Chapter 9 Normal Distribution

Normal (a.k.a. Gaussian) distribution

Defn:
$$X \sim Normal(\mu, \sigma^2)$$
 if
 $f_X(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}, \quad -\infty < x < \infty$
where $\sigma > 0$. The parameter μ is called the **mean**, and parameter $\sigma = \sqrt{Var(X)}$ is
called the **standard deviation**.
Defn: X follows a **standard Normal** distribution if $X \sim Normal(0,1)$, i.e.,

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2},$$

 $-\infty < x < \infty$

Bell shape of Normal distribution

Mean and Variance of Normal distribution

Theorem: Let
$$X \sim Normal(\mu, \sigma^2)$$
, then $E[X] = \mu$ and $Var(X) = \sigma^2$.

Proof – Part 1: Given that $Normal(\mu, \sigma^2)$ is symmetric around μ , it follows that $E[X] = \mu$.

Proof – Part 2: Remains to show that $Var(X) = \sigma^2$.

 $dx = \sigma \, dy$

$$Var(X) = \int_{-\infty}^{\infty} (x-\mu)^2 f_{X(x)} dx = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (x-\mu)^2 e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} dx$$

$$=\frac{\sigma^2}{\sqrt{2\pi}}\int_{-\infty}^{\infty}y^2e^{-\frac{y^2}{2}}dy$$

Variance of Normal distribution

Theorem: Let
$$X \sim Normal(\mu, \sigma^2)$$
, then $E[X] = \mu$ and $Var(X) = \sigma^2$.

Continued:

$$Var(X) = \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y^2 e^{-\frac{y^2}{2}} dy = \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y \cdot \left(y e^{-\frac{y^2}{2}}\right) dy$$

via integration by parts

$$= \frac{\sigma^2}{\sqrt{2\pi}} \left(-ye^{-\frac{y^2}{2}} \right) \Big|_{-\infty}^{\infty} + \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy$$

$$y = \frac{x - \mu}{\sigma}$$
$$dx = \sigma \, dy$$

$$= \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy = \sigma^2 \checkmark$$
WHY?

c.d.f. of Normal distribution

<u>Defn</u>: If $X \sim Normal(0, 1)$, then the c.d.f. of X is denoted by $\Phi(x) = F_X(x) = \mathbf{P}\{X \le x\} = \frac{1}{\sqrt{2\pi} \sigma} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt$

Unfortunately, $\Phi(x)$ is not known in closed form.

We compute it numerically, or look it up in a table of pre-computed values.

Theorem 9.5: (Linear Transformation Property) Let $X \sim Normal(\mu, \sigma^2)$. Let

Y = aX + b,

where a > 0 and $b \in \mathbb{R}$. Then $Y \sim Normal(a\mu + b, a^2\sigma^2)$.

Proof:

Clearly $\boldsymbol{E}[Y] = a\boldsymbol{E}[X] + b = a\mu + b$

Clearly
$$Var(Y) = a^2 Var(X) = a^2 \sigma^2 \checkmark$$

<u>All that's left</u>: Show $f_Y(y)$ has Normal shape.

WTS:
$$f_Y(y) = \frac{1}{\sqrt{2\pi} (a\sigma)} e^{-\frac{1}{2} \left(\frac{y - (a\mu + b)}{a\sigma}\right)^2}$$

Theorem 9.5: (Linear Transformation Property) Let $X \sim Normal(\mu, \sigma^2)$. Let Y = aX + b, where a > 0 and $b \in \mathbb{R}$. Then $Y \sim Normal(a\mu + b, a^2\sigma^2)$.

Proof cont:

WTS:
$$f_Y(y) = \frac{1}{\sqrt{2\pi} (a\sigma)} e^{-\frac{1}{2} \left(\frac{y - (a\mu + b)}{a\sigma}\right)^2}$$

<u>Attempt 1</u>:

$$f_Y(y) = \mathbf{P}\{Y = y\} = \mathbf{P}\{aX + b = y\} = \mathbf{P}\left\{X = \frac{y - b}{a}\right\} = f_X\left(\frac{y - b}{a}\right)$$

Q: Do you

see the

flaw?

Theorem 9.5: (Linear Transformation Property) Let $X \sim Normal(\mu, \sigma^2)$. Let Y = aX + b, where a > 0 and $b \in \mathbb{R}$. Then $Y \sim Normal(a\mu + b, a^2\sigma^2)$.

Proof cont:

WTS:
$$f_Y(y) = \frac{1}{\sqrt{2\pi} (a\sigma)} e^{-\frac{1}{2} \left(\frac{y - (a\mu + b)}{a\sigma}\right)^2}$$

Attempt 1:

FALSE!

$$f_Y(y) = \mathbf{P}\{Y = y\} = \mathbf{P}\{aX + b = y\} = \mathbf{P}\left\{X = \frac{y - b}{a}\right\} = f_X\left(\frac{y - b}{a}\right)$$

Theorem 9.5: (Linear Transformation Property) Let $X \sim Normal(\mu, \sigma^2)$. Let Y = aX + b, where a > 0 and $b \in \mathbb{R}$. Then $Y \sim Normal(a\mu + b, a^2\sigma^2)$.

Proof cont:

WTS:
$$f_Y(y) = \frac{1}{\sqrt{2\pi} (a\sigma)} e^{-\frac{1}{2} \left(\frac{y - (a\mu + b)}{a\sigma}\right)^2}$$

Correct solution requires going through c.d.f., which represents valid probability

10

Theorem 9.5: (Linear Transformation Property) Let $X \sim Normal(\mu, \sigma^2)$. Let Y = aX + b, where a > 0 and $b \in \mathbb{R}$. Then $Y \sim Normal(a\mu + b, a^2\sigma^2)$.

Proof cont:

[&]quot;Introduction to Probability for Computing", Harchol-Balter '24

Theorem 9.5: (Linear Transformation Property) Let $X \sim Normal(\mu, \sigma^2)$. Let Y = aX + b,

where a > 0 and $b \in \mathbb{R}$. Then $Y \sim Normal(a\mu + b, a^2\sigma^2)$.

Proof cont:

$$f_{Y}(y) = \frac{1}{a} \cdot f_{X}\left(\frac{y-b}{a}\right) = \frac{1}{a\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^{2}} \cdot \left(\frac{y-b}{a}-\mu\right)^{2}}$$
$$= \frac{1}{\sqrt{2\pi}(a\sigma)} e^{-\frac{1}{2a^{2}\sigma^{2}} \cdot (y-b-a\mu)^{2}}$$
$$= \frac{1}{\sqrt{2\pi}(a\sigma)} e^{-\frac{1}{2}\left(\frac{y-(a\mu+b)}{a\sigma}\right)^{2}} \implies Y \sim Normal(a\mu+b,a^{2}\sigma^{2}) \blacksquare$$

Back to $\Phi(x)$

Defn: If
$$Y \sim Normal(0, 1)$$
, then the c.d.f. of X is denoted by

$$\Phi(y) = F_Y(y) = \mathbf{P}\{Y \le y\} = \frac{1}{\sqrt{2\pi} \sigma} \int_{-\infty}^{y} e^{-\frac{t^2}{2}} dt$$

Unfortunately, $\Phi(y)$ is not known in closed form.

We compute it numerically, or look it up in a table of pre-computed values.

У	0.5	1.0	1.5	2.0	2.5	3.0
$\mathbf{\Phi}(y)$	0.69	0.84	0.93	0.97	0.99	0.999

Values are rounded.

Q: If $Y \sim Normal(0, 1)$, what is the probability that Y is within 1 std of its mean?

у	0.5	1.0	1.5	2.0	2.5	3.0
$\mathbf{\Phi}(y)$	0.69	0.84	0.93	0.97	0.99	0.999

A:
$$P\{-1 < Y < 1\} = P\{Y < 1\} - P\{Y < -1\}$$

Q: What's the probability that *Y* is within *k* std of its mean?
A: 2Φ(k) - 1

$$= P\{Y < 1\} - P\{Y > 1\} \text{ (by symmetry} \\ = P\{Y < 1\} - (1 - P\{Y < 1\}) \\ = 2P\{Y < 1\} - 1 \\ = 2\Phi(1) - 1 \\ \approx 2 \cdot 0.84 - 1 = 0.68$$

Deviation from mean

If $Y \sim Normal(0, 1)$, then $\mathbf{P}\{-k < Y < k\} = 2\Phi(k) - 1$

- w/prob 68%, Y is within 1 std of its mean
- w/prob 95%, Y is within
 2 std of its mean
- w/prob 99.7%, Y is within
 3 std of its mean

But what if we don't have a standard Normal?

<u>Bottom line</u>: Everything that you saw for a standard Normal holds for general Normal (provided it's phrased in terms of stds).

$$P\{-k\sigma < X - \mu < k\sigma\} = P\left\{-k < \frac{X - \mu}{\sigma} < k\right\} = P\{-k < Y < k\}$$
Prob. *X* deviates from
its mean by *k* stds
Prob. *Y* deviates from
its mean by *k* stds

Example: Gifted Folks

Human intelligence (IQ) is thought to be Normally distributed with mean 100 and std 15. The "gifted cutoff" is 130.

Q: What fraction of people have IQ greater than the gifted cutoff?

A: Phrased in terms of stds, we're asking what fraction of people have IQ which is more than 2 stds above the mean.

 $1 - \mathbf{\Phi}(2) \approx 0.023$

So about 2.3%

Sum of two independent Normals

Theorem 9.7: (Sum of two indpt Normals)

Let $X \sim Normal(\mu_X, \sigma_X^2)$. Let $Y \sim Normal(\mu_Y, \sigma_Y^2)$. Assume $X \perp Y$.

Let

W = X + Y.

Then:

$$W \sim Normal(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2).$$

The proof depends on Laplace transforms. See Exercise 11.10 for the proof.

The CLT is about what happens when we sum up a large number of i.i.d. random variables.

The common example is many i.i.d. sources of noise that occur at once.

CLT (at a high level) says that the distribution of the average tends towards Normal, even though the original distributions are NOT Normal.

Let $X_1, X_2, X_3, \dots, X_n$ be i.i.d. random variables with mean μ and variance σ^2 .

Let $S_n = X_1 + X_2 + \dots + X_n$

Q: What is the mean and std of S_n ?

A: $\mathbf{E}[S_n] = n\mu$; $\mathbf{Var}(S_n) = n \sigma^2$; $\mathbf{Std}(S_n) = \sigma\sqrt{n}$

Let

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$$

Q: What is the mean and std of Z_n ?

A: $E[Z_n] = 0$; $Var(S_n) = 1$; $Std(S_n) = 1$

Central Limit Theorem: Let X_1, X_2, \dots, X_n be a sequence of i.i.d. r.v.s with common mean μ and finite variance σ^2 . Define

$$S_n = \sum_{i=1}^n X_i$$
 and $Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$

Then the distribution of Z_n converges to Normal(0,1) as $n \to \infty$. That is,

$$\lim_{n \to \infty} \mathbf{P}\{Z_n \le z\} = \mathbf{\Phi}(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{x^2}{2}} dx$$

for every *z*.

Proof uses Laplace transforms so it is deferred to Chpt 11.

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}} \to Normal(0,1)$$

Q: What does this say about the distribution of $S_n = \sum_{i=1}^n X_i$?

A: By the Linear Transformation Property, S_n should also be getting closer to a Normal distribution as $n \to \infty$.

But there are some caveats:

- S_n → Normal(nµ, nσ²). This is well-defined for finite n but not for infinite n.
 There are problems that come from looking at a sum, rather than an average.
 For example, if the X_i are all discrete, then S_n will also be discrete (but with a
 - bell shape).

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}} \to Normal(0,1)$$

Q: What does this say about the distribution of $A_n = \frac{1}{n} \sum_{i=1}^n X_i$?

A: By the Linear Transformation Property, A_n should also be getting closer to a Normal distribution as $n \to \infty$.

$$A_n \rightarrow Normal\left(\mu, \frac{\sigma^2}{n}\right)$$
 Note this doesn't have the issues of S_n

What happens to $Var(A_n)$ as $n \to \infty$?

$$A_n = \frac{1}{n} \sum_{i=1}^n X_i \qquad A_n \to Normal\left(\mu, \frac{\sigma^2}{n}\right)$$

How can the above be correct? Suppose that the X_i are people's heights. They can't be negative!

With extremely high probability, the value of A_n is near 5.5 ft, where the shape looks Normal.

CLT Example

Problem:

We're trying to transmit a signal.

During transmission there are 100 indpt sources of noise, each ~ Uniform(-1, 1).

lf

|Total Noise| < 10

then the signal is not corrupted.

What is the probability that the signal is not corrupted?

CLT Example

Problem: We're trying to transmit a signal. During transmission there are 100 indpt sources of noise, each ~ Uniform(-1, 1). If $|Total \ Noise| < 10$ then the signal is not corrupted. What is the probability of this?

Let X_i denote the noise from source *i*.

Q: What is $E[X_i]$? $E[X_i] = 0$

Q: What is $Var(X_i)$? $Var(X_i) = \frac{(b-a)^2}{12} = \frac{1}{3}$

 $\sigma_{X_i} = \frac{1}{\sqrt{2}}$

Q: What is σ_{X_i} ?

CLT Example

 $\boldsymbol{E}[X_i]=0$

 $Var(X_i) = \frac{1}{3}$

 $E[S_{100}] = 0$

 $Var(S_{100}) = \frac{100}{3}$

 $\sigma_{S_{100}}$

Problem: We're trying to transmit a signal. During transmission there are 100 indpt sources of noise, each ~ Uniform(-1, 1). If |Total Noise| < 10

then the signal is not corrupted. What is the probability of this?

Let
$$S_{100} = X_1 + X_2 + \dots + X_{100}$$
 Want: $P\{-10 < S_{100} < 10\}$
 $P\{-10 < S_{100} < 10\} = P\left\{-\frac{10}{10/\sqrt{3}} < \frac{S_{100} - 0}{10/\sqrt{3}} < \frac{10}{10/\sqrt{3}}\right\}$
 $\approx P\{-\sqrt{3} < Normal(0,1) < \sqrt{3}\}$
 $= 2\Phi(\sqrt{3}) - 1 \approx 0.91$