10-301/601: Introduction to Machine Learning Lecture 13 – **Differentiation**

Henry Chai

6/13/23

Front Matter

- Announcements
	- PA3 released 6/8, due 6/15 at 11:59 PM
	- Quiz 4: Neural Networks on 6/20 (next Tuesday)
	- No lecture **or OH** on 6/19 (next Monday) for Juneteenth
	- Midterm on 6/23, one week from Friday
- Recommended Readings
	- None

Midterm **Logistics**

• Time and place:

- Friday, 6/23 from 12:00PM to 3:00 PM in **DH 2302**
- Closed book/notes
	- 1-page cheatsheet allowed, both back and front; can be typeset or handwritten

Midterm **Coverage**

- Lectures: 1 14 (through tomorrow's lecture)
	- Foundations: probability, linear algebra, calculus
	- Important concepts: inductive bias, overfitting, model selection/hyperparameter optimization, regularization
	- Models: decision trees, kNN, Perceptron, linear regression, logistic regression, neural networks
	- Methods: (stochastic) gradient descent, closed-form optimization, backpropagation, MLE/MAP

Midterm Preparation Review midterm practice problems, posted to the course website (under [Recitations\)](https://www.cs.cmu.edu/~hchai2/courses/10601/)

Attend the exam review recitation on 6/20 (after the quiz)

- Review this year's quizzes and study guides
- Consider whether you understand the "Key Takeaways" for each lecture / section
- Write your cheat sheet

Recall: Forward Propagation for Making Predictions

• Input: weights $W^{(1)}$, ..., $W^{(L)}$ and a query data point \boldsymbol{x}

• Initialize
$$
\mathbf{o}^{(0)} = [1, x]^T
$$

• For
$$
l = 1, ..., L
$$

\n• $\mathbf{s}^{(l)} = W^{(l)} \mathbf{o}^{(l-1)}$

 $\mathbf{o}^{(l)} = \begin{bmatrix} 1, \theta(\mathbf{s}^{(l)}) \end{bmatrix}^T$

• Output: $h_{W^{(1)},...,W^{(L)}}(x) = o^{(L)}$

Recall: Gradient **Descent** for Learning • Input: $\mathcal{D} = \{(\pmb{x}^{(n)}, y^{(n)})\}$ $n=1$ $\sum_{n=1}^{N} \eta^{(0)}$ • Initialize all weights $W_{(0)}^{(1)}$, ..., $W_{(0)}^{(L)}$ to small, random

numbers and set $t = 0$ (???)

- While TERMINATION CRITERION is not satisfied (???) \cdot For $l = 1, ..., L$
	- Compute $G^{(l)} = \nabla_{W^{(l)}} \ell_{\mathcal{D}}\left(W_{(t)}^{(1)}, \ldots, W_{(t)}^{(L)}\right)$ (???)
	- Update $W^{(l)}$: $W^{(l)}_{(t+1)} = W^{(l)}_{(t)} \eta_0 G^{(l)}$
	- \cdot Increment t : $t = t + 1$

• Output: $W^{(1)}_{(t)}$, ... , $W^{(L)}_{(t)}$

Matrix Calculus

Denominator H - 3 $\overline{\mathsf{C}}$

Matrix Calculus: Denominator Layout

 Derivatives of a scalar always have the *same shape* as the entity that the derivative is being taken with respect to.

Matrix Calculus: Denominator Layout

Three Approaches to **Differentiation**

- Given $f\colon\mathbb{R}^D\to\mathbb{R}$, compute $\nabla_{\pmb{x}}f(\pmb{x})=\frac{\partial f(\pmb{x})}{\partial \pmb{x}}$
- 1. Finite difference method

2. Symbolic differentiation

3. Automatic differentiation (reverse mode)

Approach 1: Finite **Difference** Method

where \boldsymbol{d}_i is a one-hot vector with a 1 in the i^{th} position

- We want ϵ to be small to get a good approximation but we run into floating point issues when ϵ is too small
- Getting the full gradient requires computing the above approximation for each dimension of the input

Approach 1: Finite **Difference** Method Example

Given

$$
y = f(x, z) = e^{xz} + \frac{xz}{\ln(x)} + \frac{\sin(\ln(x))}{xz}
$$

what are
$$
\frac{\partial y}{\partial x}
$$
 and $\frac{\partial y}{\partial z}$ at $x = 2, z = 3$?

>>> import math

 \Rightarrow \Rightarrow $y =$ lambda x, z : $mathexp(x*z)+(x*z)/mathLog(x)+mathsf.sing(x)$ +math.sin(math.log(x))/(x*z)

```
\rightarrow \times \times = 2
\rightarrow > z = 3\implies e = 10**-8
>>> dydx = (y(x+e, z)-y(x-e, z))/(2^*e)>>> dydz = (y(x, z+e)-y(x, z-e))/(2^*e)>>> print(dydx, dydz)
```
Three Approaches to **Differentiation**

- Given $f\colon\mathbb{R}^D\to\mathbb{R}$, compute $\nabla_{\pmb{x}}f(\pmb{x})=\frac{\partial f(\pmb{x})}{\partial \pmb{x}}$
- 1. Finite difference method
	- Requires the ability to call $f(\boldsymbol{x})$
	- Great for checking accuracy of implementations of more complex differentiation methods
	- Computationally expensive for high-dimensional inputs
- 2. Symbolic differentiation

3. Automatic differentiation (reverse mode)

Approach 2: Symbolic **Differentiation** Given

$$
y = f(x, z) = e^{xz} + \frac{xz}{\ln(x)} + \frac{\sin(\ln(x))}{xz}
$$

what are
$$
\frac{\partial y}{\partial x}
$$
 and $\frac{\partial y}{\partial z}$ at $x = 2$, $z = 3$?

Looks like we're gonna need the chain rule!

The Chain Rule of Calculus

If $y = f(z)$ and $z = g(x)$ then

the corresponding computation graph is

then poll is active, respond at polley.com/301601polls

Suppose $y=f(\mathbf{z}), \mathbf{z}=h(\mathbf{w})$ and $\mathbf{w}=g(x).$ Does the equation $\frac{\partial y}{\partial x} = \sum_{d=1}^{D} \frac{\partial y}{\partial z_d} \frac{\partial z_d}{\partial x}$ still hold?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Approach 2: **Symbolic Differentiation**

Given
\n
$$
y = f(x, z) = e^{xz} + \frac{xz}{\ln(x)} + \frac{\sin(\ln(x))}{xz}
$$
\nwhat are $\frac{\partial y}{\partial x}$ and $\frac{\partial y}{\partial z}$ at $x = 2, z = 3$?
\n
$$
\frac{\partial y}{\partial x} = \frac{\partial}{\partial x} (e^{xz}) + \frac{\partial}{\partial x} (\frac{xz}{\ln(x)}) + \frac{\partial}{\partial x} (\frac{\sin(\ln(x))}{xz})
$$
\nApproach 2:
\n
$$
= ze^{xz} + \frac{z}{\ln(x)} - \frac{z}{\ln(x)^2} + \frac{\cos(\ln(x))}{x^2z} - \frac{\sin(\ln(x))}{x^2z}
$$
\nDifferentiation
\n
$$
= 3e^6 + \frac{3}{\ln(2)} - \frac{3}{\ln(2)^2} + \frac{\cos(\ln(2))}{12} - \frac{\sin(\ln(2))}{12}
$$
\n
$$
\frac{\partial y}{\partial z} = \frac{\partial}{\partial z} (e^{xz}) + \frac{\partial}{\partial z} (\frac{xz}{\ln(x)}) + \frac{\partial}{\partial z} (\frac{\sin(\ln(x))}{xz})
$$
\n
$$
= 2e^6 + \frac{2}{\ln(2)} - \frac{\sin(\ln(2))}{18}
$$
\nExample converges of Matt Gormley

Three Approaches to **Differentiation**

- Given $f\colon\mathbb{R}^D\to\mathbb{R}$, compute $\nabla_{\pmb{x}}f(\pmb{x})=\frac{\partial f(\pmb{x})}{\partial \pmb{x}}$
- 1. Finite difference method
	- Requires the ability to call $f(\boldsymbol{x})$
	- Great for checking accuracy of implementations of more complex differentiation methods
	- Computationally expensive for high-dimensional inputs
- 2. Symbolic differentiation
	- Requires systematic knowledge of derivatives
	- Can be computationally expensive if poorly implemented
- 3. Automatic differentiation (reverse mode)

Given

 $y = f(x, z) = e^{xz} +$ χ_{Z} $ln(x)$ + $sin(ln(x))$ χ_{Z}

what are
$$
\frac{\partial y}{\partial x}
$$
 and $\frac{\partial y}{\partial z}$ at $x = 2$, $z = 3$?

 First define some intermediate quantities, draw the computation graph and run the "forward" computation

 $a = xz$ $b = \ln(x)$ $c = \sin(b)$ $d = e^a$ $e = \frac{a}{\sqrt{a}}$ \boldsymbol{b} $f = \frac{c}{a}$ $y = d + e + f$ 2 χ \overline{Z} 3 ∗ ln \overline{a} \bm{b} c sin exp $+$ / \mathcal{Y} \boldsymbol{d} E \int

Approach 3: Automatic **Differentiation** (reverse mode) Given

Approach 3: Automatic **Differentiation** (reverse mode)

• $g_z =$ ∂y ∂z = ∂y ∂a ∂a $\frac{\partial u}{\partial z} = g_a(x)$ $y = f(x, z) = e^{xz} +$ χ_{Z} $ln(x)$ + $sin(ln(x))$ χ_{Z} what are $\frac{\partial y}{\partial x}$ and $\frac{\partial y}{\partial z}$ at $x = 2$, $z = 3$? • Then compute partial derivatives, starting from y and working back $\bullet \mathscr{G}_c =$ Henry Chai - 6/13/23 **22** Example courtesy of Matt Gormley **22 22 22 22 22 22 22** 2 χ \overline{Z} 3 ∗ ln \overline{a} \bm{b} c Sin exp $+$ $-$ / \hat{y} \boldsymbol{d} E \int • $g_y =$ ∂y ∂y $= 1$ • $g_d = g_e = g_f = 1$ ∂y ∂c = ∂y ∂f ∂f $\frac{\partial f}{\partial c} = g_f$! \overline{a} • $g_b =$ ∂y ∂b = ∂y ∂e $\frac{\partial e}{\partial b} + \frac{\partial y}{\partial c}$ ∂c ∂b $= g_e \left(-\frac{a}{b^2} \right) + g_c (\cos(b))$ • $g_a =$ ∂y ∂a = ∂y ∂f $\frac{\partial f}{\partial a} + \frac{\partial y}{\partial e}$ $\frac{\partial e}{\partial a} + \frac{\partial y}{\partial d}$ ∂d ∂a $= g_f$ $-c$ $\frac{-c}{a^2}$ + g_e $\left(\frac{1}{b}\right) + g_d(e^a)$ • $g_x =$ ∂y ∂x = ∂y ∂b $\frac{\partial b}{\partial x} + \frac{\partial y}{\partial a}$ ∂a $\frac{\partial u}{\partial x} = g_b$! $(\frac{1}{x}) + g_a(z)$

Three Approaches to **Differentiation** • Given $f\colon\mathbb{R}^D\to\mathbb{R}$, compute $\nabla_{\pmb{x}}f(\pmb{x})=\frac{\partial f(\pmb{x})}{\partial \pmb{x}}$

- 1. Finite difference method
	- Requires the ability to call $f(x)$
	- Great for checking accuracy of implementations of more complex differentiation methods
	- Computationally expensive for high-dimensional inputs
- 2. Symbolic differentiation
	- Requires systematic knowledge of derivatives
	- Can be computationally expensive if poorly implemented
- 3. Automatic differentiation (reverse mode)
	- Requires systematic knowledge of derivatives *and* an algorithm for computing $f(x)$
- Henry Chai 6/13/23 **23** • Computational cost of computing $\frac{\partial f(x)}{\partial x}$ is proportional to the cost of computing $f(\boldsymbol{x})$

Computation Graph 10-301/601 Conventions

The diagram represents *an algorithm*

- Nodes are rectangles with one node per intermediate variable in the algorithm
- Each node is labeled with the function that it computes (inside the box) and the variable name (outside the box)
- Edges are directed and do not have labels
- For neural networks:
	- Each weight, feature value, label and *bias term* appears as a node
	- We *can* include the loss function

Neural Network Diagram **Conventions** The diagram represents a *neural network*

- Nodes are circles with one node per hidden unit
- Each node is labeled with the variable corresponding to the hidden unit
- Edges are directed and each edge is labeled with its weight
- Following standard convention, the bias term is typically *not* shown as a node, but rather is assumed to be part of the activation function i.e., its weight does not appear in the picture anywhere.
- The diagram typically does *not* include any nodes related to the loss computation

Key Takeaways

- Denominator layout for matrix calculus
- Finite difference method is a simple but computationally expensive approximation technique
	- *You should use this to unit test your implementation of backpropagation!*
- Symbolic differentiation is the "default" differentiation method but can also also be computationally expensive
- Automatic differentiation (reverse mode) saves intermediate quantities for computational efficiency
	- Backpropagation is an instance of automatic
	- differentiation in the reverse mode