PROGRAMMING ASSIGNMENT 7
REINFORCEMENT LEARNING *

10-301/10-601 INTRODUCTION TO MACHINE LEARNING (SUMMER 2023)
https://www.cs.cmu.edu/~hchai2/courses/10601/

OUT: Thursday, July 27
DUE: Thursday, August 2
TAs: Alex, Andrew, Sofia, Tara, Markov, Neural the Narwhal

Summary In this assignment, you will implement a reinforcement learning algorithm for solving the
classic mountain-car environment. As a warmup, the first section will lead you through an on-paper example
of how value iteration and Q-learning work. Then, in Section 4, you will implement Q-learning with function
approximation to solve the mountain car environment.

START HERE: Instructions

* Collaboration policy: Collaboration on solving the homework is allowed, after you have thought
about the problems on your own. It is also OK to get clarification (but not solutions) from books
or online resources, again after you have thought about the problems on your own. There are two
requirements: first, cite your collaborators fully and completely (e.g., “Jane explained to me what
is asked in Question 2.1”). Second, write your solution independently: close the book and all of
your notes, and send collaborators out of the room, so that the solution comes from you only. See
the Academic Integrity Section on the course site for more information: https://www.cs.cmu.
edu/~hchai2/courses/10601/

* Late Submission Policy: See the late submission policy here: https://www.cs.cmu.edu/
~hchai2/courses/10601/

* Submitting your work:

— Programming: You will submit your code for programming questions on the homework to
Gradescope (https://gradescope.com). After uploading your code, our grading scripts
will autograde your assignment by running your program on a virtual machine (VM). You are
only permitted to use the Python Standard Library modules and numpy. When you are de-
veloping, check that the version number of the programming language environment (e.g. Python
3.9.12) and versions of permitted libraries (numpy 1.23.0) match those used on Gradescope.
You have a total of 10 Gradescope programming submissions. Use them wisely. In order
to not waste code submissions, we recommend debugging your implementation on your local
machine (or the linux servers) and making sure your code is running correctly first before any
Gradescope coding submission.

*Compiled on Thursday 27" July, 2023 at 19:15


https://www.cs.cmu.edu/~hchai2/courses/10601/
https://www.cs.cmu.edu/~hchai2/courses/10601/
https://www.cs.cmu.edu/~hchai2/courses/10601/
https://www.cs.cmu.edu/~hchai2/courses/10601/
https://www.cs.cmu.edu/~hchai2/courses/10601/
https://gradescope.com
https://docs.python.org/3/library/

Programming Assignment 7: Reinforcement Learning 10-301/10-601

— Written: For written problems such as short answer, multiple choice, derivations, proofs, or
plots, please use the provided template. You must typeset your submission using IATEX. If your
submission is misaligned with the template, there will be a 2% penalty (e.g., if the homework is
out of 100 points, 2 points will be deducted from your final score). Each derivation/proof should
be completed in the boxes provided. Do not move or resize any of the answer boxes. If you do
not follow the template, your assignment may not be graded correctly by our Al assisted grader.

For multiple choice or select all that apply questions, shade in the box or circle in the template document
corresponding to the correct answer(s) for each of the questions. For I&TEX users, replace \choice with
\CorrectChoice to obtain a shaded box/circle, and don’t change anything else.

2 of 14



Programming Assignment 7: Reinforcement Learning 10-301/10-601

Instructions for Specific Problem Types

For “Select One” questions, please fill in the appropriate bubble completely:
Select One: Who taught this course?
o Henry Chai
(O Marie Curie
(O Noam Chomsky
If you need to change your answer, you may cross out the previous answer and bubble in the new answer:
Select One: Who taught this course?
o Henry Chai
(O Marie Curie
’: Noam Chomsky
For “Select all that apply” questions, please fill in all appropriate squares completely:
Select all that apply: Which are scientists?
B Stephen Hawking
B Albert Einstein
B Isaac Newton
O Idon’t know

Again, if you need to change your answer, you may cross out the previous answer(s) and bubble in the new
answer(s):

Select all that apply: Which are scientists?
B Stephen Hawking
B Albert Einstein
B Isaac Newton
M I don’t know

For questions where you must fill in a blank, please make sure your final answer is fully included in the
given space. You may cross out answers or parts of answers, but the final answer must still be within the
given space.

Fill in the blank: What is the course number?

10-601 10-6301

3of 14



Programming Assignment 7: Reinforcement Learning 10-301/10-601

Written Questions (11 points)
1 ITgX Bonus Point (1 points)

1. (1 point) Select one: Did you use I&TEX for the entire written portion of this homework?

O Yes
O No
2 Empirical Questions (10 points)

The following parts should be completed after you work through the programming portion of this as-
signment (Section 4).

1. (4 points) Run Q-learning on the mountain car environment using both tile and raw features.

For the raw features: run for 2000 episodes with max iterations of 200, ¢ set to 0.05, v set to 0.999, and
a learning rate of 0.001.

For the tile features: run for 400 episodes with max iterations of 200, € set to 0.05, ~ set to 0.99, and a
learning rate of 0.00005.

For each set of features, plot the return (sum of all rewards in an episode) per episode on a line graph.
On the same graph, also plot the rolling mean over a 25 episode window. Comment on the difference
between the plots.

Plot of Raw

4 of 14



Programming Assignment 7: Reinforcement Learning 10-301/10-601

Plot of Tile

\.

Comment

Sof 14



Programming Assignment 7: Reinforcement Learning 10-301/10-601

Value Function -10 Value Function

-60 ~1.235 09
~0730.50

~=0.25 .
Posit,‘o,, 0.00 55 0.50 —~0.06 —1250

(a) b)

Figure 1: Estimated optimal value function visualizations for both types of features

2. (2 points) For both raw and tile features, we have run Q-learning with some good parameters and
created visualizations of the value functions after many episodes. For each plot in Figure 1, write down
which features (raw or tile) were likely used for deep Q-learning. Explain your reasoning. In addition,
interpret each of these plots in the context of the mountain car environment (note the flipped Value axis
in Figures la and 1b).

Answer

3. (2 points) We see that Figure 1b seems to look like a plane. Can the value function depicted in this
plot ever be nonlinear (linear here strictly refers to a function that can be expressed in the form of
y = Ax + b)? If so, describe a potential shape. If not, explain why.

Hint: How do we calculate the value of a state given the Q-values?

Answer
\

6 of 14



Programming Assignment 7: Reinforcement Learning 10-301/10-601

Policy Policy

0.06 0.06

0.04 0.04

0.02 A 0.02 A

Velocity
o
o
o
=
Action
Velocity
o
o
o

—0.02 4 —0.02 4

—0.04 —0.04

—0.06 —0.06

-1.2 -1.0 -08 -06 -04 -02 00 02 04 06 -1.2 -1.0 -08 -06 -04 -02 00 02 04 06
Position Position

(@) (b)

Figure 2: Estimated optimal policy visualizations for both types of features

4. (2 points) In a similar fashion to the previous question, we have created visualizations of the potential
policies learned. For each plot in Figure 2, write down which features (raw or tile) were likely used for
deep Q-learning. Explain your reasoning.

Answer

7 of 14



Programming Assignment 7: Reinforcement Learning 10-301/10-601

3 Collaboration Questions

After you have completed all other components of this assignment, report your answers to these questions
regarding the collaboration policy. Details of the policy can be found here.

1. Did you receive any help whatsoever from anyone in solving this assignment? If so, include full
details.

2. Did you give any help whatsoever to anyone in solving this assignment? If so, include full details.

3. Did you find or come across code that implements any part of this assignment? If so, include full
details.

Your Answer

8of 14


http://www.cs.cmu.edu/~hchai/courses/10601/syllabus.html

Programming Assignment 7: Reinforcement Learning 10-301/10-601

4 Programming [68 Points]

Your goal in this assignment is to implement Q-learning with linear function approximation to solve the
mountain car environment. You will implement all of the functions needed to initialize, train, evaluate,
and obtain the optimal policies and action values with Q-learning. In this assignment we will provide the
environment for you. The program you write will be automatically graded using the Gradescope system.

4.1 Specification of Mountain Car

In this assignment, you will be given code that fully defines the Mountain Car environment. In Mountain
Car you control a car that starts at the bottom of a valley. Your goal is to reach the flag at the top right, as
seen in Figure 3. However, your car is under-powered and cannot climb up the hill by itself. Instead you
must learn to leverage gravity and momentum to make your way to the flag. It would also be good to get to
this flag as fast as possible.

Figure 3: What the Mountain Car environment looks like. The car starts at some point in the valley. The
goal is to get to the top right flag.

The state of the environment is represented by two variables, position and velocity. position can
be between [—1.2, 0.6] (inclusive) and velocity can be between [—0.07,0.07] (inclusive). These are just
measurements along the x-axis.

The actions that you may take at any state are {0, 1,2}, where each number corresponds to an action: (0)
pushing the car left, (1) doing nothing, and (2) pushing the car right.

4.2 Q-learning with Linear Approximations

The Q-learning algorithm is a model-free reinforcement learning algorithm, where we assume we don’t have
access to the model of the environment the agent is interacting with. We also don’t build a complete model
of the environment during the learning process. A learning agent interacts with the environment solely based
on calls to step and reset methods of the environment. Then the Q-learning algorithm updates the q-values
based on the values returned by these methods. Analogously, in the approximation setting the algorithm will
instead update the parameters of g-value approximator.

Let the learning rate be « and discount factor be . Recall that we have the information after one interaction
with the environment, (s, a, r, s’). The tabular update rule based on this information is:

Qs,a) = (1 — @)Q(s,a) + a <r +ymaxQ(s', a')> .

9 of 14



Programming Assignment 7: Reinforcement Learning 10-301/10-601

Instead, for the function approximation setting we use the following update rule derived from the Function
Approximation Section (Section ??). Note that we have made the bias term explicit here, where before it
was implicitly folded into w:

wew-a <q<s, a5w) = (r + ymax gl w>> V(s a;w),
a/

where
q(s,a;w) = wls +b,.

The epsilon-greedy action selection method selects the optimal action with probability 1 — e and selects
uniformly at random from one of the 3 actions (0, 1, 2) with probability €. The reason that we use an
epsilon-greedy action selection is we would like the agent to do explorations by stochastically selecting
random actions with small probability. For the purpose of testing, we will test two cases: ¢ = 0 and
0 < e < 1. When € = 0 (no exploration), the program becomes deterministic and your output have to match
our reference output accurately. In this case, pick the action represented by the smallest number if there
is a draw in the greedy action selection process. For example, if we are at state s and Q(s,0) = Q(s, 2),
then take action 0. When 0 < € < 1, your output will need to fall in a certain range within the reference
determined by running exhaustive experiments on the input parameters.

4.3 Feature Engineering

Linear approximations are great in their ease of use and implementations. However, there sometimes is a
downside; they’re linear. This can pose a problem when we think the value function itself is nonlinear with
respect to the state. For example, we may want the value function to be symmetric about 0 velocity. To
combat this issue we could throw a more complex approximator at this problem, like a neural network. But
we want to maintain simplicity in this assignment, so instead we will look at a nonlinear transformation of
the “raw” state.

Velocity Velocity
0.07 0.07 : : : : :
004 Y7 A I
0.01 ()()1"-5""5"-"5" "E"-"E"
—0.01 ().()l-"i""i"-"i" "5"-"5"
—0.04 —0,()4"‘5""?""5-- --i---di--
70'011.2 —0.84—-0.48—-0.12 0.24 0.6 Position 70'021.2:—0.81:—0.18:—0.12: ().21: 0.6 Position
(a) A discretization of the state space of Mountain Car (b) A tiling of the state space of Mountain Car

Figure 4: State representations for the states of Mountain Car

For the Mountain Car environment, we know that position and velocity are both bounded. What we
can do is draw a grid over the possible position-velocity combinations as seen in Figure 4a. We then
enumerate the grid from bottom left to top right, row by row. Then we map all states that fall into a grid

10 of 14



Programming Assignment 7: Reinforcement Learning 10-301/10-601

square with the corresponding one-hot encoding of the grid number. For efficiency reasons we will just use
the index that is non-zero. For example the green point would be mapped to {6} and the orange point to
{12}. This is called a discretization of the state space.

The downside to the above approach is that although observing the green point will let us learn parameters
that generalize to other points in the shaded blue region, we will not be able to generalize to the orange
point even though it is nearby. We can instead draw two grids over the state space, each offset slightly from
each other as in Figure 4b. Now we can map the green point to two indices, one for each grid, and get
{6,39} (note the index for orange grid starts from the end of blue index, i.e. 25). Now the green point
has parameters that generalize to points that map to {6} (the blue shaded region) in the first discretization
and parameters that generalize to points that map to {39} (the red shaded region) in the second. We can
generalize this to multiple grids, which is what we do in practice. This is called a tiling or a coarse-coding
of the state space.

4.4 Implementation Details

Here we describe the API to interact with the Mountain Car environment available to you.

* _init__(mode, debug): Initializes the environment to the a mode specified by the value of
mode. This can be a string of either “raw” or “tile”.

“raw” mode tells the environment to give you the state representation of raw features encoded as a
vector [position,velocity]”.

In “tile” mode you are given a binary vector where the ¢-th index is 1 if the i-th tile is active in the
tiling. All other tile indices are assumed to map to 0. For example the state representation of the
example in Figure 4b would become [0, 0, ...,0,1,0,...,0,1,0, ..., O}T, where indices 6 and 39 are 1.

The dimension of the state space of the “raw” mode is 2. The dimension of the state space of the
“tile” mode is 2048. These values can be accessed from the environment through the state_space

property.
debug is an optional argument for debugging. See Section 4.5 for more details.

* reset (): Reset the environment to starting conditions. Returns the initial state.

* step(action): Take a step in the environment with the given action. action must be an in-
teger in the range [0, env.action_space), where env is the environment instance. For the
Mountain Car environment, env.action_space is 3, since the valid actions are 0, 1, and 2.
step (action) returns a tuple of (state, reward, done) which is the next state, the reward ob-
served, and a boolean indicating if you reached the goal or not, ending the episode. The state will
be either a raw or tile representation, as defined above, depending on how you initialized Mountain
Car. If you observe done = True then you should reset the environment and end the episode.
Failure to do so will result in undefined behavior.

* render (): Visualize the environment (not graded). Requires the installation of pygl et!. We
highly recommend you to use this only after you implement everything. Do not use this as a tool for
debugging—this should rather be used as a tool for understanding Q-learning better. It is computa-
tionally intensive to render graphics, so only call the function once every 100 or 1000 episodes. This
will be a no-op in Gradescope.

'"You can install it by typing pip install pyglet in your shell.

11 of 14



Programming Assignment 7: Reinforcement Learning 10-301/10-601

You should now implement your Q-learning algorithm with linear approximations in g_learning.py.
The program will assume access to a given environment file(s) which contains the Mountain Car environ-
ment which we have given you. Initialize the parameters of the linear model with all 0 (and don’t forget
to include a bias!) and use the epsilon-greedy strategy for action selection.

Additionally, to avoid numerical precision errors, please ensure that your Q-values throughout your
program are rounded to 5 decimal places. This is already handled for you in the starter code by the
@round_output (5) decorator” above the Q (W, state, action) function;the body of this function
is left for you to complete. If you choose not to use the starter code, make sure that your code still does this
rounding:

Qvalue = <some code to calculate Q-values>
Qvalue = np.round(Qvalue, 5)

Your program should write a output file containing the total rewards (the returns) for every episode after
running Q-learning algorithm. There should be one return per line.

Your program should also write the weights of the model to a file. This output file should have the following
format:

bias_action_0 weight_action_0_1 weight_action_0_2
bias_action_1 weight_action_1_1 weight_action_1_2

Above, each line corresponds to the weights for that action. For example, the first line contains the bias and
the weights for action 0, the second line contains the bias and the weights for action 1, and so on. A space
separates the parameters in each line, and each line is terminated by a newline character "\n".

The autograder will use the following commands to call your function:
$ python g learning.py [args...]

where above [args. . .] isaplaceholder for command-line arguments: <env> <mode> <weight_out>
<returns_out> <episodes> <max_iterations> <epsilon> <gamma> <learning_rate>.
These arguments are described in detail below:

1. <env>: the environment that you are running, either mc for Mountain Car or gw for Grid World.

2. <mode>: mode to run the environment in. Should be either raw or tile. Note that Grid World
operates only in t 1 1e mode.

3. <weight_out>: path to output the weights of the linear model.
4. <returns_out>: path to output the returns of the agent.

5. <episodes>: the number of episodes your program should train the agent for. One episode is a
sequence of states, actions and rewards, which ends with terminal state or ends when the maximum
episode length has been reached.

6. <max_iterations>: the maximum of the length of an episode. When this is reached, we terminate
the current episode.

7. <epsilon>: the value € for the epsilon-greedy strategy.

%You don’t need to know how decorators work for this class, but you can read more about them here if you're interested.

12 of 14


https://realpython.com/primer-on-python-decorators/

Programming Assignment 7: Reinforcement Learning 10-301/10-601

8. <gamma>: the discount factor ~.
9. <learning_rate>: the learning rate « of the Q-learning algorithm.
Example command:

$ python g learning.py mc raw mc_raw_weight.txt mc_raw_returns.txt \
4 200 0.05 0.99 0.01

Example output from the above command (may not be exactly the same, but should be close up to 0.01):
<weight_out>

-2.616201458164875e+00 1.372446352613752e+00 —-8.118122206508656e-04
—2.624314255042218e+00 1.377997342131049e+00 —-5.094025945611515e-05
—-2.624000732921778e+00 1.378888252513226e+00 1.757295801944946e-03

<returns_out>

—-2.000000000000000000e+02
-2.000000000000000000e+02
-2.000000000000000000e+02
-2.000000000000000000e+02

4.5 Debugging Tips

To help with debugging, we have provided the option for printing each step of the Q-learning train func-
tion based on the reference output for the Grid World environment. We created this output by adding the
debug=True argument when initializing the Grid World environment. You may do the same to compare
your output against ours.

We recommend first checking your outputs based on a run with extremely simple parameters. Remember to
set <epsilon>=0 so the program is run without the epsilon-greedy strategy.

We have provided output on the Grid World for the following simple command:

$ python g learning.py gw tile gw_simple_weight.txt \
gw_simple_returns.txt 1 1 0.0 1 1

Once this works, you can change the parameters to be slightly more complex (such as the ones we have
below), and check with our calculations again:

$ python g _learning.py gw tile gw_weight.txt gw_returns.txt \
350.00.9 0.01

The logs for both of the above commands should be in reference_output/gw_simple.log and
reference_output/gw. log, respectively.

In addition, we have provided mc_weight .txt and mc_returns.txt in the handout, which are gener-
ated using the following parameters:

¢ <env>:mc

e <mode>: tile

13 of 14



Programming Assignment 7: Reinforcement Learning 10-301/10-601

<episodes>: 25
<max_iterations>: 200
<epsilon>: 0.0
<gamma>: 0.99

<learning.rate>: 0.005

Example command:

$ python g _learning.py mc tile mc_tile_weight.txt \
mc_tile returns.txt 25 200 0.0 0.99 0.005

4.6 Gradescope Submission

You should submit your g_learning.py to Gradescope. Any other files uploaded will be discarded or
reverted back to the original version provided in the handout. Do not use other file names.

14 of 14



	LaTeX Bonus Point
	Empirical Questions
	Collaboration Questions
	Programming [68 Points]
	Specification of Mountain Car
	Q-learning with Linear Approximations
	Feature Engineering
	Implementation Details
	Debugging Tips
	Gradescope Submission


