10-301/601: Introduction
to Machine Learning
Lecture 14 —
Backpropagation

Henry Chai
6/14/23

- Anhouncements

* PA3 released 6/8, due 6/15 (tomorrow) at 11:59 PM

* PA4 released 6/15 (tomorrow), due 7/13 (4 weeks from
tomorrow) at 11:59 PM

- We have scheduled this so that you do not have to

be working on PA4 during exam week or over break!

Front Matter

* Quiz 4: Neural Networks on 6/20 (next Tuesday)
* No lecture or OH on 6/19 (next Monday) for Juneteenth
- Midterm on 6/23, one week from Friday

* Reminder: all of this week’s material is in-scope

- Recommended Readings

Henry Chai - 6/14/23 - Mitchell, Chapters 4.1 — 4.6

http://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf

Computation
Graph

10-301/601
Conventions

Henry Chai - 6/14/23

- The diagram represents an algorithm

* Nodes are rectangles with one node per intermediate

variable in the algorithm

* Each node is labeled with the function that it computes

(inside the box) and the variable name (outside the box)

° Edges are directed and do not have labels

* For neural networks:

- Each weight, feature value, label and bias term

appears as a hode

* We can include the loss function

Neural
Network

Diagram
Conventions

Henry Chai - 6/14/23

* The diagram represents a neural network
* Nodes are circles with one node per hidden unit

- Each node is labeled with the variable corresponding to

the hidden unit

- Edges are directed and each edge is labeled with its weight

* Following standard convention, the bias term is typically

not shown as a node, but rather is assumed to be part of
the activation function i.e., its weight does not appear in

the picture anywhere.

* The diagram typically does not include any nodes related

to the loss computation

* Input: D = {(x<n>,y<">)}:=1,n<0>

* Initialize all weights W(%), . ((OL)) to small, random

numbers and set t = 0 (???)
Recall:
Gradient - While TERMINATION CRITERION is not satisfied (???)

*Forl=1,..,L

Descent

for Learning - Compute GO = V0 6p (WD, ___’W(%)

*Incrementt:t=t+1

* Output: W((tl)),) W((tL))

Henry Chai - 6/14/23

- — n=1 S e (J'(L-){_\)
Viyto (W(%), ,W((tL))) l/d(L e R
C oty oty 94
Computing an(B oWy OW, s
Gradients dtp 0fp Ofp
= 6W2(B BW(D (?wz(,lc)i(l_l)
a}D 0% O 0}1)
_achl(Z)o 0W§2> 1 awc% 401 "
gx(m y<n)) W(t), ((tL)) z ae(o(L)’y(n))
(l) (l)

6

enry Chai - 6/14/ ’
Henry Chai - 6/14/23 gum v /7 AN C‘”\t‘\") e@\c"\ Y\ﬂé/&

Computing

Gradients:
Intuition

Henry Chai - 6/14/23

- A weight affects the prediction of the network (and

therefore the error) through downstream signals/outputs

* Use the chain rule!

- Any weight going into the same node will affect the

prediction through the same downstream path
* Compute derivatives starting from the last layer and

move “backwards”

- Store computed derivatives and reuse for efficiency

(automatic differentiation)

Computing V., €p (W(%), e ((tL))) reduces to computing

de(o®),y™)

MWy
Computing Insight: ng’lc)l only affects e(01), y(™) via stb
Partial e o

Derivatives

Henry Chai - 6/14/23

Computing V., €p (W(%), . W(%)) reduces to computing

de(o®),y™)

aW(l)
Computing Insight: w () 2 only affects e(0™),y(™) via S()
Part|a| : QC(O(L\,)/(V\'\x QE((L) (n\> QS(L
Derivatives o) - agm wac(f\

e o / |
> ARO bA A /v L) (m
(L) Ny 9 C(O)

D S B O(Ll\ Sﬁ

- (lL)
Henry Chai - 6/14/23 9 L) CL\ A asb

Insight: Slgl)only affects e(o(L), y(")) via olgl)

Layer [

Computing

Partial
Derivatives

Henry Chai - 6/14/23

Computing

Partial
Derivatives

Insight: s,

(D

only affects e(oD,y™) via o, W)

((L)}y[fﬂ) D (@

- 5, (D {
o e

(Q) 6(§ Cﬁ) 5

12

Computing

Partial
Derivatives

Henry Chai - 6/14/23

Insight: olgl) affects e(0™), y(™) via s

Layer [

(1+1)
1

(1+1)
) nen Sd(l+1)

Layer [+ 1

13

Insight: o() affects e(o, y(")) via 51(”1), S

oSS
() Cn\ (24 .
9e(d”, y*") AZ e(o®° yc) gg(gu\)
C ti o QJEQA C=1 gsgm) C)Cfs
omputing
Partial o /
I I (!&l S
Derivatives) 32’ W, g o |
b
20D ney 9e(0y)
T e S =)
20 £ L) () C'\\> Acu\ 95
e _ Z SU&‘) C@a}

Henry Chai - 6/14/23 20 ga) C

14

Computing

Partial
Derivatives

b

.ﬁ

S

6(1) _ ae(o(L),y(n)) (00£l)> Ca_’;?UMU&?

60151) 05151) Vv e sbolr
(J N
))

Z 5§z+1) (Wc(,llj-l)

c=1

(V) - \73&) Q(DCL\,y("\>

15

92(60,5) _ 0 (957 _ o -0y
aw(z) b (l) b \"a

Ow
J l

—

Computing
Gradients v _fl)e(O(L) y™) = 8ol o e, \>
Savu‘\'/ check’ N CO@\ C”\> ¢l
5015 e Pd&
(=9 ¢ e x|
O % 1(0) SCCCIC’Q’[\—ED \/

601\ OCQ’) I E

Henry Chai - 6/14/23

Q ~ 18

« Can recursively compute 8D using 8*1D: need to

compute the base case: 8%
* Assume the output layer is a single node and the error

<«

function is the squared error:

Computing 2
L — s@) _ L) L) Y — (L) _ .0
Partial 60\ =6;",0" =0, andte'(o1 :yn)—(01 yn)
: : (L) .. (n)
Derivatives 5(L) _ de (01 Y) _ d (Oil') B y(n))z
6S£L) 651(L) C——
W 20" (L) (L))
(=2 -) 52 5) 1 (1))

when 8(-) = tanh(-) __/

Henry Chai - 6/14/23 19

Back-

propagation

Henry Chai - 6/14/23

“Input: W, . W and D = {(x(n),y(n))}:ﬂ

* Initialize: ¢p = 0and G =0 O WWvi=1, .., L
‘Forn=1,..,N

- Run forward propagation with x(™ to get oV, ..., 0
* (Optional) Increment £5: £p = 9 + (O(L) — y("))z
Ctmitialioae 8@ — o (A0 _ () ((@ 2)
Initialize: & O 2 (01 y) 1 (01)
*Forl=L-1,..,1
- Compute 8 = WD gD) (1 — oW © oW)

* Increment G(l)Z G(l) — G(l) + 6(1)0(1_1)T
4.’--\1—""—’

- Output: G, ..., GW), the gradients of £ wrt W@, . W@

 —

20

* Iterative method for minimizing functions

* Requires the gradient to exist everywhere

Recall:
Gradient

Descent

Henry Chai - 6/14/23 21

Non-convexity

Henry Chai - 6/14/23

- Gradient descent is not guaranteed to find a global

minimum on honh-convex surfaces

22

Stochastic
Gradient

Descent for
Neural
Networks

Henry Chai - 6/14/23

* Input: D = {(x(n)’y(n))}:=1'77§(();)p

1. Initialize all weights W((Ol)), e ((OL)) to small, random

numbersandsett = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample a data point from D, (x("),y("))

b. Compute the pointwise gradient,

O =v, we(o®,y™) v

c. Update W®: w9 « w® — 50 ¢y
d. Incrementt:t «<t+1

¢ Output: VVt(l), ey]/Vt(L) 23

Mini-batch
Stochastic
Gradient

Descent for
Neural
Networks

Henry Chai - 6/14/23

* Input: D = {(x(”),y(”))}gzl,nl(\%,B

1.

Initialize all weights W((Ol)),) ((OL)) to small, random

numbersandsett = 0

fsprely
While TERMINATION CRITERION is nat satisfied 5 “syrus £onden
6f chr

a. Randomly sample B data points from D, {(x(b),y(b))}izl

b. Compute the gradient w.r.t. the sampled batch, B(N)= “l,
\O

B
1
— 60 =130, e(o®,y®) v
b=1

c. Update WO: W « w® -0 c® vy

d. Incrementt:t < t+1

¢ Output: M/t(l), ey VVt(L) 24

Mini-batch
Stochastic
Gradient

Descent with
Momentum for
Neural
Networks

Henry Chai - 6/14/23

1.

* Output: Wt(l),)

* Input: D = {(x™, y("))}n 1,171(\,?1)3,3,,8

W(l) .. W(L) to small, random

Initialize all weights

(0)’ (0)

numbers and sett = 0, Gfll) =0OWWOvI=1,..L

a. Randomly sample B data points from D, {(x(b) y(b))}

While TERMINATION CRITERION is not satisfied

b. Compute the gradient w.r.t. the sampled batch,

Z v, we(o®,y®) v

O =

. Update W®: W « W —

d. Incrementt:t < t+1

W, (L)

(862, + 6P v
L~

b=1

25

Mini-batch
Stochastic
Gradient

Descent with
Momentum for
Neural
Networks

Henry Chai - 6/14/23

26

Mini-batch
Stochastic
Gradient

Descent with
Momentum for
Neural
Networks

Henry Chai - 6/14/23

27

Mini-batch
Stochastic
Gradient

Descent with
Momentum for
Neural
Networks

Henry Chai - 6/14/23

28

* Input: D = {(x(”) y(”))}n 1,171(\,?1)3,3,6

1. Initialize all weights W((o))' . W((o)) to small, random
- numbers and sett = 0, SE? =0OWWOvI=1,..L
ISVIInII;bat.Ch 2. While TERMINATION CRITERION is not satisfied
toc _ astic a. Randomly sample B data points from D, {(x(b),y(b))}llj_l
Gradient .)
: b. Compute the gradlent w.r.t. the sampled batch,
Descent with
Ada ptive G(l) Z V (z)e(o(L),y(b)) VI
Gradients for
Neural c. Update S@: s = 5“_)1 +6P 6P v
)
Networks d. Update WO: W « w® - \/’7(% %) Vv
sy
e. Incrementt:t < t+1 L_,_,i

Henry Chai - 6/14/23 . Output;]/Vt(l), e Vl/t(L) 29

* Run mini-batch gradient descent (with momentum &
adaptive gradients) multiple times, each time starting

Random with a different, random initialization for the weights.

Restarts - Compute the training error of each run at termination

and return the set of weights that achieves the lowest

training error.

30

Henry Chai - 6/14/23

Random

Restarts

Henry Chai - 6/14/23

31

Random

Restarts

Henry Chai - 6/14/23

32

* For non-convex surfaces, the gradient’s magnitude is
often not a good metric for proximity to a minimum

Terminating
Gradient

Descent

Henry Chai - 6/14/23 33

Terminating
Gradient

Descent
llEa rlyH

Henry Chai - 6/14/23

* For non-convex surfaces, the gradient’s magnitude is
often not a good metric for proximity to a minimum

* Combine multiple termination criteria e.g. only stop if

enough iterations have passed and the improvement in
error is small

- Alternatively, terminate early by using a validation data
set: if the validation error starts to increase, just stop!

* Early stopping asks like regularization by limiting

how much of the hypothesis set is explored

34

Neural
Networks and

Regularization

Henry Chai - 6/14/23

* Minimize £5¢ (W(l), L@ Ac)

= (WD, ., wD) + 20w, ..,

e.g. L2 regularization g[‘
L dd-1 4

AW, .., wh) = Z Z Z <l>

W(L))

35

* Jitter

* In each iteration of gradient descent, add some

Neural
Networks and
“Strange”

random noise or “jitter” to each training data point
* Instead of computing the gradient w.r.t.
(™, W), use (x™ + €,y™) where € ~
N(0,c2D) ! "

Regularization
(Bishop, 1995)

- Makes neural networks resilient to input noise

* Has been proven to be equivalent to using a certain

kind of regularizer () for some error metrics

Henry Chai - 6/14/23 Source: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/bishop-tikhonov-nc-g5.pdf

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/bishop-tikhonov-nc-95.pdf

Neural
Networks and
“Strange”

Regularization
(Srivastava et
al., 2014)

Henry Chai - 6/14/23

* Dropout

* In each iteration of gradient descent, randomly

remove some of the nodes in the network

- Compute the gradient using only the remaining nodes

* The weights on edges going into and out of “dropped

out” nodes are not updated

(a) Standard Neural Net (b) After applying dropout.

Source: http://imlr.org/papers/volumel5/srivastavalda/srivastavalda.pdf

37

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

* Backpropagation for efficient gradient computation

* Advanced optimization and regularization techniques for

neural networks

* Momentum can be used to break out of local minima

- Adagrad helps when parameters behave differently

\CAELCEENR

w.r.t. step sizes
- Random restarts

- Jitter & dropout act like regularization for neural

networks by preventing them fitting the training

dataset perfectly

Henry Chai - 6/14/23 38

