10-301/601: Introduction to Machine Learning Lecture 16 – Learning Theory (Finite Case)

Henry Chai

7/3/23

Front Matter

Announcements

- No class or quiz tomorrow for July 4th
- PA4 released 6/15, due 7/13 at 11:59 PM
 - You still have one week from this Thursday!
- Recommended Readings
 - Mitchell, Chapters 7.1-7.3

What is Machine Learning 10-301/601?

- Supervised Models
 - Decision Trees
 - KNN
 - Naïve Bayes
 - Perceptron
 - Logistic Regression
 - SVMs
 - Linear Regression
 - Neural Networks
- Unsupervised Models
 - K-means
 - GMMs
 - PCA

- Graphical Models
 - Bayesian Networks
 - HMMs
- Learning Theory
- Reinforcement Learning
- Important Concepts
 - Feature Engineering and Kernels
 - Regularization and Overfitting
 - Experimental Design
 - Ensemble Methods

What is Machine Learning 10-301/601?

- Supervised Models
 - Decision Trees
 - KNN
 - Naïve Bayes
 - Perceptron
 - Logistic Regression
 - SVMs
 - Linear Regression
 - Neural Networks
- Unsupervised Models
 - K-means
 - GMMs
 - PCA

- Graphical Models
 - Bayesian Networks
 - HMMs

Learning Theory

- Reinforcement Learning
- Important Concepts
 - Feature Engineering and Kernels
 - Regularization and Overfitting
 - Experimental Design
 - Ensemble Methods

Statistical Learning Theory Model 1. Data points are generated i.i.d. from some *unknown* distribution

 $\boldsymbol{x}^{(n)} \sim p^*(\boldsymbol{x})$

- 2. Labels are generated from some *unknown* function $y^{(n)} = c^*(x^{(n)})$
- 3. The learning algorithm chooses the hypothesis (or classifier) with lowest *training* error rate from a specified hypothesis set, \mathcal{H}
- 4. Goal: return a hypothesis (or classifier) with low *true* error rate

Types of Error

- True error rate
 - Actual quantity of interest in machine learning
 - How well your hypothesis will perform on average across all possible data points
- Test error rate
 - Used to evaluate hypothesis performance
 - Good estimate of your hypothesis's true error
- Validation error rate
 - Used to set hypothesis hyperparameters
 - Slightly "optimistic" estimate of your hypothesis's true error
- Training error rate
 - Used to set model parameters
 - Very "optimistic" estimate of your hypothesis's true error

Types of Risk (a.k.a. Error)

- Expected risk of a hypothesis h (a.k.a. true error) $R(h) = P_{\boldsymbol{x} \sim p^*} (c^*(\boldsymbol{x}) \neq h(\boldsymbol{x}))$
- Empirical risk of a hypothesis *h* (a.k.a. training error)

$$\widehat{R}(h) = P_{\boldsymbol{x} \sim \mathcal{D}} \left(c^*(\boldsymbol{x}) \neq h(\boldsymbol{x}) \right)$$
$$= \frac{1}{N} \sum_{n=1}^N \mathbb{1} \left(c^*(\boldsymbol{x}^{(n)}) \neq h(\boldsymbol{x}^{(n)}) \right)$$
$$= \frac{1}{N} \sum_{n=1}^N \mathbb{1} \left(y^{(n)} \neq h(\boldsymbol{x}^{(n)}) \right)$$

where $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$ is the training data set and $x \sim \mathcal{D}$ denotes a point sampled uniformly at random from \mathcal{D}

Three Hypotheses of Interest

1. The *true function*, *c**

2. The expected risk minimizer,

 $h^* = \operatorname*{argmin}_{h \in \mathcal{H}} R(h)$

3. The empirical risk minimizer,

 $\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \hat{R}(h)$

When poll is active, respond at pollev.com/301601polls
 Text 301601POLLS to 37607 once to join

Which of the following statements must be true?

$$c^* = h^*$$

 $c^* = \hat{h}$
 $h^* = \hat{h}$
 $c^* = h^* = \hat{h}$
Jone of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Key Question

• Given a hypothesis with zero/low training error, what can we say about its true error?

PAC Learning

PAC = <u>P</u>robably <u>A</u>pproximately <u>C</u>orrect

• PAC Criterion:

 $P(|R(h) - \hat{R}(h)| \le \epsilon) \ge 1 - \delta \forall h \in \mathcal{H}$

for some ϵ (difference between expected and empirical risk) and δ (probability of "failure")

We want the PAC criterion to be satisfied for

 ${\mathcal H}$ with small values of ε and δ

Sample Complexity

- The sample complexity of an algorithm/hypothesis set, \mathcal{H} , is the number of labelled training data points needed to satisfy the PAC criterion for some δ and ϵ
- Four cases
 - Realizable vs. Agnostic
 - Realizable $\rightarrow c^* \in \mathcal{H}$
 - Agnostic $\rightarrow c^*$ might or might not be in \mathcal{H}
 - Finite vs. Infinite
 - Finite $\rightarrow |\mathcal{H}| < \infty$
 - Infinite $\rightarrow |\mathcal{H}| = \infty$

Theorem 1: Finite, Realizable Case • For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have $R(h) \leq \epsilon$

- 1. Assume there are K "bad" hypotheses in \mathcal{H} , i.e., h_1, h_2, \dots, h_K that all have $R(h_k) > \epsilon$
- 2. Pick one bad hypothesis, h_k
 - A. Probability that h_k correctly classifies the first training data point $< 1 \epsilon$
 - B. Probability that h_k correctly classifies all M training data points $< (1 \epsilon)^M$
- 3. Probability that at least one bad hypothesis correctly classifies all *M* training data points = *P*(*h*₁ correctly classifies all *M* training data points U *h*₂ correctly classifies all *M* training data points U
 .

 \cup h_K correctly classifies all M training data points)

 $\begin{array}{l} P(h_1 \text{ correctly classifies all } M \text{ training data points } \cup \\ h_2 \text{ correctly classifies all } M \text{ training data points } \cup \\ \vdots \\ \cup h_K \text{ correctly classifies all } M \text{ training data points}) \end{array}$

 $\leq \sum_{k=1}^{K} P(h_k \text{ correctly classifies all } M \text{ training data points})$

by the union bound: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\leq P(A) + P(B)$

 $\sum_{k=1}^{N} P(h_k \text{ correctly classifies all } M \text{ training data points})$ $< k(1 - \epsilon)^M \le |\mathcal{H}|(1 - \epsilon)^M$

because $k \leq |\mathcal{H}|$

3. Probability that at least one bad hypothesis correctly classifies all M training data points $\leq |\mathcal{H}|(1-\epsilon)^M$

- 4. Using the fact that $1 x \le \exp(-x) \forall x$, $|\mathcal{H}|(1 - \epsilon)^M \le |\mathcal{H}| \exp(-\epsilon)^M = |\mathcal{H}| \exp(-M\epsilon)$
- 5. Probability that at least one bad hypothesis correctly classifies all *M* training data points $\leq |\mathcal{H}| \exp(-M\epsilon)$, which we want to be *low*, i.e., $|\mathcal{H}| \exp(-M\epsilon) \leq \delta$

$$\begin{aligned} |\mathcal{H}| \exp(-M\epsilon) &\leq \delta \to \exp(-M\epsilon) \leq \frac{\delta}{|\mathcal{H}|} \\ &\to -M\epsilon \leq \ln\left(\frac{\delta}{|\mathcal{H}|}\right) \\ &\to M \geq \frac{1}{\epsilon} \left(-\ln\left(\frac{\delta}{|\mathcal{H}|}\right)\right) \\ &\to M \geq \frac{1}{\epsilon} \left(\ln\left(\frac{|\mathcal{H}|}{\delta}\right)\right) \\ &\to M \geq \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right)\right) \end{aligned}$$

6. Given $M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$ labelled training data points, the probability that \exists a bad hypothesis $h_k \in \mathcal{H}$ with $R(h_k) > \epsilon$ and $\hat{R}(h_k) = 0$ is $\leq \delta$

Given $M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$ labelled training data points, the probability that all hypotheses $h_k \in \mathcal{H}$ with $R(h_k) > \epsilon$ have $\hat{R}(h_k) > 0$ is $\ge 1 - \delta$ Aside: Proof by Contrapositive • The contrapositive of a statement $A \Rightarrow B$ is $\neg B \Rightarrow \neg A$

- A statement and its contrapositive are logically equivalent, i.e., $A \Rightarrow B$ means that $\neg B \Rightarrow \neg A$
- Example: "it's raining ⇒ Henry brings am umbrella"

is the same as saying

"Henry didn't bring an umbrella ⇒ it's not raining "

6. Given $M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$ labelled training data points, the probability that \exists a bad hypothesis $h_k \in \mathcal{H}$ with $R(h_k) > \epsilon$ and $\hat{R}(h_k) = 0$ is $\leq \delta$

Given $M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$ labelled training data points, the probability that all hypotheses $h_k \in \mathcal{H}$ with $R(h_k) > \epsilon$ have $\hat{R}(h_k) > 0$ is $\ge 1 - \delta$

6. Given $M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$ labelled training data points, the probability that all hypotheses $h_k \in \mathcal{H}$ with $R(h_k) > \epsilon$ have $\hat{R}(h_k) > 0$ is $\ge 1 - \delta$ \Im

Given $M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$ labelled training data points, the probability that all hypotheses $h_k \in \mathcal{H}$ with $\hat{R}(h_k) = 0$ have $R(h_k) \le \epsilon$ is $\ge 1 - \delta$

(proof by contrapositive)

Theorem 1: Finite, Realizable Case • For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have $R(h) \le \epsilon$

• Solving for *e* gives...