
Chapter 8
Continuous Random Variables:

Joint distributions
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Joint Densities

Defn: The joint probability density function between continuous random variables
 𝑋𝑋 and 𝑌𝑌 is a non-negative function 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦   , where

and where

�
𝑐𝑐

𝑑𝑑
�
𝑎𝑎

𝑏𝑏
𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 = 𝑃𝑃{𝑎𝑎 ≤ 𝑋𝑋 ≤ 𝑏𝑏 & 𝑐𝑐 ≤ 𝑌𝑌 ≤ 𝑑𝑑}

�
−∞

∞
�
−∞

∞
𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 = 1
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Joint Densities

Volume under the curve equals:

�
𝑐𝑐

𝑑𝑑
�
𝑎𝑎

𝑏𝑏
𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 = 𝑃𝑃{𝑎𝑎 ≤ 𝑋𝑋 ≤ 𝑏𝑏 & 𝑐𝑐 ≤ 𝑌𝑌 ≤ 𝑑𝑑}
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Example

Two-year-olds range in weight from 15 – 35 pounds.
They range in height from 25 – 40 inches.

𝑓𝑓𝑊𝑊,𝐻𝐻(𝑤𝑤,ℎ) denotes the joint p.d.f. of weight and height.

Q:  What is the fraction of two-year-olds with weight > 30 pounds but height < 30 inches?

∫ℎ=−∞
ℎ=30 ∫𝑤𝑤=30

𝑤𝑤=∞𝑓𝑓𝑊𝑊,𝐻𝐻 𝑤𝑤,ℎ 𝑑𝑑𝑤𝑤𝑑𝑑ℎ = ∫25
30 ∫30

35 𝑓𝑓𝑊𝑊,𝐻𝐻 𝑤𝑤,ℎ 𝑑𝑑𝑤𝑤𝑑𝑑ℎ
A:

Why are these the same?
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Marginal densities
Defn: The marginal densities 𝑓𝑓𝑋𝑋(𝑥𝑥) and 𝑓𝑓𝑌𝑌(𝑦𝑦) are defined as:

𝑓𝑓𝑋𝑋 𝑥𝑥 = �
−∞

∞
𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑦𝑦 𝑓𝑓𝑌𝑌(𝑦𝑦) = �

−∞

∞
𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥

Note that 𝑓𝑓𝑋𝑋(𝑥𝑥) and 𝑓𝑓𝑌𝑌(𝑦𝑦) are densities and not probabilities.

Q:  If 𝑓𝑓𝑊𝑊,𝐻𝐻(𝑤𝑤,ℎ) is the joint p.d.f. of weight and height in two-year-olds, what is the 
fraction of two-year-olds whose height is exactly 30 inches?

This is a zero-probability event!�
𝑤𝑤=−∞

𝑤𝑤=∞
𝑓𝑓𝑊𝑊,𝐻𝐻 𝑤𝑤, 30 𝑑𝑑𝑤𝑤 = 𝑓𝑓𝐻𝐻(30)A:
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Independence

Defn: Continuous random variables 𝑋𝑋 and 𝑌𝑌are i𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧, written 𝑋𝑋 ⊥ 𝑌𝑌, if: 

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 𝑓𝑓𝑋𝑋 𝑥𝑥 ⋅ 𝑓𝑓𝑌𝑌 𝑦𝑦  ∀𝑥𝑥,𝑦𝑦

Let’s consider some joint p.d.f.s to determine whether 𝑋𝑋 and 𝑌𝑌 are independent.  
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Example

Q:  (a) What is 𝑬𝑬[𝑋𝑋]?   (b) Is 𝑋𝑋 ⊥ 𝑌𝑌?

𝑓𝑓𝑋𝑋,𝑌𝑌(𝑥𝑥,𝑦𝑦) = �
𝑥𝑥 + 𝑦𝑦 if 0 ≤ 𝑥𝑥,𝑦𝑦 ≤ 1  

0 otherwise
 

𝑓𝑓𝑋𝑋(𝑥𝑥) = �
−∞

∞
𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑦𝑦 = �

0

1
𝑥𝑥 + 𝑦𝑦 𝑑𝑑𝑦𝑦 = 𝑥𝑥 +

1
2

A:  part (a)

𝑬𝑬 𝑋𝑋 = �
−∞

∞
𝑓𝑓𝑋𝑋 𝑥𝑥 ⋅ 𝑥𝑥𝑑𝑑𝑥𝑥 = �

0

1
𝑥𝑥 +

1
2

⋅ 𝑥𝑥 𝑑𝑑𝑥𝑥 =
7

12
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Example

Q:  (a) What is 𝑬𝑬[𝑋𝑋]?   (b) Is 𝑋𝑋 ⊥ 𝑌𝑌?

𝑓𝑓𝑋𝑋,𝑌𝑌(𝑥𝑥,𝑦𝑦) = �
𝑥𝑥 + 𝑦𝑦 if 0 ≤ 𝑥𝑥,𝑦𝑦 ≤ 1  

0 otherwise
 

𝑓𝑓𝑋𝑋(𝑥𝑥) = �
−∞

∞
𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑦𝑦 = 𝑥𝑥 +

1
2

A:  part (b)

𝑓𝑓𝑌𝑌(𝑦𝑦) = �
−∞

∞
𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥 = 𝑦𝑦 +

1
2

Clearly,  𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 ≠ 𝑓𝑓𝑋𝑋 𝑥𝑥 ⋅ 𝑓𝑓𝑌𝑌 𝑦𝑦
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Example

Q:  Is 𝑋𝑋 ⊥ 𝑌𝑌?

𝑓𝑓𝑋𝑋,𝑌𝑌(𝑥𝑥,𝑦𝑦) = �
4𝑥𝑥𝑦𝑦 if 0 ≤ 𝑥𝑥,𝑦𝑦 ≤ 1  

0 otherwise
 

𝑓𝑓𝑋𝑋(𝑥𝑥) = �
0

1
4𝑥𝑥𝑦𝑦 𝑑𝑑𝑦𝑦 = 2𝑥𝑥

A:

𝑓𝑓𝑌𝑌(𝑦𝑦) = �
0

1
4𝑥𝑥𝑦𝑦 𝑑𝑑𝑥𝑥 = 2𝑦𝑦

Clearly,  𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 𝑓𝑓𝑋𝑋 𝑥𝑥 ⋅ 𝑓𝑓𝑌𝑌 𝑦𝑦



"Introduction to Probability for Computing", Harchol-Balter '24
10

Example: Which Exponential happens first?

Q:  What is the probability that server 1 crashes before server 2?   Assume 𝑋𝑋 ⊥ 𝑌𝑌.

𝑷𝑷 𝑋𝑋 < 𝑌𝑌 = �
𝑥𝑥=0

∞
�
𝑦𝑦=𝑥𝑥

∞
𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑦𝑦𝑑𝑑𝑥𝑥 

A:

  The time until server 1 crashes is  𝑋𝑋 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸 𝜆𝜆
  The time until server 2 crashes is  𝑌𝑌 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸(𝜇𝜇)

= �
𝑥𝑥=0

∞
�
𝑦𝑦=𝑥𝑥

∞
𝑓𝑓𝑋𝑋 𝑥𝑥 ⋅ 𝑓𝑓𝑌𝑌 𝑦𝑦  𝑑𝑑𝑦𝑦𝑑𝑑𝑥𝑥 

= �
𝑥𝑥=0

∞
𝜆𝜆𝑒𝑒−𝜆𝜆𝑥𝑥 �

𝑦𝑦=𝑥𝑥

∞
𝜇𝜇𝑒𝑒−𝜇𝜇𝑦𝑦𝑑𝑑𝑦𝑦𝑑𝑑𝑥𝑥 =

𝜆𝜆
𝜆𝜆 + 𝜇𝜇

What happens 
when 𝜆𝜆 = 𝜇𝜇 ?

𝑋𝑋 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸 𝜆𝜆 𝑌𝑌 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸(𝜇𝜇)
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Conditional p.d.f. and Bayes’ Law

Defn: Given two continuous random variables,  𝑋𝑋 and 𝑌𝑌,  we define the conditional
p.d.f. of r.v. 𝑋𝑋 given event 𝑌𝑌 = 𝑦𝑦  as:

𝑓𝑓𝑋𝑋|𝑌𝑌=𝑦𝑦 𝑥𝑥 =
𝑓𝑓𝑋𝑋,𝑌𝑌(𝑥𝑥,𝑦𝑦)
𝑓𝑓𝑌𝑌(𝑦𝑦)

=
𝑓𝑓𝑌𝑌|𝑋𝑋=𝑥𝑥 𝑦𝑦 ⋅ 𝑓𝑓𝑋𝑋(𝑥𝑥)

𝑓𝑓𝑌𝑌(𝑦𝑦)
=
𝑓𝑓𝑌𝑌|𝑋𝑋=𝑥𝑥 𝑦𝑦 ⋅ 𝑓𝑓𝑋𝑋(𝑥𝑥)
∫𝑥𝑥 𝑓𝑓𝑋𝑋,𝑌𝑌(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥

This is the 
definition of the 
conditional p.d.f., 
where we’re 
conditioning on a 
zero-probability 
event 𝑌𝑌 = 𝑦𝑦 

Here we’ve used the same 
definition but this time 
applied it to conditioning 
on 𝑋𝑋 = 𝑥𝑥, resulting in a 
Bayesʹ Law for two 
continuous r.v.s

Here we’ve simply 
expanded out

𝑓𝑓𝑌𝑌(𝑦𝑦)

Observe that the conditional p.d.f. is still a proper p.d.f., i.e., ∫−∞
∞  𝑓𝑓𝑋𝑋|𝑌𝑌=𝑦𝑦 𝑥𝑥  𝑑𝑑𝑥𝑥 = 1 
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Law of Total Probability Generalized

Theorem:  Let 𝐴𝐴 be an event and 𝑌𝑌 be a continuous r.v.   
Then we can compute 𝑷𝑷{𝐴𝐴} by conditioning on the value of 𝑌𝑌 as follows:

𝑷𝑷 𝐴𝐴 = �
−∞

∞
𝑓𝑓𝑌𝑌 𝑦𝑦 ∩ 𝐴𝐴 𝑑𝑑𝑦𝑦 = �

−∞

∞
𝑷𝑷 𝐴𝐴 𝑌𝑌 = 𝑦𝑦} 𝑓𝑓𝑌𝑌 𝑦𝑦 𝑑𝑑𝑦𝑦

Recall the Law of Total Probability, repeated below:

Using the definition for the conditional p.d.f. from the prior slide, we can similarly express 
𝑓𝑓𝑋𝑋 𝑥𝑥  by conditioning on the value of 𝑌𝑌:

Theorem:  Let 𝑋𝑋 and 𝑌𝑌 be continuous random variables.   Then, from the definition of   
the conditional p.d.f., we have:

𝑓𝑓𝑋𝑋 𝑥𝑥 = �
𝑦𝑦
𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑦𝑦 = �

𝑦𝑦
𝑓𝑓𝑋𝑋|𝑌𝑌=𝑦𝑦 𝑥𝑥 𝑓𝑓𝑌𝑌 𝑦𝑦 𝑑𝑑𝑦𝑦 
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Example: Which Exponential happens first?

𝑷𝑷 𝑋𝑋 < 𝑌𝑌 = �
0

∞
𝑷𝑷 𝑋𝑋 < 𝑌𝑌 𝑋𝑋 = 𝑥𝑥} ⋅ 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥A:

=
𝜆𝜆

𝜆𝜆 + 𝜇𝜇

Where did we use 
independence?

= �
0

∞
𝑷𝑷 𝑌𝑌 > 𝑥𝑥 𝑋𝑋 = 𝑥𝑥} ⋅ 𝜆𝜆𝑒𝑒−𝜆𝜆𝑥𝑥𝑑𝑑𝑥𝑥

= �
0

∞
𝑷𝑷{𝑌𝑌 > 𝑥𝑥} ⋅ 𝜆𝜆𝑒𝑒−𝜆𝜆𝑥𝑥𝑑𝑑𝑥𝑥

= �
0

∞
𝑒𝑒−𝜇𝜇𝑥𝑥 ⋅ 𝜆𝜆𝑒𝑒−𝜆𝜆𝑥𝑥𝑑𝑑𝑥𝑥

Q:  What is the probability that server 1 crashes before server 2?   Assume 𝑋𝑋 ⊥ 𝑌𝑌.

  The time until server 1 crashes is  𝑋𝑋 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸 𝜆𝜆
  The time until server 2 crashes is  𝑌𝑌 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸(𝜇𝜇)

𝑋𝑋 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸 𝜆𝜆 𝑌𝑌 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸(𝜇𝜇)
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From Midterm 2020

All your answers should be in terms of 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦  or prior results.  

Random variables 𝑋𝑋 and 𝑌𝑌 are NOT independent.   Their joint density is:

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦  where 0 ≤ 𝑥𝑥,𝑦𝑦 ≤ ∞

a. Write an expression for 𝑓𝑓𝑌𝑌(𝑦𝑦)

b. Write an expression for 𝑓𝑓𝑋𝑋|𝑌𝑌=5(𝑥𝑥)

c. Write an expression for 𝑷𝑷 𝑋𝑋 + 𝑌𝑌 < 10 𝑌𝑌 = 5}

d. Write an expression for 𝑓𝑓𝑌𝑌|𝑋𝑋<6(𝑦𝑦)

e. Write an expression for 𝑓𝑓𝑌𝑌|𝑌𝑌<6(𝑦𝑦)
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From Midterm 2020

All your answers should be in terms of 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦  or prior results.  

Random variables 𝑋𝑋 and 𝑌𝑌 are NOT independent.   Their joint density is:

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦  where 0 ≤ 𝑥𝑥,𝑦𝑦 ≤ ∞

a. Write an expression for 𝑓𝑓𝑌𝑌(𝑦𝑦)

𝑓𝑓𝑌𝑌 𝑦𝑦 = �
0

∞
 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥

𝑋𝑋

𝑌𝑌

The World

𝑓𝑓𝑌𝑌 𝑦𝑦  
𝑦𝑦 

A: Blue event has 
zero probability

Q: What is the mass of 
the blue event, relative
to the “world?” 
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From Midterm 2020

All your answers should be in terms of 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦  or prior results.  

Random variables 𝑋𝑋 and 𝑌𝑌 are NOT independent.   Their joint density is:

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦  where 0 ≤ 𝑥𝑥,𝑦𝑦 ≤ ∞

𝑓𝑓𝑋𝑋|𝑌𝑌=5 𝑥𝑥 =
𝑓𝑓𝑋𝑋,𝑌𝑌(𝑥𝑥, 5)
𝑓𝑓𝑌𝑌(5)  ,

𝑋𝑋

𝑌𝑌

The World5 

A: Blue event has 
zero probability

Q: What is the mass of 
the blue event, relative
to the “world?” 

b. Write an expression for 𝑓𝑓𝑋𝑋|𝑌𝑌=5(𝑥𝑥)

𝑥𝑥 
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From Midterm 2020

All your answers should be in terms of 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦  or prior results.  

Random variables 𝑋𝑋 and 𝑌𝑌 are NOT independent.   Their joint density is:

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦  where 0 ≤ 𝑥𝑥,𝑦𝑦 ≤ ∞

𝑷𝑷 𝑋𝑋 + 𝑌𝑌 < 10 𝑌𝑌 = 5} ,

𝑋𝑋

𝑌𝑌

The World5 

A: Blue event has 
non-zero probability

Q: What is the mass of 
the blue event, relative
to the “world?” 

5 

c. Write an expression for 𝑷𝑷 𝑋𝑋 + 𝑌𝑌 < 10 𝑌𝑌 = 5}

= �
𝑥𝑥=0

5
𝑓𝑓𝑋𝑋|𝑌𝑌=5 𝑥𝑥 𝑑𝑑𝑥𝑥 ,

= �
𝑥𝑥=0

5 𝑓𝑓𝑋𝑋,𝑌𝑌(𝑥𝑥, 5)
𝑓𝑓𝑌𝑌(5)

𝑑𝑑𝑥𝑥 
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From Midterm 2020

All your answers should be in terms of 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦  or prior results.  

Random variables 𝑋𝑋 and 𝑌𝑌 are NOT independent.   Their joint density is:

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦  where 0 ≤ 𝑥𝑥,𝑦𝑦 ≤ ∞

𝑓𝑓𝑌𝑌|𝑋𝑋<6(𝑦𝑦) ,

𝑋𝑋

𝑌𝑌

=
𝑓𝑓𝑌𝑌(𝑦𝑦 ∩ 𝑋𝑋 < 6)
𝑷𝑷{𝑋𝑋 < 6}

 ,

d. Write an expression for 𝑓𝑓𝑌𝑌|𝑋𝑋<6(𝑦𝑦)

6 

The World

𝑦𝑦

Q: What is the mass of 
the blue event, relative
to the “world?” 

A: Blue event has 
     zero probability

=
∫𝑥𝑥=0
6 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥

∫𝑥𝑥=0
6 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥
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From Midterm 2020

All your answers should be in terms of 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦  or prior results.  

Random variables 𝑋𝑋 and 𝑌𝑌 are NOT independent.   Their joint density is:

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦  where 0 ≤ 𝑥𝑥,𝑦𝑦 ≤ ∞

𝑓𝑓𝑌𝑌|𝑋𝑋<6(𝑦𝑦) ,

𝑋𝑋

𝑌𝑌

=
𝑓𝑓𝑌𝑌(𝑦𝑦 ∩ 𝑌𝑌 < 6)
𝑷𝑷{𝑌𝑌 < 6}

 

e. Write an expression for 𝑓𝑓𝑌𝑌|𝑌𝑌<6(𝑦𝑦)

6 
The World

𝑦𝑦

Q: What is the mass of 
the blue event, relative
to the “world?” 

A: Blue event has 
     zero probability

= �
𝑓𝑓𝑌𝑌(𝑦𝑦)

𝑷𝑷{𝑌𝑌 < 6}
if 𝑦𝑦 < 6  

0
 

otherwise  
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Expectation with multiple r.v.s

Defn: Let 𝑋𝑋 and 𝑌𝑌 be continuous random variables with joint p.d.f. 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 . 
Then, for any function 𝑔𝑔 𝑥𝑥,𝑦𝑦 , we have

𝑬𝑬 𝑔𝑔 𝑋𝑋,𝑌𝑌 = �
−∞

∞
�
−∞

∞
𝑔𝑔 𝑥𝑥,𝑦𝑦 ⋅ 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦
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Conditional expectation with multiple RVs

Recall Defn: For a continuous r.v. 𝑋𝑋 and an event 𝐴𝐴, where 𝑷𝑷 𝐴𝐴 > 0,the conditional 
expectation of 𝑿𝑿 given 𝑨𝑨 is:

𝑬𝑬 𝑋𝑋 𝐴𝐴 = �
𝑥𝑥
𝑥𝑥 ⋅ 𝑓𝑓𝑋𝑋|𝐴𝐴 𝑥𝑥 𝑑𝑑𝑥𝑥

Defn: For continuous r.v.s 𝑋𝑋 and 𝑌𝑌

𝑬𝑬 𝑋𝑋 𝑌𝑌 = 𝑦𝑦 = �
𝑥𝑥
𝑥𝑥 ⋅ 𝑓𝑓𝑋𝑋|𝑌𝑌=𝑦𝑦 𝑥𝑥 𝑑𝑑𝑥𝑥 = �

𝑥𝑥
𝑥𝑥 ⋅

𝑓𝑓𝑋𝑋,𝑌𝑌(𝑥𝑥,𝑦𝑦)
𝑓𝑓𝑌𝑌(𝑦𝑦)

𝑑𝑑𝑥𝑥

Theorem:  We can derive 𝑬𝑬[𝑋𝑋] by conditioning on the value of continuous r.v. 𝑌𝑌 :

𝑬𝑬 𝑋𝑋 = �
𝑦𝑦
𝑬𝑬 𝑋𝑋 𝑌𝑌 = 𝑦𝑦] ⋅ 𝑓𝑓𝑌𝑌 𝑦𝑦 𝑑𝑑𝑦𝑦 
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Example

Two-year-olds range in weight from 15 – 35 pounds.
They range in height from 25 – 40 inches.

Q:  My 2-year old is 30 inches tall.  
      What is their expected weight?

𝑬𝑬 𝑊𝑊 𝐻𝐻 = 30] = �
𝑤𝑤=15

35
𝑤𝑤 ⋅ 𝑓𝑓𝑊𝑊|𝐻𝐻=30 𝑤𝑤 𝑑𝑑𝑤𝑤 

A:

= �
𝑤𝑤=15

35
𝑤𝑤 ⋅

𝑓𝑓𝑊𝑊,𝐻𝐻(𝑤𝑤, 30)
𝑓𝑓𝐻𝐻(30)

𝑑𝑑𝑤𝑤 

Why are these the same? 𝑋𝑋

𝑌𝑌 The World

30 
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Example

Two-year-olds range in weight from 15 – 35 pounds.
They range in height from 25 – 40 inches.

Q:  What fraction of 2-year olds with height 
30 inches have weight < 25 pounds?

𝑷𝑷 𝑊𝑊 < 25 𝐻𝐻 = 30} = �
𝑤𝑤=15

25
𝑓𝑓𝑊𝑊|𝐻𝐻=30 𝑤𝑤 𝑑𝑑𝑤𝑤 

A:

= �
𝑤𝑤=15

25 𝑓𝑓𝑊𝑊,𝐻𝐻(𝑤𝑤, 30)
𝑓𝑓𝐻𝐻(30)

𝑑𝑑𝑤𝑤 
𝑋𝑋

𝑌𝑌 The World

30 

25 



"Introduction to Probability for Computing", Harchol-Balter '24
24

Example: Hand-in Time versus Grade

Q:  What is the probability that a random student gets a grade above 50%?

A:

  𝑇𝑇 = number of days early that homework is submitted: 0 ≤ 𝑇𝑇 ≤ 2
 𝐺𝐺 = grade on homework (as a percentage): 0 ≤ 𝐺𝐺 ≤ 1
 Joint density function:  0 ≤ 𝑡𝑡 ≤ 2, 0 ≤ 𝑔𝑔 ≤ 1:

𝑓𝑓𝐺𝐺,𝑇𝑇 𝑔𝑔, 𝑡𝑡 =
9

10
tg2 +

1
5

𝑷𝑷 𝐺𝐺 >
1
2

= �
0.5

1
𝑓𝑓𝐺𝐺 𝑔𝑔 𝑑𝑑𝑔𝑔 = �

0.5

1 9
5

g2 +
2
5

𝑑𝑑𝑡𝑡 = 0.725

𝑓𝑓𝐺𝐺(𝑔𝑔) = �
0

2
𝑓𝑓𝐺𝐺,𝑇𝑇 𝑔𝑔, 𝑡𝑡 𝑑𝑑𝑡𝑡 = �

0

2 9
10

tg2 +
1
5

𝑑𝑑𝑡𝑡 =
9
5
𝑔𝑔2 +

2
5
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Example: Hand-in Time versus Grade

Q:  Given that a student submitted less than a day before the deadline, 
       does the probability of getting a grade >50% go down?

A:

  𝑇𝑇 = number of days early that homework is submitted: 0 ≤ 𝑇𝑇 ≤ 2
 𝐺𝐺 = grade on homework (as a percentage): 0 ≤ 𝐺𝐺 ≤ 1

𝑓𝑓𝐺𝐺,𝑇𝑇 𝑔𝑔, 𝑡𝑡 =
9

10
tg2 +

1
5

𝑷𝑷 𝐺𝐺 > 0.5 𝑇𝑇 < 1 =
𝑷𝑷{𝐺𝐺 > 0.5 & 𝑇𝑇 < 1}

𝑷𝑷{𝑇𝑇 < 1}

𝑓𝑓𝑇𝑇 𝑡𝑡 = �
0

1
𝑓𝑓𝐺𝐺,𝑇𝑇 𝑔𝑔, 𝑡𝑡 𝑑𝑑𝑔𝑔 = �

0

1 9
10

tg2 +
1
5

𝑑𝑑𝑔𝑔 =
3

10
𝑡𝑡 +

1
5

=
∫𝑔𝑔=0.5
𝑔𝑔=1 ∫𝑡𝑡=0

𝑡𝑡=1 𝑓𝑓𝐺𝐺,𝑇𝑇 𝑔𝑔, 𝑡𝑡 𝑑𝑑𝑡𝑡 𝑑𝑑𝑔𝑔

∫𝑡𝑡=0
𝑡𝑡=1 𝑓𝑓𝑇𝑇 𝑡𝑡 𝑑𝑑𝑡𝑡

=
∫𝑔𝑔=0.5
𝑔𝑔=1 ∫𝑡𝑡=0

𝑡𝑡=1 9
10 tg2 + 1

5 𝑑𝑑𝑡𝑡 𝑑𝑑𝑔𝑔

∫𝑡𝑡=0
𝑡𝑡=1 3

10 𝑡𝑡 + 1
5 𝑑𝑑𝑡𝑡

= 0.66
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Example: Hand-in Time versus Grade

Q:  A student submits at 𝑇𝑇 = 0, i.e., exactly when the homework is due.  
      What is their expected grade?  

A:

  𝑇𝑇 = number of days early that homework is submitted: 0 ≤ 𝑇𝑇 ≤ 2
 𝐺𝐺 = grade on homework (as a percentage): 0 ≤ 𝐺𝐺 ≤ 1

𝑓𝑓𝐺𝐺,𝑇𝑇 𝑔𝑔, 𝑡𝑡 =
9

10
tg2 +

1
5

𝑬𝑬 𝐺𝐺 𝑇𝑇 = 0] = �
𝑔𝑔=0

1
𝑔𝑔 ⋅ 𝑓𝑓𝐺𝐺|𝑇𝑇=0 𝑔𝑔 𝑑𝑑𝑔𝑔

𝑓𝑓𝑇𝑇 𝑡𝑡 = �
0

1
𝑓𝑓𝐺𝐺,𝑇𝑇 𝑔𝑔, 𝑡𝑡 𝑑𝑑𝑔𝑔 = �

0

1 9
10

tg2 +
1
5

𝑑𝑑𝑔𝑔 =
3

10
𝑡𝑡 +

1
5

= 0.5

= �
𝑔𝑔=0

1
𝑔𝑔 ⋅

𝑓𝑓𝐺𝐺,𝑇𝑇(𝑔𝑔, 0)
𝑓𝑓𝑇𝑇(0)

𝑑𝑑𝑔𝑔

= �
𝑔𝑔=0

1
𝑔𝑔 ⋅

1
5
1
5
𝑑𝑑𝑔𝑔
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Example: Hand-in Time versus Grade

Q:  By contrast, what is the expected grade of a student who submits > 1 day early?

A:

  𝑇𝑇 = number of days early that homework is submitted: 0 ≤ 𝑇𝑇 ≤ 2
 𝐺𝐺 = grade on homework (as a percentage): 0 ≤ 𝐺𝐺 ≤ 1

𝑓𝑓𝐺𝐺,𝑇𝑇 𝑔𝑔, 𝑡𝑡 =
9

10
tg2 +

1
5

𝑬𝑬 𝐺𝐺 1 < 𝑇𝑇 < 2] = �
𝑔𝑔=0

1
𝑔𝑔 ⋅ 𝑓𝑓𝐺𝐺|1<𝑇𝑇<2 𝑔𝑔 𝑑𝑑𝑔𝑔

𝑓𝑓𝑇𝑇 𝑡𝑡 = �
0

1
𝑓𝑓𝐺𝐺,𝑇𝑇 𝑔𝑔, 𝑡𝑡 𝑑𝑑𝑔𝑔 =

3
10

𝑡𝑡 +
1
5

= 0.673

= �
𝑔𝑔=0

1
𝑔𝑔 ⋅

𝑓𝑓𝐺𝐺(𝑔𝑔 ∩  1 < 𝑇𝑇 < 2)
𝑷𝑷{1 < 𝑇𝑇 < 2}

𝑑𝑑𝑔𝑔

= �
𝑔𝑔=0

1
𝑔𝑔 ⋅

∫1
2 𝑓𝑓𝐺𝐺,𝑇𝑇 𝑔𝑔, 𝑡𝑡 𝑑𝑑𝑡𝑡

∫1
2 𝑓𝑓𝑇𝑇 𝑡𝑡 𝑑𝑑𝑡𝑡

𝑑𝑑𝑔𝑔

= �
𝑔𝑔=0

1
𝑔𝑔 ⋅

∫1
2 9

10 tg2 + 1
5 𝑑𝑑𝑡𝑡

∫1
2 3

10 𝑡𝑡 + 1
5 𝑑𝑑𝑡𝑡

𝑑𝑑𝑔𝑔
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