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10-301/601: Introduction 
to Machine Learning
Lecture 16 – Learning 
Theory (Finite Case)



Front Matter

� Announcements

� No class or quiz tomorrow for July 4th

� PA4 released 6/15, due 7/13 at 11:59 PM

� You still have one week from this Thursday!

� Recommended Readings

� Mitchell, Chapters 7.1-7.3
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What is 
Machine 
Learning
10-301/601?
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� Supervised Models
� Decision Trees
� KNN
� Naïve Bayes
� Perceptron
� Logistic Regression
� SVMs
� Linear Regression
� Neural Networks

� Unsupervised Models
� K-means 
� GMMs
� PCA

� Graphical Models
� Bayesian Networks
� HMMs

� Learning Theory

� Reinforcement Learning

� Important Concepts
� Feature Engineering 

and Kernels
� Regularization and 

Overfitting
� Experimental Design
� Ensemble Methods
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Statistical 
Learning 
Theory Model

1. Data points are generated i.i.d. from some unknown 
distribution

! ! ∼ #∗ !

2. Labels are generated from some unknown function
$ ! = &∗ ! !

3. The learning algorithm chooses the hypothesis (or 
classifier) with lowest training error rate from a 
specified hypothesis set, ℋ

4. Goal: return a hypothesis (or classifier) with low true 
error rate

Henry Chai - 7/3/23 5



Types of Error

� True error rate
� Actual quantity of interest in machine learning
� How well your hypothesis will perform on average across all 

possible data points

� Test error rate
� Used to evaluate hypothesis performance
� Good estimate of your hypothesis’s true error

� Validation error rate
� Used to set hypothesis hyperparameters
� Slightly “optimistic” estimate of your hypothesis’s true error

� Training error rate
� Used to set model parameters
� Very “optimistic” estimate of your hypothesis’s true error
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Types of Risk 
(a.k.a. Error)

� Expected risk of a hypothesis ℎ (a.k.a. true error)

) ℎ = *#	∼	&∗ &∗ ! ≠ ℎ !

� Empirical risk of a hypothesis ℎ (a.k.a. training error) 
,) ℎ = *#	∼	' &∗ ! ≠ ℎ !

,) ℎ =
1

.
/
!()

*
0 &∗ ! ! ≠ ℎ ! !

,) ℎ =
1

.
/
!()

*
0 $ ! ≠ ℎ ! !

where 1 = ! ! , $ !
!()
*

 is the training data set and 
! ∼ 1 denotes a point sampled uniformly at random from 1 
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Three 
Hypotheses of 
Interest
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1. The true function, &∗

2. The expected risk minimizer, 

ℎ∗ = argmin
+	∈	ℋ

) ℎ

3. The empirical risk minimizer, 

,ℎ = argmin
+	∈	ℋ

,) ℎ  





Key Question � Given a hypothesis with zero/low training error, what 

can we say about its true error? 

Henry Chai - 7/3/23 10



PAC Learning

� PAC = Probably Approximately Correct

� PAC Criterion:

* ) ℎ − ,) ℎ ≤ ; ≥ 1 − =	∀	ℎ ∈ ℋ

for some ; (difference between expected and empirical 
risk) and = (probability of “failure”) 

� We want the PAC criterion to be satisfied for 
ℋ	with small values of ϵ and δ
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Sample 
Complexity
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� The sample complexity of an algorithm/hypothesis set, ℋ, 

is the number of labelled training data points needed to 

satisfy the PAC criterion for some = and ;

� Four cases

� Realizable vs. Agnostic

� Realizable → &∗ ∈ ℋ

� Agnostic → &∗ might or might not be in ℋ

� Finite vs. Infinite

� Finite → ℋ < ∞

� Infinite → ℋ = ∞



Theorem 1: 
Finite, 
Realizable Case
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� For a finite hypothesis set ℋ s.t. &∗ ∈ ℋ and arbitrary 
distribution #∗, if the number of labelled training data 
points satisfies 

F ≥
1

;
ln ℋ + ln

1

=

then with probability at least 1 − =, all ℎ ∈ ℋ with 
,) ℎ = 0 have ) ℎ ≤ ;



Proof of
Theorem 1: 
Finite, 
Realizable Case

1. Assume there are J “bad” hypotheses in ℋ, i.e., 
ℎ), ℎ., … , ℎ/ that all have ) ℎ0 > ;

2. Pick one bad hypothesis, ℎ0
A. Probability that ℎ0 correctly classifies the first 

training data point < 1 − ;

B. Probability that ℎ0 correctly classifies all F 
training data points < 1 − ; 1

3. Probability that at least one bad hypothesis correctly 
classifies all F training data points =

*(ℎ)	correctly	classiTies	all	F	training	data	points ∪
	 ℎ.	correctly	classiTies	all	F	training	data	points ∪

⋮

	 ∪ ℎ/	correctly	classiTies	all	F	training	data	points)
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Proof of
Theorem 1: 
Finite, 
Realizable Case

*(ℎ)	correctly	classiTies	all	F	training	data	points ∪
	 ℎ.	correctly	classiTies	all	F	training	data	points ∪

⋮

	 ∪ ℎ/	correctly	classiTies	all	F	training	data	points)

≤ /
0()

/
* ℎ0	correctly	classiTies	all	F	training	data	points

by the union bound: * Z ∪ [ = * Z + * [ − * Z ∩ [

by the union bound: * Z ∪ [ ≤ * Z + * [ − * Z ∩ [
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Proof of
Theorem 1: 
Finite, 
Realizable Case

/
0()

/
* ℎ0	correctly	classiTies	all	F	training	data	points

< ] 1 − ; 1 ≤ ℋ 1 − ; 1

because ] ≤ ℋ

3. Probability that at least one bad hypothesis correctly 
classifies all F training data points ≤ ℋ 1 − ; 1

4. Using the fact that 1 − ^ ≤ exp −^ 	∀	^, 
ℋ 1− ; 1 ≤ ℋ exp −; 1 = ℋ exp −F;

5. Probability that at least one bad hypothesis correctly 
classifies all F training data points ≤ ℋ exp −F; , 
which we want to be low, i.e., ℋ exp −F; ≤ =
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Proof of
Theorem 1: 
Finite, 
Realizable Case

ℋ exp −F; ≤ = → exp −F; ≤
=

ℋ

ℋ exp −.; ≤ = → −F; ≤ ln
=

ℋ

ℋ exp −.; ≤ = → F ≥
1

;
− ln

=

ℋ

ℋ exp −.; ≤ = → F ≥
1

;
ln

ℋ

=

ℋ exp −.; ≤ = → F ≥
1

;
ln ℋ + ln

1

=
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Proof of
Theorem 1: 
Finite, 
Realizable Case

6. Given F ≥
)
2 ln ℋ + ln

)
3  labelled training 

data points, the probability that ∃ a bad hypothesis 
ℎ0 ∈ ℋ with ) ℎ0 > ; and ,) ℎ0 = 0 is ≤ =

⇕

Given F ≥
)
2 ln ℋ + ln

)
3  labelled training data 

points, the probability that all hypotheses ℎ0 ∈ ℋ with 
) ℎ0 > ; have ,) ℎ0 > 0 is ≥ 1 − =
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Aside: Proof by 
Contrapositive

� The contrapositive of a statement Z ⇒ [ is ¬[ ⇒ ¬Z 

� A statement and its contrapositive are logically equivalent, 
i.e., Z ⇒ [ means that ¬[ ⇒ ¬Z 

� Example: “it’s raining ⇒ Henry brings am umbrella”

is the same as saying 

“Henry didn’t bring an umbrella ⇒ it’s not raining ” 
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Theorem 1: 
Finite, 
Realizable Case
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� For a finite hypothesis set ℋ s.t. &∗ ∈ ℋ and arbitrary 
distribution #∗, if the number of labelled training data 
points satisfies 

F ≥
1

;
ln ℋ + ln

1

=

then with probability at least 1 − =, all ℎ ∈ ℋ with 
,) ℎ = 0 have ) ℎ ≤ ;

� Solving for ; gives... 


