
PROGRAMMING ASSIGNMENT 3: LOGISTIC REGRESSION
10-301/10-601 Introduction to Machine Learning (Summer 2023)
https://www.cs.cmu.edu/˜hchai2/courses/10601/

OUT: Thursday, June 8th
DUE: Thursday, June 15th

TAs: Alex, Andrew, Sofia, Tara, Markov, Neural the Narwhal

Summary In this assignment, you will build a sentiment polarity analyzer, which will be capable of an-
alyzing the overall sentiment polarity (positive or negative) for restaurant reviews using logistic regression.
In the written component, you will study linear and logistic regression.

START HERE: Instructions
• Collaboration policy: Collaboration on solving the homework is allowed, after you have thought

about the problems on your own. It is also OK to get clarification (but not solutions) from books
or online resources, again after you have thought about the problems on your own. There are two
requirements: first, cite your collaborators fully and completely (e.g., “Jane explained to me what
is asked in Question 2.1”). Second, write your solution independently: close the book and all of
your notes, and send collaborators out of the room, so that the solution comes from you only. See
the Academic Integrity Section on the course site for more information: https://www.cs.cmu.
edu/˜hchai2/courses/10601/

• Late Submission Policy: See the late submission policy here: https://www.cs.cmu.edu/

˜hchai2/courses/10601/

• Submitting your work:

– Programming: You will submit your code for programming questions on the homework to
Gradescope (https://gradescope.com). After uploading your code, our grading scripts
will autograde your assignment by running your program on a virtual machine (VM). When you
are developing, check that the version number of the programming language environment (e.g.
Python 3.9.12) and versions of permitted libraries (e.g. numpy 1.23.0) match those used on
Gradescope. You have a total of 10 Gradescope programming submissions. Use them wisely.
In order to not waste code submissions, we recommend debugging your implementation on your
local machine (or the linux servers) and making sure your code is running correctly first before
any Gradescope coding submission.

– Written: For written problems such as short answer, multiple choice, derivations, proofs, or
plots, please use the provided template. You must typeset your submission using LATEX. If your
submission is misaligned with the template, there will be a 2% penalty (e.g., if the homework is
out of 100 points, 2 points will be deducted from your final score). Each derivation/proof should
be completed in the boxes provided. Do not move or resize any of the answer boxes. If you do
not follow the template, your assignment may not be graded correctly by our AI assisted grader.
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For multiple choice or select all that apply questions, shade in the box or circle in the template document
corresponding to the correct answer(s) for each of the questions. For LATEX users, replace \choice with
\CorrectChoice to obtain a shaded box/circle, and don’t change anything else.
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Instructions for Specific Problem Types
For “Select One” questions, please fill in the appropriate bubble completely:

Select One: Who taught this course?

Henry Chai

⃝ Marie Curie

⃝ Noam Chomsky

If you need to change your answer, you may cross out the previous answer and bubble in the new answer:

Select One: Who taught this course?

Henry Chai

⃝ Marie Curie

��@@ Noam Chomsky

For “Select all that apply” questions, please fill in all appropriate squares completely:

Select all that apply: Which are scientists?

■ Stephen Hawking

■ Albert Einstein

■ Isaac Newton

2 I don’t know

Again, if you need to change your answer, you may cross out the previous answer(s) and bubble in the new
answer(s):

Select all that apply: Which are scientists?

■ Stephen Hawking

■ Albert Einstein

■ Isaac Newton

��@@■ I don’t know

For questions where you must fill in a blank, please make sure your final answer is fully included in the
given space. You may cross out answers or parts of answers, but the final answer must still be within the
given space.

Fill in the blank: What is the course number?

10-601 10-��SS6301
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Written Problems (15 points)
1 Vectorization and Pseudocode (6 points)

The following questions should be completed before you start the programming component of this
assignment. Assume the dtypes of all ndarrays are np.float64. Vectors are 1D ndarrays.

1. (2 points) Select all that apply: Consider a matrix X ∈ RN×M and vector v ∈ RM . We can create
a new vector u ∈ RN whose i-th element is the dot product between v and the i-th row of X using
NumPy as follows:

# X and v are numpy ndarrays
# X.shape == (N, M), v.shape == (M,)
u = np.zeros(X.shape[0])
for i in range(X.shape[0]):

for j in range(X.shape[1]):
u[i] += X[i, j] * v[j]

Which of the following produce the same result?

2 u = X @ v

2 u = v @ X

2 u = np.matmul(X, v)

2 u = np.matmul(v, X)

2 u = X * v

2 u = v * X

2 u = np.dot(X, v)

2 u = np.dot(v, X)

2 None of the above.

2. Consider a matrix X ∈ RN×M and vector w ∈ RN . Let Ω =
∑N−1

i=0 wi (xi − xi) (xi − xi)
T where

xi ∈ RM is the column vector denoting the i-th row of X, xi ∈ R is the mean of xi, and wi ∈ R is
the i-th element of w (i ∈ {0, 1, · · · , N − 1}). For the following questions, use X and w for X and w,
respectively. X.shape == (N, M), w.shape == (N,).

(a) (2 points) Select the line(s) of valid Python code that constructs a matrix whose i-th row is (xi − xi)
T .

2 (X - np.mean(X, axis=0)).T

2 X - np.mean(X, axis=1, keepdims=True)

2 X - np.mean(X, axis=0, keepdims=True)

2 X - np.expand dims(np.mean(X, axis=1), 1)

2 None of the above.

(b) (2 points) Assume the results from (a) is stored in M. Select the line(s) of valid Python code that
computes Ω from M.
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2 np.matmul(w * M.T, M)

2 np.matmul(w * M, M.T)

2 np.dot(w * M, M.T)

2 w * np.dot(M.T, M)

2 None of the above.
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2 Programming Empirical Questions (9 points)
The following questions should be completed as you work through the programming component of this
assignment. Please ensure that all plots are computer-generated. For all the questions below, unless
otherwise specified, use the constant learning rate 0.1.

1. (2 points) ‘Using the data in the largedata folder in the handout, make a plot that shows the average
negative log-likelihood for the training and validation data sets after each of 1,000 epochs. The y-axis
should show the negative log-likelihood and the x-axis should show the number of epochs.

Your Answer

2. (2 points) Write a few sentences explaining the output of the above experiment. In particular, do the
training and validation log-likelihood curves look the same, or different? Why?

Your Answer

3. (2 points) Report your train and test error for the large data set (found in the largedata folder in the
handout) after running for 1,000 epochs. Please round to the fourth decimal place, e.g., 0.1234.

Train Error Test Error
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4. (2 points) Using the data in the largedata folder of the handout, make a plot comparing the train-
ing average negative log-likelihood over epochs for three different values for the learning rates, η ∈
{10−1, 10−2, 10−3}. The y-axis should show the average negative log-likelihood, the x-axis should
show the number of epochs (from 0 to 1,000 epochs), and the plot should contain three curves corre-
sponding to the three values of η. Provide a legend that indicates the learning rate η for each curve.

Your Answer

5. (1 point) Compare how quickly each curve in the previous question converges.

Your Answer
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3 Collaboration Questions
After you have completed all other components of this assignment, report your answers to these ques-
tions regarding the collaboration policy. Details of the policy can be found here.

1. Did you receive any help whatsoever from anyone in solving this assignment? If so, include full
details.

2. Did you give any help whatsoever to anyone in solving this assignment? If so, include full details.

3. Did you find or come across code that implements any part of this assignment? If so, include full
details.

Your Answer

Page 8

http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html


4 Programming (75 points)
Your goal in this assignment is to implement a working Natural Language Processing (NLP) system using
binary logistic regression. Your algorithm will determine whether a restaurant review is positive or negative.

Note: Before starting the programming, you should work through the written component to get a good
understanding of important concepts that are useful for this programming component.

4.1 The Task
Datasets Download the zip file from the course website, which contains the data for this assignment. This
data comes from the Yelp dataset.1 In the data files, each line is a single example that consists of a label (0
for negative reviews and 1 for positive ones) and a set of words. The format of each example (each line)
is label\tword1 word2 word3 ... wordN\n, where words are separated from each other with
white-space and the label is separated from the words with a tab character.

Examples of the data are as follows:

1 i will never forget this single breakfast experience in mad...
0 the search for decent chinese takeout in madison continues ...
0 sorry but me julio fell way below the standard even for med...
1 so this is the kind of food that will kill you so there s t...

Feature Engineering In lecture, we saw that we can apply logistic regression to real-valued inputs of fixed
length (e.g. x(i) ∈ Rn). However, each review has variable length and is not real-valued.

To be able to run logistic regression on the dataset, we first need to transform it using some basic feature
engineering techniques. In this homework, we will use a word embeddings model, described in full detail
in the next section (4.2).

Programs At a high level, you will write two programs for this homework: feature.py and lr.py.
feature.py takes in the raw input data and produces a real-valued vector for each training, validation,
and test example. lr.py then takes in these vectors and trains a logistic regression model to predict whether
each example is a positive or negative review.

4.2 Feature Model
In order to transform a set of words into vectors, we rely on a popular method of feature engineering: word
embeddings.

We use ϕ to denote a feature engineering method and x(i) to denote a training example (a set of English
words as seen in 4.1).

Rather than simply indicating which words are present, word embeddings represent each word by “embed-
ding” it into a low-dimensional vector space, which may carry more information about the semantic meaning
of the word. In this homework, we use the GloVe embeddings, a commonly used set of feature vectors. 2

Embeddings glove embeddings.txt contains the GloVe embeddings of 6792 words. Not every
word in each review is present in the provided glove embeddings.txt file. We treat such missing
words as “out-of-vocabulary” and ignore them. Each line consists of a word and its embedding separated
by tabs:

1For more details, see https://www.yelp.com/dataset.
2For more details on how these embeddings were trained, see the original work at https://nlp.stanford.edu/

projects/glove/
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word\tfeature1\tfeature2\t...feature300\n. Each word’s embedding is always a 300-
dimensional vector. As an example, here are the first few lines of glove embeddings.txt, with values
rounded to 3 decimal places:

deserves 0.175 -0.153 -0.208 0.092 0.222 0.202 ...
butter 0.357 0.469 -0.021 0.024 -0.168 -0.213 ...
staffing -0.076 0.212 -0.384 0.552 -0.193 -0.052 ...
weird 0.110 0.090 0.139 0.340 -0.098 -0.113 ...

Using Word Embeddings For this model, there will be two steps in the feature engineering process:

1. First, we would like to exclude words from the review that are not included in the GloVe dictionary.
Let x trim(i) = TRIM(x(i)), where TRIM(x(i)) trims the list of words x(i) by only including words
of x(i) present in glove embeddings.txt.

2. Second, we want to take the trimmed vector x trim(i) and convert it to the final feature vector by
averaging the GloVe embeddings of its words:

ϕ
(
x(i)

)
=

1

J

J∑
j=1

GloVe(x trim(i)
j )

where J denotes the number of words in x trim(i) and x trim(i)
j is the j-th word in x trim(i).

In the given equation, GloVe(x trim(i)
j ) ∈ R300 is the GloVe feature vector for the word x trim(i)

j .

The following example provides a reference:

• Let x(i) denote the sentence “a hot dog is not a sandwich because it is not
square”.

• A toy GloVe dictionary is given as follows:

hot 0.1 0.2 0.3
not -0.1 0.2 -0.3
sandwich 0.0 -0.2 0.4
square 0.2 -0.1 0.5

• Then, x trim(i) denotes the trimmed review “hot not sandwich not square”. In this trimmed
text, the words that are not in the GloVe dictionary are excluded. Also note that we keep the order of
words and do not de-duplicate words in the trimmed text. 3

• The feature for x(i) can be calculated as

ϕ2(x
(i)) =

1

5

(
GloVe(hot) + 2 · GloVe(not) + GloVe(sandwich) + GloVe(square)

)
=

[
0.02 0.06 0.12

]T
.

3Keeping duplicates is equivalent to weighting words by their frequency. If "good" appears 3 times as often as "bad", the
movie review is more likely to be positive than negative.
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4.3 feature.py

feature.py implements word embeddings (described above in 4.2) to transform raw training examples
(a label and a list of English words) to formatted training examples (a label and a feature vector).

Inputs

• Input data for training, validation, and testing. Each data point contains a label and an English
restaurant review in the format described in 4.1.

• GloVe embeddings to use for the word embedding feature extraction methods.

Outputs

• Formatted data for training, validation, and testing. You should perform feature extraction on each
of the training, validation, and test sets.

Output Format Each output file (one for training data, one for validation, and one for testing) should
contain the formatted presentation of each example printed on a new line. Use \n to create a new line. The
format for each line should exactly match label\tvalue1\tvalue2\tvalue3\t...valueM\n.

Each line corresponds to a particular restaurant review, where the first entry is the label and the rest are the
features in the feature vector. The rows are the summed up GloVe vectors for all the words present in the
dictionary. All entries are separated with a tab character. The handout folder contains example formatted
outputs on the small dataset; they are partially reproduced below for your reference. Please round your
outputs to 6 decimal places.

1.000000 -0.166646 0.641027 -0.064805 ...
0.000000 -0.224874 0.461526 -0.215232 ...
0.000000 -0.222178 0.437475 -0.083073 ...
1.000000 -0.215923 0.612535 0.061671 ...

4.4 lr.py

lr.py implements a logistic regression classifier that takes in formatted training data and produces a label
(either 0 or 1) that corresponds to whether each restaurant review was negative or positive. Inputs

• Formatted data for training, validation, and testing. Each data point contains a label and a corre-
sponding feature vector. These files are the ones produced by feature.py.

• The number of epochs to train for, which will be passed in as a command line argument.

• The learning rate, also passed in via the command line.

Requirements

• Include an intercept term in your model. You can either treat the intercept term as a separate variable,
or fold it into the parameter vector (recommended). In either case, make sure you update the intercept
parameter correctly.

• Initialize all model parameters to 0.

• Use stochastic gradient descent (SGD) to train the logistic regression model.

• Perform SGD updates on the training data in the order that the data is given in the input file. While
we would normally shuffle training examples in SGD, we need training to be deterministic in order to
autograde this assignment. Do not shuffle the training data.
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Outputs

• Labels for the training and testing data.

• Metrics for the training and testing error.

Output Labels Format Your lr program should produce two output .txt files containing the predictions
of your model on training data and test data. Each file should contain the predicted labels for each example
printed on a new line. The name of these files will be passed as command line arguments. Use \n to create
a new line. An example of the labels is given below.

1
0
0
1

Output Metrics Format Your program should generate a .txt file where you report the final training and
testing error after training has completed. The name of this file will be passed as a command line argument.

All of your reported numbers should be within 0.00001 of the reference solution, and you should round the
error values to 6 decimal places. The following example is the reference solution for the small dataset after
500 training epochs with learning rate 0.1.

error(train): 0.000000
error(test): 0.625000

Each line in the output file should be terminated by a newline character \n. There is a whitespace character
after the colon.

Figure 1: Programming pipeline for sentiment analyzer based on binary logistic regression
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4.5 Command Line Arguments
The autograder runs and evaluates the output from the files generated, using the following command (note
feature will be run before lr):

$ python feature.py [args1...]
$ python lr.py [args2...]

Where above [args1...] is a placeholder for seven command-line arguments: <train input>
<validation input> <test input> <feature dictionary input>
<formatted train out> <formatted validation out> <formatted test out> . These
arguments are described in detail below:

1. <train input>: path to the training input .tsv file (see Section 4.1)

2. <validation input>: path to the validation input .tsv file (see Section 4.1)

3. <test input>: path to the test input .tsv file (see Section 4.1)

4. <feature dictionary input>: path to the GloVe feature dictionary .txt file (see Section 4.2)

5. <formatted train out>: path to output .tsv file to which the feature extractions on the train-
ing data should be written (see Section 4.3)

6. <formatted validation out>: path to output .tsv file to which the feature extractions on
the validation data should be written (see Section 4.3)

7. <formatted test out>: path to output .tsv file to which the feature extractions on the test
data should be written (see Section 4.3)

Likewise, [args2...] is a placeholder for eight command-line arguments: <formatted train input>
<formatted validation input> <formatted test input> <train out> <test out>
<metrics out> <num epoch> <learning rate>. These arguments are described in detail below:

1. <formatted train input>: path to the formatted training input .tsv file (see Section 4.3)

2. <formatted validation input>: path to the formatted validation input .tsv file (see Sec-
tion 4.3)

3. <formatted test input>: path to the formatted test input .tsv file (see Section 4.3)

4. <train out>: path to output .txt file to which the prediction on the training data should be
written (see Section 4.4)

5. <test out>: path to output .txt file to which the prediction on the test data should be written
(see Section 4.4)

6. <metrics out>: path of the output .txt file to which metrics such as train and test error should
be written (see Section 4.4)

7. <num epoch>: integer specifying the number of times SGD loops through all of the training data
(e.g., if <num epoch> equals 5, then each training example will be used in SGD 5 times).

8. <learning rate>: float specifying the learning rate; in the reference output, we set the learning
rate to be 0.1 for all datasets
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As an example, the following two command lines would run your programs on the large dataset in the
handout for 500 epochs. You are given the output of this command and the equivalent command on the
small dataset in the handout directories largeoutput and smalloutput.

$ python feature.py \
largedata/train_large.tsv \
largedata/val_large.tsv \
largedata/test_large.tsv \
glove_embeddings.txt \
largeoutput/formatted_train_large.tsv \
largeoutput/formatted_val_large.tsv \
largeoutput/formatted_test_large.tsv

$ python lr.py \
largeoutput/formatted_train_large.tsv \
largeoutput/formatted_val_large.tsv \
largeoutput/formatted_test_large.tsv \
largeoutput/formatted_train_labels.txt \
largeoutput/formatted_test_labels.txt \
largeoutput/formatted_metrics.txt \
500 \
0.1

Important Note: You will not be writing out the predictions on validation data, only on train and test data.
The validation data is only used to give you an estimate of held-out negative log-likelihood at the end of
each epoch during training. You are asked to graph the negative log-likelihood vs. epoch of the validation
and training data in Programming Empirical Questions section. a

aFor this assignment, we will always specify the number of epochs. However, a more mature implementation would monitor
the performance on validation data at the end of each epoch and stop SGD when this validation log-likelihood appears to have
converged. You should not implement such a convergence check for this assignment.

4.6 Starter Code
To help you start this assignment, we have provided starter code in the handout.

4.7 Gradescope Submission
You should submit your feature.py and lr.py to Gradescope. Note: please do not zip them or use other
file names. This will cause problems for the autograder to correctly detect and run your code. Gradescope
will also provide hints for common bugs; Ctrl-F for HINT if you did not receive a full score.
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