Chapter 8 Continuous Random Variables: Joint distributions

Joint Densities

Defn: The **joint probability density function** between continuous random variables X and Y is a non-negative function $f_{X,Y}(x, y)$, where

$$
\int_{c}^{d} \int_{a}^{b} f_{X,Y}(x, y) dx dy = P\{a \le X \le b \& c \le Y \le d\}
$$

and where

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1
$$

Joint Densities

Volume under the curve equals:

$$
\int_{c}^{d} \int_{a}^{b} f_{X,Y}(x,y) dx dy = P\{a \le X \le b \& c \le Y \le d\}
$$

Two-year-olds range in weight from 15 – 35 pounds. They range in height from 25 – 40 inches.

 $f_{W,H}(w, h)$ denotes the joint p.d.f. of weight and height.

Q: What is the fraction of two-year-olds with weight > 30 pounds but height < 30 inches?

A:

$$
\int_{h=-\infty}^{h=30} \int_{w=30}^{w=\infty} f_{W,H}(w,h) dw dh = \int_{25}^{30} \int_{30}^{35} f_{W,H}(w,h) dw dh
$$

Marginal densities

Defn: The **marginal densities** $f_X(x)$ and $f_Y(y)$ are defined as:

$$
f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy \qquad \qquad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dx
$$

Note that $f_X(x)$ and $f_Y(y)$ are densities and not probabilities.

Q: If $f_{W,H}(w, h)$ is the joint p.d.f. of weight and height in two-year-olds, what is the fraction of two-year-olds whose height is exactly 30 inches?

$$
\begin{cases}\n\mathbf{A:} & \int_{w=-\infty}^{w=\infty} f_{W,H}(w, 30) dw = f_H(30)\n\end{cases}
$$

This is a zero-probability event!

Independence

Defn: Continuous random variables X and Yare **independent**, written $X \perp Y$, if:

$$
f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y) \quad \forall x, y
$$

Let's consider some joint p.d.f.s to determine whether X and Y are independent.

$$
f_{X,Y}(x,y) = \begin{cases} x+y & \text{if } 0 \le x, y \le 1 \\ 0 & \text{otherwise} \end{cases}
$$

Q: (a) What is $E[X]$? (b) Is $X \perp Y$?

A: part (a)
\n
$$
f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy = \int_{0}^{1} (x + y) dy = x + \frac{1}{2}
$$
\n
$$
\mathbf{E}[X] = \int_{-\infty}^{\infty} f_X(x) \cdot x dx = \int_{0}^{1} \left(x + \frac{1}{2} \right) \cdot x dx = \frac{7}{12}
$$

$$
f_{X,Y}(x,y) = \begin{cases} x+y & \text{if } 0 \le x, y \le 1 \\ 0 & \text{otherwise} \end{cases}
$$

Q: (a) What is $E[X]$? (b) Is $X \perp Y$?

A: part (b)

$$
f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy = x + \frac{1}{2}
$$

$$
f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dx = y + \frac{1}{2}
$$

Clearly, $f_{X,Y}(x, y) \neq f_X(x) \cdot f_Y(y)$

$$
f_{X,Y}(x,y) = \begin{cases} 4xy & \text{if } 0 \le x, y \le 1 \\ 0 & \text{otherwise} \end{cases}
$$

Q: Is $X \perp Y$?

A:

$$
f_X(x) = \int_0^1 4xy \, dy = 2x
$$

$$
f_Y(y) = \int_0^1 4xy \, dx = 2y
$$

Clearly, $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$

Example: Which Exponential happens first?

- \triangleright The time until server 1 crashes is $X \sim Exp(\lambda)$
- \triangleright The time until server 2 crashes is $Y \sim Exp(\mu)$

 $X \sim Exp(\lambda)$ $Y \sim Exp(\mu)$

Q: What is the probability that server 1 crashes before server 2? Assume $X \perp Y$.

A:
\n
$$
P\{X < Y\} = \int_{x=0}^{\infty} \int_{y=x}^{\infty} f_{X,Y}(x, y) dy dx
$$
\n
$$
= \int_{x=0}^{\infty} \int_{y=x}^{\infty} f_X(x) \cdot f_Y(y) dy dx
$$
\n
$$
= \int_{x=0}^{\infty} \lambda e^{-\lambda x} \int_{y=x}^{\infty} \mu e^{-\mu y} dy dx = \frac{\lambda}{\lambda + \mu}
$$
\nWhat happens when $\lambda = \mu$?

Conditional p.d.f. and Bayes' Law

Defn: Given two continuous random variables, X and Y, we define the **conditional p.d.f.** of r.v. X given event $Y = y$ as:

Observe that the conditional p.d.f. is still a proper p.d.f., i.e., $\int_{-\infty}^{\infty} f_{X|Y=y}(x) dx = 1$

Law of Total Probability Generalized

Recall the Law of Total Probability, repeated below:

Theorem: Let A be an event and Y be a continuous r.v. Then we can compute $P{A}$ by conditioning on the value of Y as follows:

$$
\mathbf{P}{A} = \int_{-\infty}^{\infty} f_Y(y \cap A) dy = \int_{-\infty}^{\infty} \mathbf{P}{A} |Y = y\} f_Y(y) dy
$$

Using the definition for the conditional p.d.f. from the prior slide, we can similarly express $f_X(x)$ by conditioning on the value of Y:

Theorem: Let X and Y be continuous random variables. Then, from the definition of the conditional p.d.f., we have:

$$
f_X(x) = \int_y f_{X,Y}(x,y) dy = \int_y f_{X|Y=y}(x) f_Y(y) dy
$$

Example: Which Exponential happens first?

- \triangleright The time until server 1 crashes is $X \sim Exp(\lambda)$
- \triangleright The time until server 2 crashes is $Y \sim Exp(\mu)$

Q: What is the probability that server 1 crashes before server 2? Assume $X \perp Y$.

A:
\n
$$
P{X < Y} = \int_0^\infty P{X < Y | X = x} \cdot f_X(x) dx
$$
\n
$$
= \int_0^\infty P{Y > x | X = x} \cdot \lambda e^{-\lambda x} dx
$$
\n
$$
= \int_0^\infty P{Y > x} \cdot \lambda e^{-\lambda x} dx
$$
\n
$$
= \int_0^\infty e^{-\mu x} \cdot \lambda e^{-\lambda x} dx = \frac{\lambda}{\lambda + \mu}
$$

Where did we use

independence?

[&]quot;Introduction to Probability for Computing", Harchol-Balter '24

Random variables X and Y are NOT independent. Their joint density is:

 $f_{X,Y}(x, y)$ where $0 \le x, y \le \infty$

All your answers should be in terms of $f_{X,Y}(x, y)$ or prior results.

a. Write an expression for $f_Y(y)$

b. Write an expression for $f_{X|Y=5}(x)$

c. Write an expression for $P\{X + Y < 10 \mid Y = 5\}$

d. Write an expression for $f_{Y|X<6}(y)$

```
e. Write an expression for f_{Y|Y<6}(y)
```
Random variables X and Y are NOT independent. Their joint density is:

 $f_{X,Y}(x, y)$ where $0 \le x, y \le \infty$

All your answers should be in terms of $f_{X,Y}(x, y)$ or prior results.

a. Write an expression for $f_Y(y)$

$$
f_Y(y) = \int_0^\infty f_{X,Y}(x,y) dx
$$

Random variables X and Y are NOT independent. Their joint density is:

 $f_{X,Y}(x, y)$ where $0 \le x, y \le \infty$

"Introduction to Probability for Computing", Harchol-Balter ⁷24

All your answers should be in terms of $f_{X,Y}(x, y)$ or prior results.

b. Write an expression for $f_{X|Y=5}(x)$

$$
f_{X|Y=5}(x) = \frac{f_{X,Y}(x,5)}{f_Y(5)}
$$

Random variables X and Y are NOT independent. Their joint density is:

 $f_{X,Y}(x, y)$ where $0 \le x, y \le \infty$

"Introduction to Probability for Computing", Harchol-Balter \geq 17 All your answers should be in terms of $f_{X,Y}(x, y)$ or prior results. $P\{X + Y < 10 \mid Y = 5\} =$ \mathbb{Z} $\sum_{i=1}^{n}$ $5 - 7$ The World A: Blue event has non-zero probability Q: What is the mass of the blue event, relative to the "world?" 5 c. Write an expression for $P{X + Y < 10 | Y = 5}$ $x=0$ 5 $f_{X|Y=5}(x)dx$, $= |$ $x=0$ $\int_{X,Y}(x, 5)$ $\frac{f_Y(5)}{f_Y(5)}$ d

Random variables X and Y are NOT independent. Their joint density is:

 $f_{X,Y}(x, y)$ where $0 \le x, y \le \infty$

All your answers should be in terms of $f_{X,Y}(x, y)$ or prior results.

d. Write an expression for $f_{Y|X<6}(y)$

$$
f_{Y|X<6}(y) = \frac{f_Y(y \cap X < 6)}{P\{X < 6\}} \, ,
$$

$$
= \frac{\int_{x=0}^{6} f_{X,Y}(x, y) dx}{\int_{x=0}^{6} f_X(x) dx}
$$

Random variables X and Y are NOT independent. Their joint density is:

 $f_{X,Y}(x, y)$ where $0 \le x, y \le \infty$

All your answers should be in terms of $f_{X,Y}(x, y)$ or prior results.

e. Write an expression for $f_{Y|Y\leq 6}(y)$

$$
f_{Y|X<6}(y) = \frac{f_Y(y \cap Y < 6)}{P\{Y < 6\}}
$$
\n
$$
= \begin{cases} \frac{f_Y(y)}{P\{Y < 6\}} & \text{if } y < 6\\ 0 & \text{otherwise} \end{cases}
$$

Expectation with multiple r.v.s

Defn: Let X and Y be continuous random variables with joint p.d.f. $f_{X,Y}(x, y)$. Then, for any function $g(x, y)$, we have

$$
\boldsymbol{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) \cdot f_{X,Y}(x,y) dxdy
$$

Conditional expectation with multiple RVs

Recall Defn: For a **continuous** r.v. X and an event A, where $P\{A\} > 0$, the **conditional expectation of X given A is:**

$$
E[X|A] = \int_{x} x \cdot f_{X|A}(x) dx
$$

Defn: For **continuous** r.v.s X and Y

$$
\boldsymbol{E}[X|Y=y] = \int_x x \cdot f_{X|Y=y}(x) dx = \int_x x \cdot \frac{f_{X,Y}(x,y)}{f_Y(y)} dx
$$

Theorem: We can derive $E[X]$ by conditioning on the value of continuous r.v. Y :

$$
\boldsymbol{E}[X] = \int_{\mathcal{Y}} \boldsymbol{E}[X \mid Y = y] \cdot f_Y(y) dy
$$

Two-year-olds range in weight from 15 – 35 pounds. They range in height from 25 – 40 inches.

Q: My 2-year old is 30 inches tall. What is their expected weight?

A:
\n
$$
E[W | H = 30] = \int_{w=15}^{35} w \cdot f_{W|H=30}(w) dw
$$
\n
$$
= \int_{w=15}^{35} w \cdot \frac{f_{W,H}(w, 30)}{f_H(30)} dw
$$

The World

"Introduction to Probability for Computing", Harchol-Balter '24

Two-year-olds range in weight from 15 – 35 pounds. They range in height from 25 – 40 inches.

Q: What fraction of 2-year olds with height 30 inches have weight $<$ 25 pounds?

- \triangleright T = number of days early that homework is submitted: $0 \le T \le 2$
- \triangleright $G =$ grade on homework (as a percentage): $0 \le G \le 1$

 \triangleright Joint density function: $0 \le t \le 2$, $0 \le g \le 1$:

$$
f_{G,T}(g,t) = \frac{9}{10} \text{tg}^2 + \frac{1}{5}
$$

Q: What is the probability that a random student gets a grade above 50%?

A:

$$
f_G(g) = \int_0^2 f_{G,T}(g, t)dt = \int_0^2 \left(\frac{9}{10} \text{tg}^2 + \frac{1}{5}\right)dt = \frac{9}{5}g^2 + \frac{2}{5}
$$

$$
P\left\{G > \frac{1}{2}\right\} = \int_{0.5}^1 f_G(g)dg = \int_{0.5}^1 \left(\frac{9}{5}g^2 + \frac{2}{5}\right)dt = 0.725
$$

- \triangleright T = number of days early that homework is submitted: $0 \le T \le 2$ \triangleright $G =$ grade on homework (as a percentage): $0 \le G \le 1$
- **Q:** Given that a student submitted less than a day before the deadline, does the probability of getting a grade >50% go down?

$$
\begin{aligned}\n\mathbf{A:} \quad P\{G > 0.5 \mid T < 1\} = \frac{P\{G > 0.5 \& T < 1\}}{P\{T < 1\}} \\
&= \frac{\int_{g=0.5}^{g=1} \int_{t=0}^{t=1} f_{G,T}(g,t) dt \, dg}{\int_{t=0}^{t=1} f_{T}(t) dt} \\
&= \frac{\int_{g=0.5}^{g=1} \int_{t=0}^{t=1} \left(\frac{9}{10} \text{tg}^{2} + \frac{1}{5}\right) dt \, dg}{\int_{t=0}^{t=1} \left(\frac{3}{10} t + \frac{1}{5}\right) dt} \\
&= \frac{\int_{g=0.5}^{g=1} \int_{t=0}^{t=1} \left(\frac{9}{10} \text{tg}^{2} + \frac{1}{5}\right) dt \, dg}{\int_{t=0}^{t=1} \left(\frac{3}{10} t + \frac{1}{5}\right) dt} \\
&= \frac{\int_{g=0.5}^{g=1} \int_{t=0}^{t=1} \left(\frac{9}{10} \text{tg}^{2} + \frac{1}{5}\right) dt}{\int_{t=0}^{t=1} \left(\frac{3}{10} t + \frac{1}{5}\right) dt} \\
&= \frac{\int_{g=0.5}^{g=1} \int_{t=0}^{t=1} \left(\frac{9}{10} \text{tg}^{2} + \frac{1}{5}\right) dt}{\int_{t=0}^{t=1} \left(\frac{3}{10} \text{tg}^{2} + \frac{1}{5}\right) dt} \\
&= \frac{\int_{g=0.5}^{g=1} \int_{t=0}^{t=1} \left(\frac{9}{10} \text{tg}^{2} + \frac{1}{5}\right) dt}{\int_{t=0}^{t=1} \left(\frac{3}{10} \text{tg}^{2} + \frac{1}{5}\right) dt} \\
&= \frac{\int_{g=0.5}^{g=1} \int_{t=0}^{t=1} \left(\frac{9}{10} \text{tg}^{2} + \frac{1}{5}\right) dt}{\int_{t=0}^{t=1} \left(\frac{3}{10} \text{tg}^{2} + \frac{1}{5}\right) dt} \\
&= \frac{\int_{g=
$$

- \triangleright T = number of days early that homework is submitted: $0 \le T \le 2$ \triangleright $G =$ grade on homework (as a percentage): $0 \le G \le 1$
- **Q:** A student submits at $T = 0$, i.e., exactly when the homework is due. What is their expected grade?

A:
$$
E[G | T = 0] = \int_{g=0}^{1} g \cdot f_{G|T=0}(g) dg = \int_{g=0}^{1} g \cdot \frac{f_{G,T}(g,0)}{f_T(0)} dg
$$

$$
= \int_{g=0}^{1} g \cdot \frac{\frac{1}{5}}{\frac{1}{5}} dg = 0.5
$$

$$
f_T(t) = \int_0^1 f_{G,T}(g, t) dg = \int_0^1 \left(\frac{9}{10} \text{tg}^2 + \frac{1}{5}\right) dg = \frac{3}{10} t + \frac{1}{5}
$$

- \triangleright T = number of days early that homework is submitted: $0 \leq T \leq 2$ \triangleright $G =$ grade on homework (as a percentage): $0 \le G \le 1$
- **Q:** By contrast, what is the expected grade of a student who submits > 1 day early?

A:
$$
E[G \mid 1 < T < 2] = \int_{g=0}^{1} g \cdot f_{G \mid 1 < T < 2}(g) dg = \int_{g=0}^{1} g \cdot \frac{f_G(g \cap 1 < T < 2)}{P\{1 < T < 2\}} dg
$$

\n
$$
f_{G,T}(g,t) = \frac{9}{10}tg^2 + \frac{1}{5}
$$
\n
$$
= \int_{g=0}^{1} g \cdot \frac{\int_{1}^{2} f_{G,T}(g,t)dt}{\int_{1}^{2} f_{T}(t)dt} dg
$$
\n
$$
f_{T}(t) = \int_{0}^{1} f_{G,T}(g,t)dg = \frac{3}{10}t + \frac{1}{5}
$$
\n
$$
= \int_{\text{introduction to Probability for Computing", Harold-Balter "24}}^{1} g \cdot \frac{\int_{1}^{2} \left(\frac{9}{10}tg^2 + \frac{1}{5}\right)dt}{\int_{1}^{2} \left(\frac{3}{10}t + \frac{1}{5}\right)dt} dg = 0.673
$$

"Introduction to Probability for Computing", Harchol-Balter '24