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10-301/601: Introduction 
to Machine Learning
Lecture 13 – 
Differentiation 



Front Matter

� Announcements

� PA3 released 6/8, due 6/15 at 11:59 PM

� Quiz 4: Neural Networks on 6/20 (next Tuesday)

� No lecture or OH on 6/19 (next Monday) for Juneteenth

� Midterm on 6/23, one week from Friday 

� Recommended Readings

� None
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Midterm 
Logistics

� Time and place: 

� Friday, 6/23 from 12:00PM to 3:00 PM in DH 2302

� Closed book/notes

� 1-page cheatsheet allowed, both back and front; can 
be typeset or handwritten
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Midterm 
Coverage

� Lectures: 1 – 14 (through tomorrow’s lecture) 

� Foundations: probability, linear algebra, calculus 

� Important concepts: inductive bias, overfitting, 
model selection/hyperparameter optimization, 
regularization

� Models: decision trees, kNN, Perceptron, linear 
regression, logistic regression, neural networks

� Methods: (stochastic) gradient descent, closed-form 
optimization, backpropagation, MLE/MAP
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Midterm 
Preparation

� Review midterm practice problems, posted to the course 
website (under Recitations)

� Attend the exam review recitation on 6/20 (after the quiz)

� Review this year’s quizzes and study guides

� Consider whether you understand the “Key Takeaways” 
for each lecture / section

� Write your cheat sheet 

Henry Chai - 6/13/23 6

https://www.cs.cmu.edu/~hchai2/courses/10601/


Recall: 
Forward 
Propagation 
for Making 
Predictions

� Input: weights ! ! , … ,! "  and a query data point $

� Initialize % # = 1, $ $

� For ( = 1,… , )

� * % = ! % % %&!

� % % = 1, + * % $

� Output: ℎ' ! ,…,' " $ = % "
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Recall: 
Gradient 
Descent 
for Learning

� Input: - = $ * , . *
*+!
,

, / #

� Initialize all weights ! #
! , … ,! #

"  to small, random 

numbers and set 0 = 0 (???)

� While TERMINATION CRITERION is not satisfied (???)

� For ( = 1,… , )

� Compute 2 % = ∇' # ℓ- ! .
! , … ,! .

"  (???)

� Update ! % : ! ./!
% = ! .

% − /#2 %

� Increment 0: 0 = 0 + 1	

� Output: ! .
! , … ,! .

"
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Matrix 
Calculus

Types of 
Derivatives scalar vector matrix

scalar

vector

matrix

Numerator

D
en

om
in

at
or
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Matrix 
Calculus: 
Denominator 
Layout

� Derivatives of a 
scalar always 
have the same 
shape as the 
entity that the 
derivative is 
being taken 
with respect to. 

Types of 
Derivatives scalar

scalar

vector

matrix
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Matrix 
Calculus: 
Denominator 
Layout

Types of 
Derivatives scalar vector

scalar

vector
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Three 
Approaches to 
Differentiation

� Given 8:	ℝ0 → ℝ, compute ∇18 $ = <23 1
21

1. Finite difference method
� Requires the ability to call 8 $

� Great for checking accuracy of implementations of 
more complex differentiation methods

� Computationally expensive for high-dimensional inputs

2. Symbolic differentiation
� Requires systematic knowledge of derivatives
� Can computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)
� Requires systematic knowledge of derivatives and an 

algorithm for computing 8 $

� Computational cost of computing <23 1
21 is 

proportional to the cost of computing 8 $
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Approach 1: 
Finite 
Difference 
Method

� Given 8:	ℝ0 → ℝ, compute ∇18 $ = <23 1
21

=8 $

=>4
≈
8 $ + @A4 − 8 $ − @A4

2@

where A4 is a one-hot vector with a 1 in the Cth position

� We want @ to be small to get a good approximation but we 
run into floating point issues when @ is too small 

� Getting the full gradient requires computing the above 
approximation for each dimension of the input

8 >

>@ @
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Approach 1: 
Finite 
Difference 
Method
Example

Example courtesy of Matt Gormley

� Given

. = 8 >, D = E56 +
>D

ln >
+
sin ln >

>D

what are <27
25 and <27

26 at > = 2, D = 3?

>>> import math

>>> y = lambda x,z: 
math.exp(x*z)+(x*z)/math.log(x)+math.sin(math.log(x))/(x*z)

>>> x = 2

>>> z = 3

>>> e = 10**-8

>>> dydx = (y(x+e,z)-y(x-e,z))/(2*e)

>>> dydz = (y(x,z+e)-y(x,z-e))/(2*e)

>>> print(dydx, dydz)



� Given 8:	ℝ0 → ℝ, compute ∇18 $ = <23 1
21

1. Finite difference method
� Requires the ability to call 8 $

� Great for checking accuracy of implementations of 
more complex differentiation methods

� Computationally expensive for high-dimensional inputs

2. Symbolic differentiation
� Requires systematic knowledge of derivatives
� Can be computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)
� Requires systematic knowledge of derivatives and an 

algorithm for computing 8 $

� Computational cost of computing <23 1
21 is proportional 

to the cost of computing 8 $

Three 
Approaches to 
Differentiation
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Approach 2: 
Symbolic 
Differentiation

� Given

. = 8 >, D = E56 +
>D

ln >
+
sin ln >

>D

what are <27
25 and <27

26 at > = 2, D = 3?

� Looks like we’re gonna need the chain rule!

Example courtesy of Matt Gormley



The Chain Rule 
of Calculus

� If . = 8 D  and D = K >  then 
the corresponding computation graph is 

� If . = 8 D!, D8  and D! = K! > , D8 = K8 >  then 

� If . = 8 L  and L = K >  then 
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Approach 2: 
Symbolic 
Differentiation

� Given

. = 8 >, D = E56 +
>D

ln >
+
sin ln >

>D

what are <27
25 and <27

26 at > = 2, D = 3?

=.

=>
=
=

=>
E56 +

=

=>

>D

ln >
+
=

=>

sin ln >

>D

=.

=>
= DE56 +

D

ln >
−

D

ln > 8 +
cos ln >

>8D
−
sin ln >

>8D
=.

=>
= 3E: +

3

ln 2
−

3

ln 2 8 +
cos ln 2

12
−
sin ln 2

12

=.

=D
=
=

=D
E56 +

=

=D

>D

ln >
+
=

=D

sin ln >

>D

=.

=>
= 2E: +

2

ln 2
−
sin ln 2

18 Example courtesy of Matt Gormley



� Given 8:	ℝ0 → ℝ, compute ∇18 $ = <23 1
21

1. Finite difference method
� Requires the ability to call 8 $

� Great for checking accuracy of implementations of 
more complex differentiation methods

� Computationally expensive for high-dimensional inputs

2. Symbolic differentiation
� Requires systematic knowledge of derivatives
� Can be computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)
� Requires systematic knowledge of derivatives and an 

algorithm for computing 8 $

� Computational cost of computing <23 1
21 is proportional 

to the cost of computing 8 $

Three 
Approaches to 
Differentiation
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� Given

. = 8 >, D = E56 +
>D

ln >
+
sin ln >

>D

what are <27
25 and <27

26 at > = 2, D = 3?

� First define some intermediate quantities, draw the  
computation graph and run the “forward” computation
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Approach 3: 
Automatic 
Differentiation 
(reverse mode)

S = >D

T = ln >

U = sin T

V = E;

E = <S T
8 = ⁄U S

. = V + E + 8

2

>

D

3

∗

(Y

S

T

ZCYU

E>[

+/

/

.

V

E

8

Example courtesy of Matt Gormley



• K6 =
27
26 =

27
2;

2;
26 = K; >

� Given

. = 8 >, D = E56 +
>D

ln >
+
sin ln >

>D

what are <27
25 and <27

26 at > = 2, D = 3?

� Then compute partial derivatives, 
starting from . and working back
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Approach 3: 
Automatic 
Differentiation 
(reverse mode)

Example courtesy of Matt Gormley

2
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+/
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• K7 =
27
27 = 1

• K9 = K< = K3 = 1

• K= =
27
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27
23
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2= = K3

!
;
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27
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2<

2<
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Three 
Approaches to 
Differentiation

Henry Chai - 6/13/23 23

� Given 8:	ℝ0 → ℝ, compute ∇18 $ = <23 1
21

1. Finite difference method
� Requires the ability to call 8 $

� Great for checking accuracy of implementations of 
more complex differentiation methods

� Computationally expensive for high-dimensional inputs

2. Symbolic differentiation
� Requires systematic knowledge of derivatives
� Can be computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)
� Requires systematic knowledge of derivatives and an 

algorithm for computing 8 $

� Computational cost of computing <23 1
21 is proportional 

to the cost of computing 8 $



Computation 
Graph
10-301/601 
Conventions
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� The diagram represents an algorithm 

� Nodes are rectangles with one node per intermediate 
variable in the algorithm 

� Each node is labeled with the function that it computes 
(inside the box) and the variable name (outside the box) 

� Edges are directed and do not have labels 

� For neural networks: 

� Each weight, feature value, label and bias term 
appears as a node

� We can include the loss function 



Neural 
Network 
Diagram
Conventions

� The diagram represents a neural network 

� Nodes are circles with one node per hidden unit 

� Each node is labeled with the variable corresponding to 
the hidden unit 

� Edges are directed and each edge is labeled with its weight 

� Following standard convention, the bias term is typically 
not shown as a node, but rather is assumed to be part of 
the activation function i.e., its weight does not appear in 
the picture anywhere.

� The diagram typically does not include any nodes related 
to the loss computation
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Key Takeaways

� Denominator layout for matrix calculus

� Finite difference method is a simple but computationally 

expensive approximation technique

� You should use this to unit test your implementation 

of backpropagation!

� Symbolic differentiation is the “default” differentiation 

method but can also also be computationally expensive

� Automatic differentiation (reverse mode) saves 

intermediate quantities for computational efficiency

� Backpropagation is an instance of automatic 

differentiation in the reverse mode
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