2 ≈ 0.39

1
1000

𝑒𝑒−
1

1000𝑑𝑑 if 𝑥𝑥 ≥ 0
 
0 if 𝑥𝑥 < 0

𝑓𝑓𝑋𝑋 𝑥𝑥 =

𝑋𝑋 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸
1

1000

�𝐹𝐹𝑋𝑋 𝑥𝑥 = 𝑷𝑷 𝑋𝑋 > 𝑥𝑥 =  𝑒𝑒−
1

1000𝑑𝑑



"Introduction to Probability for Computing", Harchol-Balter '24
30

Conditional expectation example

Example:  Pittsburgh Supercomputing Center (PSC)
At the PSC, jobs are grouped into bins based on their size.  
Suppose job sizes are Exponentially distributed with 
mean 1000 CPU-hours. 
Suppose all jobs of size < 500 CPU-hours are sent to bin 1. 

b. What is 𝑷𝑷 Job size < 200 | job is in bin 1 ?

𝑷𝑷 Job size < 200 | job is in bin 1 =
𝑷𝑷{𝑋𝑋 < 200 ∩ bin 1}

𝑷𝑷{bin 1}
=
𝐹𝐹𝑋𝑋(200)
𝐹𝐹𝑋𝑋(500)

≈ 0.46

1
1000

𝑒𝑒−
1

1000𝑑𝑑 if 𝑥𝑥 ≥ 0
 
0 if 𝑥𝑥 < 0

𝑓𝑓𝑋𝑋 𝑥𝑥 =

𝑋𝑋 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸
1

1000

�𝐹𝐹𝑋𝑋 𝑥𝑥 = 𝑷𝑷 𝑋𝑋 > 𝑥𝑥 =  𝑒𝑒−
1

1000𝑑𝑑
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Conditional expectation example

Example:  Pittsburgh Supercomputing Center (PSC)
At the PSC, jobs are grouped into bins based on their size.  
Suppose job sizes are Exponentially distributed with 
mean 1000 CPU-hours. 
Suppose all jobs of size < 500 CPU-hours are sent to bin 1. 

c. What is 𝑓𝑓𝑋𝑋|𝐴𝐴(𝑥𝑥), where 𝑋𝑋 is the job size and 𝐴𝐴 is the 
event that the job is in bin 1?

1
1000

𝑒𝑒−
1

1000𝑑𝑑 if 𝑥𝑥 ≥ 0
 
0 if 𝑥𝑥 < 0

𝑓𝑓𝑋𝑋 𝑥𝑥 =

𝑋𝑋 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸
1

1000

�𝐹𝐹𝑋𝑋 𝑥𝑥 = 𝑷𝑷 𝑋𝑋 > 𝑥𝑥 =  𝑒𝑒−
1

1000𝑑𝑑

𝑓𝑓𝑋𝑋|𝐴𝐴 𝑥𝑥 =
𝑓𝑓𝑋𝑋(𝑥𝑥 ∩ 𝐴𝐴)
𝑷𝑷{𝐴𝐴}

=
𝑓𝑓𝑋𝑋(𝑥𝑥 ∩ 𝐴𝐴)
𝐹𝐹𝑋𝑋(500)

=

𝑓𝑓𝑋𝑋(𝑥𝑥)
𝐹𝐹𝑋𝑋(500)

=
1

1 − 𝑒𝑒−
1
2
⋅

1
1000

𝑒𝑒−
1

1000𝑑𝑑 if 𝑥𝑥 < 500
 

0
otherwise 
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Conditional expectation example

Example:  Pittsburgh Supercomputing Center (PSC)
At the PSC, jobs are grouped into bins based on their size.  
Suppose job sizes are Exponentially distributed with 
mean 1000 CPU-hours. 
Suppose all jobs of size < 500 CPU-hours are sent to bin 1. 

d. What is 𝑬𝑬[Job size | job is in bin 1]? 

1
1000

𝑒𝑒−
1

1000𝑑𝑑 if 𝑥𝑥 ≥ 0
 
0 if 𝑥𝑥 < 0

𝑓𝑓𝑋𝑋 𝑥𝑥 =

𝑋𝑋 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸
1

1000

�𝐹𝐹𝑋𝑋 𝑥𝑥 = 𝑷𝑷 𝑋𝑋 > 𝑥𝑥 =  𝑒𝑒−
1

1000𝑑𝑑

𝑬𝑬 Job size job is in bin 1] = �
−∞

∞
𝑥𝑥 𝑓𝑓𝑋𝑋|𝐴𝐴 𝑥𝑥 𝑑𝑑𝑥𝑥 = �

0

500
𝑥𝑥 ⋅

1

1 − 𝑒𝑒−
1
2
⋅

1
1000

𝑒𝑒−
1

1000𝑑𝑑𝑑𝑑𝑥𝑥 ≈ 229
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Conditional expectation example

Example:  Pittsburgh Supercomputing Center (PSC)
At the PSC, jobs are grouped into bins based on their size.  
Suppose job sizes are Exponentially distributed with 
mean 1000 CPU-hours. 
Suppose all jobs of size < 500 CPU-hours are sent to bin 1. 

d. What is 𝑬𝑬[Job size | job is in bin 1]? 

𝑋𝑋 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸
1

1000

𝑬𝑬 Job size job is in bin 1] ≈ 229

Why is the expected job 
size for bin 1 

< 250?
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Conditional expectation example

Example:  Pittsburgh Supercomputing Center (PSC)
At the PSC, jobs are grouped into bins based on their size.  
Suppose job sizes are Exponentially distributed with 
mean 1000 CPU-hours. 
Suppose all jobs of size < 500 CPU-hours are sent to bin 1. 

d. What is 𝑬𝑬[Job size | job is in bin 1]? 

𝑋𝑋 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸
1

1000

𝑬𝑬 Job size job is in bin 1] ≈ 229

How would the above 
answer change if 

𝑋𝑋 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑓𝑓𝑈𝑈𝑈𝑈𝑈𝑈(0,2000)?
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Learning the bias of a coin, or a human

Q: What is 𝑬𝑬 𝑃𝑃 𝐴𝐴]? 

Example:  
We’re trying to estimate the likelihood that a human will click on an ad.   
We model the human as coin with unknown bias 𝑃𝑃 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑓𝑓𝑈𝑈𝑈𝑈𝑈𝑈 0,1 . 
The coin has resulted in 10 heads out of the first 10 flips (call this event 𝐴𝐴).

But this seems 
shaky …

The best estimator of 
𝑃𝑃 is the fraction of 

heads obtained so far! 
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Learning a person’s bias

𝑷𝑷 𝐴𝐴 = �
0

1
𝑷𝑷 𝐴𝐴  𝑃𝑃 = 𝐸𝐸} ⋅ 𝑓𝑓𝑃𝑃 𝐸𝐸 𝑑𝑑𝐸𝐸

Q: What is 𝑬𝑬 𝑃𝑃 𝐴𝐴]? 

A:

Example:  
We’re trying to estimate the likelihood that a human will click on an ad.   
We model the human as coin with unknown bias 𝑃𝑃 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑓𝑓𝑈𝑈𝑈𝑈𝑈𝑈 0,1 . 
The coin has resulted in 10 heads out of the first 10 flips (call this event 𝐴𝐴).

= �
0

1
𝐸𝐸10 ⋅ 1𝑑𝑑𝐸𝐸=

1
11

𝑬𝑬 𝑃𝑃 𝐴𝐴] = �
0

1
𝑓𝑓𝑃𝑃|𝐴𝐴 𝐸𝐸 ⋅ 𝐸𝐸 𝑑𝑑𝐸𝐸

𝑓𝑓𝑃𝑃|𝐴𝐴 𝐸𝐸 = 𝑷𝑷 𝐴𝐴 𝑃𝑃=𝑝𝑝}⋅𝑓𝑓𝑃𝑃(𝑝𝑝)
𝑷𝑷{𝐴𝐴}

 = 𝑝𝑝10⋅1
𝑷𝑷{𝐴𝐴} So 𝑓𝑓𝑃𝑃|𝐴𝐴 𝐸𝐸 = 11𝐸𝐸10
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Learning a person’s bias

Q: What is 𝑬𝑬 𝑃𝑃 𝐴𝐴]? 

A:

Example:  
We’re trying to estimate the likelihood that a human will click on an ad.   
We model the human as coin with unknown bias 𝑃𝑃 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑓𝑓𝑈𝑈𝑈𝑈𝑈𝑈 0,1 . 
The coin has resulted in 10 heads out of the first 10 flips (call this event 𝐴𝐴).

𝑬𝑬 𝑃𝑃 𝐴𝐴] = �
0

1
𝑓𝑓𝑃𝑃|𝐴𝐴 𝐸𝐸 ⋅ 𝐸𝐸 𝑑𝑑𝐸𝐸

So 𝑓𝑓𝑃𝑃|𝐴𝐴 𝐸𝐸 = 11𝐸𝐸10
Not 1 but close.  The answer depends 
on the initial assumption
that 𝑃𝑃 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑓𝑓𝑈𝑈𝑈𝑈𝑈𝑈 0,1 , which is 
referred to as the prior (see Chpt 17).

= ∫0
1 11𝐸𝐸10 ⋅ 𝐸𝐸𝑑𝑑𝐸𝐸 = 11

12
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