
PROGRAMMING ASSIGNMENT 1: DECISION TREES
10-301/10-601 Introduction to Machine Learning (Summer 2023)
https://www.cs.cmu.edu/˜hchai2/courses/10601/

OUT: Thursday, May 18th
DUE: Thursday, May 25th

TAs: Alex, Andrew, Sofia, Tara, Markov, Neural the Narwhal

Summary It’s time to build your first end-to-end learning system! In this assignment, you will build a
Decision Tree classifier and apply it to several binary classification problems. This assignment consists
of several parts: In the Written component, you will work through some pseudocode that will help you
algorithmically think through the programming assignment. Then in the Programming component, you will
implement Decision Tree learning, prediction, and evaluation. Using that implementation, you will answer
the empirical questions found at the end of the Written component.

START HERE: Instructions
• Collaboration policy: Collaboration on solving the homework is allowed, after you have thought

about the problems on your own. It is also OK to get clarification (but not solutions) from books
or online resources, again after you have thought about the problems on your own. There are two
requirements: first, cite your collaborators fully and completely (e.g., “Jane explained to me what
is asked in Question 2.1”). Second, write your solution independently: close the book and all of
your notes, and send collaborators out of the room, so that the solution comes from you only. See
the Academic Integrity Section on the course site for more information: https://www.cs.cmu.
edu/˜hchai2/courses/10601/

• Late Submission Policy: See the late submission policy here: https://www.cs.cmu.edu/

˜hchai2/courses/10601/

• Submitting your work:

– Programming: You will submit your code for programming questions on the homework to
Gradescope (https://gradescope.com). After uploading your code, our grading scripts
will autograde your assignment by running your program on a virtual machine (VM). When you
are developing, check that the version number of the programming language environment (e.g.
Python 3.9.12) and versions of permitted libraries (e.g. numpy 1.23.0) match those used on
Gradescope. You have a total of 10 Gradescope programming submissions. Use them wisely.
In order to not waste code submissions, we recommend debugging your implementation on your
local machine (or the linux servers) and making sure your code is running correctly first before
any Gradescope coding submission.

– Written: For written problems such as short answer, multiple choice, derivations, proofs, or
plots, please use the provided template. You must typeset your submission using LATEX. If your
submission is misaligned with the template, there will be a 2% penalty (e.g., if the homework is
out of 100 points, 2 points will be deducted from your final score). Each derivation/proof should
be completed in the boxes provided. Do not move or resize any of the answer boxes. If you do
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not follow the template, your assignment may not be graded correctly by our AI assisted grader.

For multiple choice or select all that apply questions, shade in the box or circle in the template document
corresponding to the correct answer(s) for each of the questions. For LATEX users, replace \choice with
\CorrectChoice to obtain a shaded box/circle, and don’t change anything else.
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Instructions for Specific Problem Types
For “Select One” questions, please fill in the appropriate bubble completely:

Select One: Who taught this course?

Henry Chai

⃝ Marie Curie

⃝ Noam Chomsky

If you need to change your answer, you may cross out the previous answer and bubble in the new answer:

Select One: Who taught this course?

Henry Chai

⃝ Marie Curie

��@@ Noam Chomsky

For “Select all that apply” questions, please fill in all appropriate squares completely:

Select all that apply: Which are scientists?

■ Stephen Hawking

■ Albert Einstein

■ Isaac Newton

2 I don’t know

Again, if you need to change your answer, you may cross out the previous answer(s) and bubble in the new
answer(s):

Select all that apply: Which are scientists?

■ Stephen Hawking

■ Albert Einstein

■ Isaac Newton

��@@■ I don’t know

For questions where you must fill in a blank, please make sure your final answer is fully included in the
given space. You may cross out answers or parts of answers, but the final answer must still be within the
given space.

Fill in the blank: What is the course number?

10-601 10-��SS6301
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Written Problems (15 points)
1 Pseudocode (6 points)

1. In the programming assignment, you will need to implement three main tasks: training a decision tree
on an arbitrary training set, predicting new values with a trained tree given an arbitrary input dataset,
and evaluating your predictions against an arbitrary dataset’s true labels. For this problem, we will focus
on thinking through the algorithm for the second task.

Below, you will write pseudocode for the function predict(node, example), which predicts the
label of an example given a node of type Node representing the root of a trained tree. You must
approach this problem recursively and use the Node class we have given to you.

class Node:
def __init__(self, attr, v):

self.attribute = attr
self.left = None
self.right = None
self.vote = v

# (a) the left and right children of a node are denoted as
# node.left and node.right respectively, each is of type Node
# (b) the attribute for a node is denoted as node.attribute and has
# type str
# (c) if the node is a leaf, then node.vote of type str holds the
# prediction from the majority vote; if node is an internal
# node, then node.vote has value None
# (d) assume all attributes have values 0 and 1 only; further
# assume that the left child corresponds to an attribute value
# of 1, and the right child to a value of 0

def predict(node, example):
# example is a dictionary which holds the attributes and the
# values of the attribute (ex. example[’X’] = 0)

(a) (3 points) Write the base case of predict(node, example). Limit your answer to 10 lines.
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Your Answer

%Your Answer

(b) (3 points) Write the recursive step of predict(node, example). Limit your answer to 10
lines.

Your Answer

%Your Answer
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2 Empirical Questions (9 points)
The following questions should be completed as you work through the programming portion of this
assignment.

1. (4 points) Train and test your decision tree on the heart dataset and the education dataset with four dif-
ferent values of max-depth, {0, 1, 2, 4}. Report your findings in the HW2 solutions template provided.
A Decision Tree with max-depth 0 is simply a majority vote classifier; a Decision Tree with max-depth
1 is called a decision stump. (Please round each number to the fourth decimal place, e.g. 0.1234)

Dataset Max-Depth Train Error Test Error

heart 0
heart 1
heart 2
heart 4

education 0
education 1
education 2
education 4
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2. (3 points) For the heart disease (heart) dataset, create a computer-generated plot showing error on
the y-axis against depth of the tree on the x-axis. On a single plot, include both training error and testing
error, clearly labeling which is which. That is, for each possible value of max-depth (0, 1, 2, . . . , up to
the number of attributes in the dataset), you should train a decision tree and report train/test error of the
model’s predictions. You should include an image file below using the provided, commented out code
in LATEX, switching out heart.png to your file name as needed.

Plot
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3. (2 points) Print (do not handwrite!) the decision tree which is produced by your algorithm for the heart
dataset with max depth 3. Instructions on how to print the tree could be found in section 4.7.

Output

% YOUR ANSWER
% Text here will be compiled verbatim.
% So do not add unnecessary indents
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3 Collaboration Questions
After you have completed all other components of this assignment, report your answers to these ques-
tions regarding the collaboration policy. Details of the policy can be found here.

1. Did you receive any help whatsoever from anyone in solving this assignment? If so, include full
details.

2. Did you give any help whatsoever to anyone in solving this assignment? If so, include full details.

3. Did you find or come across code that implements any part of this assignment? If so, include full
details.

Your Answer
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4 Programming (70 points)
Your goal in this assignment is to implement a binary classifier, entirely from scratch–specifically a Decision
Tree learner. In addition, we will ask you to run some end-to-end experiments on two tasks (predicting
whether or not a patient has heart disease / predicting the final grade for high school students) and report
your results. You will write two programs: inspection.py (Section 4.2) and decision tree.py
(Section 4.3). The programs you write will be automatically graded using Gradescope.

4.1 The Tasks and Datasets
Materials Download the zip file from the course website. The zip file will have a handout folder that
contains all the data that you will need in order to complete this assignment.

Starter Code The handout will contain a preexisting decision tree.py file that itself contains some
starter code for the assignment. While we do not require that you use the starter code in your final submis-
sion, we heavily recommend building upon the structure laid out in the starter code.

Datasets The handout contains three datasets. Each one contains attributes and labels and is already split
into training and testing data. The first line of each .tsv file contains the name of each attribute, and the
class label is always the last column.

1. heart: The first task is to predict whether a patient has been (or will be) diagnosed with heart disease,
based on available patient information. The attributes (aka. features) are:

(a) sex: The sex of the patient—1 if the patient is male, and 0 if the patient is female.

(b) chest_pain: 1 if the patient has chest pain, and 0 otherwise.

(c) high_blood_sugar: 1 if the patient has high blood sugar (>120 mg/dl fasting), or 0 other-
wise.

(d) abnormal_ecg: 1 if exercise induced angina in the patient, and 0 otherwise. Angina is a type
of severe chest pain.

(e) flat_ST: 1 if the patient’s ST segment (a section of an ECG) was flat during exercise, or 0 if
it had some slope.

(f) fluoroscopy: 1 if a physician used fluoroscopy, and 0 otherwise. Fluoroscopy is an imaging
technique used to see the flow of blood through the heart.

(g) thalassemia: 1 if the patient is known to have thalassemia, and 0 otherwise. Thalassemia is
a blood disorder that may impair the oxygen-carrying capacity of the patient’s red blood cells.

(h) heart_disease: 1 if the patient was diagnosed with heart disease, and 0 otherwise. This is
the class label you should predict.

The training data is in heart_train.tsv, and the test data in heart_test.tsv.

2. education: The second task is to predict the final grade for high school students. The attributes (co-
variates, predictors) are student grades on 5 multiple choice assignments M1 through M5, 4 program-
ming assignments P1 through P4, and the final exam F. Values of 1 indicate that a student received
an A, and 0 indicates that the student did not receive an A. The training data is in
education_train.tsv, and the test data in education_test.tsv.

3. small: We also include small_train.tsv and small_test.tsv—a small, purely for demon-
stration version of the heart dataset, with only attributes chest_pain and thalassemia. For
this small dataset, the handout folder also contains the predictions from a reference implementation of
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a Decision Tree with max-depth 3 (see small_3_train.labels, small_3_test.labels,
small_3_metrics.txt). You can check your own output against these to see if your implemen-
tation is correct.

Note: For simplicity, all attributes are discretized into just two categories (i.e. each node will have at most
two descendents). This applies to all the datasets in the handout, as well as the additional datasets on which
we will evaluate your Decision Tree.

4.2 Program #1: Inspecting the Data (5 points)
Write a program inspection.py to calculate the label entropy at the root (i.e. the entropy of the labels
before any splits) and the error rate (the percent of incorrectly classified instances) of classifying using a
majority vote (picking the label with the most examples). You do not need to look at the values of any of
the attributes to do these calculations; knowing the labels of each example is sufficient. Entropy should be
calculated in bits using log base 2.

Command Line Arguments The autograder runs and evaluates the output from the files generated, using
the following command:

$ python inspection.py <input> <output>

Your program should accept two command line arguments: an input file and an output file. It should read
the .tsv input file (of the format described in Section 4.1), compute the quantities above, and write them
to the output file so that it contains:

entropy: <entropy value>
error: <error value>

Example For example, suppose you wanted to inspect the file small_train.tsv and write out the
results to small_inspect.txt. You would run the following command:

$ python inspection.py small_train.tsv small_inspect.txt

Afterwards, your output file small_inspect.txt should contain the following:

entropy: 1.000000
error: 0.500000

Our autograder will run your program on several input datasets to check that it correctly computes entropy
and error, and will take minor differences due to rounding into account. You do not need to round your
reported numbers! The autograder will automatically incorporate the right tolerance for float comparisons.

For your own records, run your program on each of the datasets provided in the handout—this error rate for
a majority vote classifier is a baseline over which we would (ideally) like to improve.

4.3 Program #2: Decision Tree Learner (65 points)
In decision tree.py, implement a Decision Tree learner. This file should learn a decision tree with a
specified maximum depth, print the decision tree in a specified format, predict the labels of the training and
testing examples, and calculate training and testing errors.
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Your implementation must satisfy the following requirements:

• Use mutual information to determine which attribute to split on.

• Be sure you’re correctly weighting your calculation of mutual information. For a split on attribute X,
I(Y ;X) = H(Y )−H(Y |X) = H(Y )− P (X = 0)H(Y |X = 0)− P (X = 1)H(Y |X = 1).

• As a stopping rule, only split on an attribute if the mutual information is > 0.

• Do not grow the tree beyond a max-depth specified on the command line. For example, for a maximum
depth of 3, split a node only if the mutual information is > 0 and the current level of the node is < 3.

• Use a majority vote of the labels at each leaf to make classification decisions. If the vote is tied,
choose the label that is higher (i.e. 1 should be chosen before 0)

• It is possible for different columns to have equal values for mutual information. In this case, you
should split on the first column to break ties (e.g. if column 0 and column 4 have the same mutual
information, use column 0).

• Do not hard-code any aspects of the datasets into your code. We may autograde your programs on
hidden datasets that include different attributes and output labels.

Careful planning will help you to correctly and concisely implement your Decision Tree learner. Here are a
few hints to get you started:

• Write helper functions to calculate entropy and mutual information.

• It is best to think of a Decision Tree as a collection of nodes, where nodes are either leaf nodes (where
final decisions are made) or interior nodes (where we split on attributes). It is helpful to design a
function to train a single node (i.e. a depth-0 tree), and then recursively call that function to create
sub-trees.

• In the recursion, keep track of the depth of the current tree so you can stop growing the tree beyond
the max-depth.

• Implement a function that takes a learned decision tree and data as inputs, and generates predicted
labels. You can write a separate function to calculate the error of the predicted labels with respect to
the given (ground-truth) labels.

• Be sure to correctly handle the case where the specified maximum depth is greater than the total
number of attributes.

• Be sure to handle the case where max-depth is zero (i.e. a majority vote classifier).

• Look under the FAQ post on Piazza for more useful clarifications about the assignment.

4.4 Command Line Arguments
The autograder runs and evaluates the output from the files generated, using the following command:

$ python decision_tree.py [args...]

Where above [args...] is a placeholder for six command-line arguments: <train input> <test
input> <max depth> <train out> <test out> <metrics out>. These arguments are de-
scribed in detail below:
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1. <train input>: path to the training input .tsv file (see Section 4.1)

2. <test input>: path to the test input .tsv file (see Section 4.1)

3. <max depth>: maximum depth to which the tree should be built

4. <train out>: path of output .txt file to which the predictions on the training data should be
written (see Section 4.5)

5. <test out>: path of output .txt file to which the predictions on the test data should be written
(see Section 4.5)

6. <metrics out>: path of the output .txt file to which metrics such as train and test error should
be written (see Section 4.6)

As an example, the following command line would run your program on the heart dataset and learn a
tree with a max-depth of 2. The train predictions would be written to heart_2_train.txt, the test
predictions to heart_2_test.txt, and the metrics to heart_2_metrics.txt.

$ python decision_tree.py heart_train.tsv heart_test.tsv 2 \
heart_2_train.txt heart_2_test.txt heart_2_metrics.txt

The following example would run the same learning setup except with a max-depth of 3, and conveniently
writing to analogously named output files, so you can can compare the two runs.

$ python decision_tree.py heart_train.tsv heart_test.tsv 3 \
heart_3_train.txt heart_3_test.txt heart_3_metrics.txt

4.5 Output: Labels Files
Your program should write two output .txt files containing the predictions of your model on training data
(<train out>) and test data (<test out>). Each should contain the predicted labels for each example
printed on a new line. Use ‘\n’ to create a new line.

Your labels should exactly match those of a reference decision tree implementation—this will be checked
by the autograder by running your program and evaluating your output file against the reference solution.

The first few lines of an example output file is given below for the small dataset:

1
0
1
1
0
0
...

4.6 Output: Metrics File
Generate another file where you should report the training error and testing error. This file should be written
to the path specified by the command line argument <metrics out>. Your reported numbers should be
within 0.0001 of the reference solution. You do not need to round your reported numbers! The autograder
will automatically incorporate the right tolerance for float comparisons. The file should be formatted as
follows:
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error(train): 0.214286
error(test): 0.285714

The values above correspond to the results from training a tree of depth 3 on small train.tsv and
testing on small test.tsv. (Note that there is one space between the colon and value.)

4.7 Output: Printing the Tree
Finally, you should write a function to pretty-print your learned decision tree. Your function should print
your tree only after you are done generating the fully-trained tree. Each row should correspond to a
node in the tree. They should be printed using a pre-order depth-first-search traversal (but you may print
left-to-right or right-to-left, i.e. your answer does not need to have exactly the same order as the reference
below). Print the attribute of the node’s parent and the attribute value corresponding to the node. Also
include the sufficient statistics (i.e. count of positive / negative examples) for the data passed to that node.
The row for the root should include only those sufficient statistics. A node at depth d, should be prefixed by
d copies of the string ‘| ’.

Below, we have provided the recommended format for printing the tree. You can print it directly rather than
to a file. This functionality of your program will NOT be autograded.

$ python decision_tree.py small_train.tsv small_test.tsv 2 \
small_2_train.txt small_2_test.txt small_2_metrics.txt

[14 0/14 1]
| chest_pain = 0: [4 0/12 1]
| | thalassemia = 0: [3 0/4 1]
| | thalassemia = 1: [1 0/8 1]
| chest_pain = 1: [10 0/2 1]
| | thalassemia = 0: [7 0/0 1]
| | thalassemia = 1: [3 0/2 1]

However, you should be careful that the tree might not be full. For example, with a different subset of the
small dataset, there may be no nodes under chest_pain = 0 if all labels are the same.

The following pretty-print shows the education dataset with max-depth 3. Use this example to check your
code before submitting your pretty-print of the heart dataset (asked in question 5 of the Empirical questions).

$ python decision_tree.py education_train.tsv education_test.tsv 3 \
edu_3_train.txt edu_3_test.txt edu_3_metrics.txt

[65 0/135 1]
| F = 0: [42 0/16 1]
| | M2 = 0: [27 0/3 1]
| | | M4 = 0: [22 0/0 1]
| | | M4 = 1: [5 0/3 1]
| | M2 = 1: [15 0/13 1]
| | | M4 = 0: [14 0/7 1]
| | | M4 = 1: [1 0/6 1]
| F = 1: [23 0/119 1]
| | M4 = 0: [21 0/63 1]
| | | M2 = 0: [18 0/26 1]

Page 14



| | | M2 = 1: [3 0/37 1]
| | M4 = 1: [2 0/56 1]
| | | P1 = 0: [2 0/15 1]
| | | P1 = 1: [0 0/41 1]

The numbers in brackets give the number of positive and negative labels from the training data in that part
of the tree.

At this point, you should be able to go back and answer questions 1-5 in the “Empirical Questions” section
of this handout. Write your solutions in the template provided.

4.8 Submission Instructions
Programming Please ensure you have completed the following files for submission.

inspection.py
decision_tree.py

When submitting your solution, make sure to select and upload both files. Any other files will be deleted.
Ensure the files have the exact same spelling and letter casing as above. You can either directly zip the two
files (by selecting the two files and compressing them – do not compress the folder containing the files) or
directly drag them to Gradescope for submission.

Written Questions Make sure you have completed all questions from Written component (including the
collaboration policy questions) in the template provided. When you have done so, please submit your
document in PDF format to the corresponding assignment slot on Gradescope.
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