
Henry Chai
6/13/23

10-301/601: Introduction
to Machine Learning
Lecture 13 –
Differentiation

Front Matter

� Announcements

� PA3 released 6/8, due 6/15 at 11:59 PM

� Quiz 4: Neural Networks on 6/20 (next Tuesday)

� No lecture or OH on 6/19 (next Monday) for Juneteenth

� Midterm on 6/23, one week from Friday

� Recommended Readings

� None

Henry Chai - 6/13/23 3

Midterm
Logistics

� Time and place:

� Friday, 6/23 from 12:00PM to 3:00 PM in DH 2302

� Closed book/notes

� 1-page cheatsheet allowed, both back and front; can
be typeset or handwritten

Henry Chai - 6/13/23 4

Midterm
Coverage

� Lectures: 1 – 14 (through tomorrow’s lecture)

� Foundations: probability, linear algebra, calculus

� Important concepts: inductive bias, overfitting,
model selection/hyperparameter optimization,
regularization

� Models: decision trees, kNN, Perceptron, linear
regression, logistic regression, neural networks

� Methods: (stochastic) gradient descent, closed-form
optimization, backpropagation, MLE/MAP

Henry Chai - 6/13/23 5

Midterm
Preparation

� Review midterm practice problems, posted to the course
website (under Recitations)

� Attend the exam review recitation on 6/20 (after the quiz)

� Review this year’s quizzes and study guides

� Consider whether you understand the “Key Takeaways”
for each lecture / section

� Write your cheat sheet

Henry Chai - 6/13/23 6

https://www.cs.cmu.edu/~hchai2/courses/10601/

Recall:
Forward
Propagation
for Making
Predictions

� Input: weights ! ! , … ,! " and a query data point $

� Initialize % # = 1, $ $

� For (= 1,… ,)

� * % = ! % % %&!

� % % = 1, + * % $

� Output: ℎ' ! ,…,' " $ = % "

Henry Chai - 6/13/23 7

Recall:
Gradient
Descent
for Learning

� Input: - = $ * , . *
*+!
,

, / #

� Initialize all weights ! #
! , … ,! #

" to small, random

numbers and set 0 = 0 (???)

� While TERMINATION CRITERION is not satisfied (???)

� For (= 1,… ,)

� Compute 2 % = ∇' # ℓ- ! .
! , … ,! .

" (???)

� Update ! % : ! ./!
% = ! .

% − /#2 %

� Increment 0: 0 = 0 + 1	

� Output: ! .
! , … ,! .

"
Henry Chai - 6/13/23 8

Matrix
Calculus

Types of
Derivatives scalar vector matrix

scalar

vector

matrix

Numerator

D
en

om
in

at
or

Table courtesy of Matt GormleyHenry Chai - 6/13/23 9

Matrix
Calculus:
Denominator
Layout

� Derivatives of a
scalar always
have the same
shape as the
entity that the
derivative is
being taken
with respect to.

Types of
Derivatives scalar

scalar

vector

matrix

Table courtesy of Matt GormleyHenry Chai - 6/13/23 10

Matrix
Calculus:
Denominator
Layout

Types of
Derivatives scalar vector

scalar

vector

Table courtesy of Matt GormleyHenry Chai - 6/13/23 11

Three
Approaches to
Differentiation

� Given 8:	ℝ0 → ℝ, compute ∇18 $ = <23 1
21

1. Finite difference method
� Requires the ability to call 8 $

� Great for checking accuracy of implementations of
more complex differentiation methods

� Computationally expensive for high-dimensional inputs

2. Symbolic differentiation
� Requires systematic knowledge of derivatives
� Can computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)
� Requires systematic knowledge of derivatives and an

algorithm for computing 8 $

� Computational cost of computing <23 1
21 is

proportional to the cost of computing 8 $
Henry Chai - 6/13/23 12

Henry Chai - 6/13/23 13

Approach 1:
Finite
Difference
Method

� Given 8:	ℝ0 → ℝ, compute ∇18 $ = <23 1
21

=8 $

=>4
≈
8 $ + @A4 − 8 $ − @A4

2@

where A4 is a one-hot vector with a 1 in the Cth position

� We want @ to be small to get a good approximation but we
run into floating point issues when @ is too small

� Getting the full gradient requires computing the above
approximation for each dimension of the input

8 >

>@ @

Henry Chai - 6/13/23 14

Approach 1:
Finite
Difference
Method
Example

Example courtesy of Matt Gormley

� Given

. = 8 >, D = E56 +
>D

ln >
+
sin ln >

>D

what are <27
25 and <27

26 at > = 2, D = 3?

>>> import math

>>> y = lambda x,z:
math.exp(x*z)+(x*z)/math.log(x)+math.sin(math.log(x))/(x*z)

>>> x = 2

>>> z = 3

>>> e = 10**-8

>>> dydx = (y(x+e,z)-y(x-e,z))/(2*e)

>>> dydz = (y(x,z+e)-y(x,z-e))/(2*e)

>>> print(dydx, dydz)

� Given 8:	ℝ0 → ℝ, compute ∇18 $ = <23 1
21

1. Finite difference method
� Requires the ability to call 8 $

� Great for checking accuracy of implementations of
more complex differentiation methods

� Computationally expensive for high-dimensional inputs

2. Symbolic differentiation
� Requires systematic knowledge of derivatives
� Can be computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)
� Requires systematic knowledge of derivatives and an

algorithm for computing 8 $

� Computational cost of computing <23 1
21 is proportional

to the cost of computing 8 $

Three
Approaches to
Differentiation

Henry Chai - 6/13/23 15

Henry Chai - 6/13/23 16

Approach 2:
Symbolic
Differentiation

� Given

. = 8 >, D = E56 +
>D

ln >
+
sin ln >

>D

what are <27
25 and <27

26 at > = 2, D = 3?

� Looks like we’re gonna need the chain rule!

Example courtesy of Matt Gormley

The Chain Rule
of Calculus

� If . = 8 D and D = K > then
the corresponding computation graph is

� If . = 8 D!, D8 and D! = K! > , D8 = K8 > then

� If . = 8 L and L = K > then

Henry Chai - 6/13/23 17

⟹
=.

=>
=
=.

=D

=D

=>

⟹
=.

=>
=
=.

=D!

=D!
=>

+
=.

=D8

=D8
=>

⟹
=.

=>
= N

9+!

0
=.

=D9

=D9
=>

⋮

> D .

>
D!

D8

.

> .

D0

D!

D8

Henry Chai - 6/13/23 19

Approach 2:
Symbolic
Differentiation

� Given

. = 8 >, D = E56 +
>D

ln >
+
sin ln >

>D

what are <27
25 and <27

26 at > = 2, D = 3?

=.

=>
=
=

=>
E56 +

=

=>

>D

ln >
+
=

=>

sin ln >

>D

=.

=>
= DE56 +

D

ln >
−

D

ln > 8 +
cos ln >

>8D
−
sin ln >

>8D
=.

=>
= 3E: +

3

ln 2
−

3

ln 2 8 +
cos ln 2

12
−
sin ln 2

12

=.

=D
=
=

=D
E56 +

=

=D

>D

ln >
+
=

=D

sin ln >

>D

=.

=>
= 2E: +

2

ln 2
−
sin ln 2

18 Example courtesy of Matt Gormley

� Given 8:	ℝ0 → ℝ, compute ∇18 $ = <23 1
21

1. Finite difference method
� Requires the ability to call 8 $

� Great for checking accuracy of implementations of
more complex differentiation methods

� Computationally expensive for high-dimensional inputs

2. Symbolic differentiation
� Requires systematic knowledge of derivatives
� Can be computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)
� Requires systematic knowledge of derivatives and an

algorithm for computing 8 $

� Computational cost of computing <23 1
21 is proportional

to the cost of computing 8 $

Three
Approaches to
Differentiation

Henry Chai - 6/13/23 20

� Given

. = 8 >, D = E56 +
>D

ln >
+
sin ln >

>D

what are <27
25 and <27

26 at > = 2, D = 3?

� First define some intermediate quantities, draw the
computation graph and run the “forward” computation

Henry Chai - 6/13/23 21

Approach 3:
Automatic
Differentiation
(reverse mode)

S = >D

T = ln >

U = sin T

V = E;

E = <S T
8 = ⁄U S

. = V + E + 8

2

>

D

3

∗

(Y

S

T

ZCYU

E>[

+/

/

.

V

E

8

Example courtesy of Matt Gormley

• K6 =
27
26 =

27
2;

2;
26 = K; >

� Given

. = 8 >, D = E56 +
>D

ln >
+
sin ln >

>D

what are <27
25 and <27

26 at > = 2, D = 3?

� Then compute partial derivatives,
starting from . and working back

Henry Chai - 6/13/23 22

Approach 3:
Automatic
Differentiation
(reverse mode)

Example courtesy of Matt Gormley

2

>

D

3

∗

(Y

S

T

ZCYU

E>[

+/

/

.

V

E

8

• K7 =
27
27 = 1

• K9 = K< = K3 = 1

• K= =
27
2= =

27
23

23
2= = K3

!
;

• K> =
27
2> =

27
2<

2<
2> +

27
2=

2=
2>

• K> = K< −
;
>$ + K= cos T

• K; =
27
2; =

27
23

23
2; +

27
2<

2<
2; +

27
29

29
2;

• K; = K3
&=
;$ + K<

!
> + K9 E;

• K5 =
27
25 =

27
2>

2>
25 +

27
2;

2;
25 = K>

!
5 + K; D

Three
Approaches to
Differentiation

Henry Chai - 6/13/23 23

� Given 8:	ℝ0 → ℝ, compute ∇18 $ = <23 1
21

1. Finite difference method
� Requires the ability to call 8 $

� Great for checking accuracy of implementations of
more complex differentiation methods

� Computationally expensive for high-dimensional inputs

2. Symbolic differentiation
� Requires systematic knowledge of derivatives
� Can be computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)
� Requires systematic knowledge of derivatives and an

algorithm for computing 8 $

� Computational cost of computing <23 1
21 is proportional

to the cost of computing 8 $

Computation
Graph
10-301/601
Conventions

Henry Chai - 6/13/23 24

� The diagram represents an algorithm

� Nodes are rectangles with one node per intermediate
variable in the algorithm

� Each node is labeled with the function that it computes
(inside the box) and the variable name (outside the box)

� Edges are directed and do not have labels

� For neural networks:

� Each weight, feature value, label and bias term
appears as a node

� We can include the loss function

Neural
Network
Diagram
Conventions

� The diagram represents a neural network

� Nodes are circles with one node per hidden unit

� Each node is labeled with the variable corresponding to
the hidden unit

� Edges are directed and each edge is labeled with its weight

� Following standard convention, the bias term is typically
not shown as a node, but rather is assumed to be part of
the activation function i.e., its weight does not appear in
the picture anywhere.

� The diagram typically does not include any nodes related
to the loss computation

Henry Chai - 6/13/23 25

Key Takeaways

� Denominator layout for matrix calculus

� Finite difference method is a simple but computationally

expensive approximation technique

� You should use this to unit test your implementation

of backpropagation!

� Symbolic differentiation is the “default” differentiation

method but can also also be computationally expensive

� Automatic differentiation (reverse mode) saves

intermediate quantities for computational efficiency

� Backpropagation is an instance of automatic

differentiation in the reverse mode
Henry Chai - 6/13/23 26

