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Front Matter

� Announcements: 

� PA0 released 5/15 (today!), due 5/18 at 11:59 PM 

� You must complete all assignments using LaTeX; see 
this Piazza post for details and a few LaTeX tutorials

� General advice for the summer:

� Start HWs early!

� Go to office hours! Starting today, 5/15

� MWThF (every weekday except Tuesday) from 

5 – 6 PM in NSH 3002

� Recommended Readings:

� None
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https://piazza.com/class/lh7wb71rd8z7ct/post/7


What is 
Machine 
Learning?
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Machine 
Learning 
(A long long 
time ago…)
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Machine 
Learning 
(A short time 
ago…)
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Machine 
Learning 
(Now)
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Machine 
Learning 
(Now)
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Source: https://www.bing.com/images/create?FORM=GERRLP

Source: https://chat.openai.com/

https://www.bing.com/images/create?FORM=GERRLP
https://chat.openai.com/


Premise of
Machine 
Learning 

� There exists some pattern/behavior of interest

� The pattern/behavior is difficult to describe

� There is data

� Use data to “learn” the pattern
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What is 
Machine 
Learning?
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Things 
Machine 
Learning 
Isn’t

� Artificial intelligence 

� Data science 
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Things 
Machine 
Learning 
Isn’t

� Artificial intelligence: Creating machines that can mimic 
human behavior/cognition

� Data science 
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Things 
Machine 
Learning 
Isn’t

� Artificial intelligence: Creating machines that can mimic 
human behavior/cognition

� Data science: Extracting knowledge/insights from noisy, 
unstructured data
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https://www.sciencedirect.com/topics/physics-and-astronomy/artificial-intelligence


What is 
Machine 
Learning
10-301/601?
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� Supervised Models
� Decision Trees
� KNN
� Naïve Bayes
� Perceptron
� Logistic Regression
� Linear Regression
� Neural Networks

� Unsupervised Models
� K-means
� PCA

� Ensemble Methods

� Graphical Models
� Bayesian Networks
� HMMs

� Learning Theory

� Reinforcement Learning

� Important Concepts
� Feature Engineering 
� Regularization and 

Overfitting
� Experimental Design



Defining a 
Machine 
Learning 
Task 
(Mitchell, 97)

� A computer program learns if its performance, P, at 

some task, T, improves with experience, E. 

� Three components

� Task, T

� Performance metric, P

� Experience, E

Henry Chai - 5/15/23 14



Defining a 
Machine 
Learning 
Task: 
Example

� Learning to approve loans/lines of credit

� Three components

� Task, T

Decide whether to extend someone a loan

� Performance metric, P

Number of people who default on their loan

� Experience, E

Interviews with loan officers
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Defining a 
Machine 
Learning 
Task: 
Example

� Learning to approve loans/lines of credit

� Three components

� Task, T

Predict the probability someone defaults on a loan

� Performance metric, P

Amount of money (interest) made

� Experience, E

Historical data on loan defaults
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Things 
Machine 
Learning 
Isn’t
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� Artificial intelligence: Creating machines that can mimic 

human behavior/cognition

� Data science: Extracting knowledge/insights from noisy, 
unstructured data

� Neutral?





Things 
Machine 
Learning 
Isn’t
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� Artificial intelligence: Creating machines that can mimic 

human behavior/cognition

� Data science: Extracting knowledge/insights from noisy, 
unstructured data

� Neutral

Source: https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/2016_0504_data_discrimination.pdf

https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/2016_0504_data_discrimination.pdf


Things 
Machine 
Learning 
Isn’t
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� Artificial intelligence: Creating machines that can mimic 

human behavior/cognition

� Data science: Extracting knowledge/insights from noisy, 
unstructured data

� Neutral

Source: https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/2016_0504_data_discrimination.pdf

https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/2016_0504_data_discrimination.pdf


Defining a 
Machine 
Learning 
Task: 
Example

� Learning to 

� Three components

� Task, T

� Performance metric, P

� Experience, E
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� Learning to diagnose heart disease  
as a (supervised) binary classification task

Our first 
Machine 
Learning 
Task
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� Learning to diagnose heart disease  
as a (supervised) binary classification task

Our first 
Machine 
Learning 
Task
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� Learning to diagnose heart disease  
as a (supervised) binary classification task

Our first 
Machine 
Learning 
Task
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Yes Low Normal Low Risk
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Yes Medium Normal High Risk
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� Learning to diagnose heart disease  
as a (supervised) bin. . ary regression task

Our first 
Machine 
Learning 
Task
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� A classifier is a function that takes feature values as 
input and outputs a label

� Majority vote classifier: always predict the most 
common label in the training dataset

Our first 
Machine 
Learning 
Classifier
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� A classifier is a function that takes feature values as 
input and outputs a label

� Majority vote classifier: always predict the most 
common label in the training dataset 

Is this a 
“good” 
Classifier?
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� A classifier is a function that takes feature values as 
input and outputs a label

� Majority vote classifier: always predict the most 
common label in the training dataset (Yes)

Training 
vs. 
Testing
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� A classifier is a function that takes feature values as  

input and outputs a label

� Majority vote classifier: always predict the most   
common label in the training dataset (Yes)

� A test dataset is used to evaluate a classifier’s predictions

� The error rate is the proportion of data points where the 
prediction is wrong

Training 
vs. 
Testing
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� A classifier is a function that takes feature values as  

input and outputs a label

� Majority vote classifier: always predict the most   
common label in the training dataset (Yes)

� A test dataset is used to evaluate a classifier’s predictions

� The test error rate is the proportion of data points in the 
test dataset where the prediction is wrong ( ⁄1 3)

Training 
vs. 
Testing
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A Typical 
(Supervised) 
Machine 
Learning 
Routine

� Step 1 – training

� Input: a labelled training dataset

� Output: a classifier

� Step 2 – testing

� Inputs: a classifier, a test dataset

� Output: predictions for each test data point

� Step 3 – evaluation

� Inputs: predictions from step 2, test dataset labels

� Output: some measure of how good the predictions are; 
usually (but not always) error rate
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Key Takeaways

� Components of a machine learning problem

� Machine learning vs. artificial intelligence vs. data science

� Algorithmic bias

� Components of a labelled dataset for supervised learning

� Training vs. test datasets

� Majority vote classifier
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Logistics: 
Course 
Website

https://www.cs.cmu.edu/~hchai2/courses/10601
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https://www.cs.cmu.edu/~hchai2/courses/10601


Logistics: 
Course 
Syllabus
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

� This whole section is required reading

https://www.cs.cmu.edu/~hchai2/courses/10601/


Logistics: 
Grading
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

� 30% programming assignments

� 25% in-class quizzes

� 20% midterm

� 20% final

� 5% participation
� 5% (full credit) for 80% or greater poll participation
� 3% for 65%-80% poll participation.
� 1% for 50%-65% poll participation.
� “Correctness” will not affect your participation grade
� 50% credit for responses before the next lecture

https://www.cs.cmu.edu/~hchai2/courses/10601/


Logistics: 
Programming 
Assignments
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

� 8 programming assignments throughout the semester
� PA0 (out today!) is a self-assessment covering 

background/pre-requisite material 
� Each will have a programming component and some 

written, empirical questions 
� Your answers to the written questions must be typeset 

in LaTeX
� To facilitate this, we will always provide a LaTeX 

starter template that you can just fill in with your 
answers. 

� You will submit your code and your answers to the 
written questions separately, both using Gradescope

https://www.cs.cmu.edu/~hchai2/courses/10601/


Logistics: 
Late 
Policy
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

� 9 grace days for use across all programming assignments

� Only 3 grace days may be used per homework

� Late submissions w/o grace days:
� 1 day late = 75% multiplicative penalty
� 2 days late = 50% multiplicative penalty
� 3 days late = 25% multiplicative penalty

� No submissions accepted more than 3 days late

https://www.cs.cmu.edu/~hchai2/courses/10601/


Logistics: 
In-class 
Quizzes
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

� 10 weekly quizzes throughout the semester 
� Each quiz covers the previous week’s content
� The goal of these “frequent”, low-stakes quizzes is to 

keep you up to date on the material and serve as 
regular check-ins for your understanding

� To help you prepare:
1. We will release a set of study questions at the 

end of each week 
2. Our TAs will go over some additional practice 

problems in recitation 
� At least 75% of the points on the in-class quizzes will 

come from questions that are identical or nearly 
identical to questions from these sources

https://www.cs.cmu.edu/~hchai2/courses/10601/


Logistics: 
Collaboration 
Policy
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

� On study materials and recitation handouts, you may 
collaborate freely, to any extent 

� However, you still have a duty to protect your work: you 
may not post your solutions publicly/share your solutions 
with anyone outside of the course

� Collaboration on programming assignments is encouraged but 
must be documented

� You must always write your own code/answers
� You may not re-use code/previous versions of the 

homework, whether your own or otherwise

� Good approach to collaborating on programming assignments:
1. Collectively sketch pseudocode on an impermanent 

surface, then
2. Disperse, erase all notes and start from scratch

https://www.cs.cmu.edu/~hchai2/courses/10601/


Logistics: 
Technologies
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

� Piazza, for course discussion: 
https://piazza.com/class/lh7wb71rd8z7ct/

� Gradescope, for submitting homework assignments: 
https://www.gradescope.com/courses/53741

� Polleverywhere, for in-class participation: 
https://pollev.com/301601polls

� Panopto, for lecture recordings: 
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.
aspx#folderID=%223c224789-15ee-41c1-a95f-
affd012e5344%22

https://www.cs.cmu.edu/~hchai2/courses/10601/
https://piazza.com/class/lh7wb71rd8z7ct/
https://www.gradescope.com/courses/53741
https://pollev.com/301601polls
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx


Logistics: 
Lecture 
Schedule
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Schedule

https://www.cs.cmu.edu/~hchai2/courses/10601/


Logistics: 
Exam  
Schedule
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Schedule

⋮

⋮

https://www.cs.cmu.edu/~hchai2/courses/10601/


https://www.cs.cmu.edu/~hchai2/courses/10601/#Recitations

Logistics: 
Recitations
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https://www.cs.cmu.edu/~hchai2/courses/10601/


https://www.cs.cmu.edu/~hchai2/courses/10601/#Assignments

Logistics:
Programming 
Assignments

Henry Chai - 5/15/23 46

https://www.cs.cmu.edu/~hchai2/courses/10601/


https://www.cs.cmu.edu/~hchai2/courses/10601/#Calendar

Logistics: 
Office Hours
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https://www.cs.cmu.edu/~hchai2/courses/10601/


Logistics:
Staff
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Staff

https://www.cs.cmu.edu/~hchai2/courses/10601/

