10-301/601: Introduction to Machine Learning Lecture 16 – Learning Theory (Finite Case)

Henry Chai

7/3/23

Front Matter

Announcements

- **· No class or quiz tomorrow** for July 4th
- PA4 released 6/15, due 7/13 at 11:59 PM
	- You still have one week from this Thursday!
- Recommended Readings
	- Mitchell, Chapters 7.1-7.3

What is Machine **Learning** 10 -301/601?

- **Supervised Models**
	- Decision Trees
	- \cdot KNN
	- Naïve Bayes
	- Perceptron
	- Logistic Regression
	- SVMs
	- Linear Regression
	- Neural Networks
- Unsupervised Models
	- K-means
	- GMMs
	- \cdot PCA
- Graphical Models
	- **· Bayesian Networks**
	- HMMs
- **· Learning Theory**
- **Reinforcement Learning**
- **· Important Concepts**
	- **Feature Engineering** and Kernels
	- Regularization and Overfitting
	- Experimental Design
	- Ensemble Methods

What is Machine **Learning** 10 -301/601?

- **Supervised Models**
	- Decision Trees
	- \cdot KNN
	- Naïve Bayes
	- Perceptron
	- Logistic Regression
	- SVMs
	- Linear Regression
	- Neural Networks
- Unsupervised Models
	- K-means
	- GMMs
	- \cdot PCA
- Graphical Models
	- **· Bayesian Networks**
	- HMMs
- **Learning Theory**
- **Reinforcement Learning**
- **· Important Concepts**
	- **Feature Engineering** and Kernels
	- Regularization and Overfitting
	- Experimental Design
	- Ensemble Methods

Statistical Learning Theory Model 1. Data points are generated i.i.d. from some *unknown* distribution

 $x^{(n)} \sim p^*(x)$

- 2. Labels are generated from some *unknown* function $y^{(n)} = c^* (x^{(n)})$
- 3. The learning algorithm chooses the hypothesis (or classifier) with lowest *training* error rate from a specified hypothesis set, H
- 4. Goal: return a hypothesis (or classifier) with low *true* error rate

Types of Error

• True error rate

- Actual quantity of interest in machine learning
- How well your hypothesis will perform on average across all possible data points
- Test error rate
	- Used to evaluate hypothesis performance
	- Good estimate of your hypothesis's true error
- Validation error rate
	- Used to set hypothesis hyperparameters
	- Slightly "optimistic" estimate of your hypothesis's true error
- Training error rate
	- Used to set model parameters
	- Very "optimistic" estimate of your hypothesis's true error

Types of Risk (a.k.a. Error)

- \cdot Expected risk of a hypothesis h (a.k.a. true error) $R(h) = P_{x \sim p^*}(c^*(x) \neq h(x))$
- Empirical risk of a hypothesis h (a.k.a. training error)

$$
\hat{R}(h) = P_{x \sim \mathcal{D}}(c^*(x) \neq h(x))
$$
\n
$$
= \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}(c^*(x^{(n)}) \neq h(x^{(n)}))
$$
\n
$$
= \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}(y^{(n)} \neq h(x^{(n)}))
$$

where $\mathcal{D} = \{(\pmb{x}^{(n)}, y^{(n)})\}$ $n=1$ \overline{N} is the training data set and $\mathbf{x} \sim \mathcal{D}$ denotes a point sampled uniformly at random from \mathcal{D} Three Hypotheses of Interest

1. The *true function*, c^*

- 2. The *expected risk minimizer,*
	- $h^* = \argmin R(h)$ $h \in \mathcal{H}$
- 3. The *empirical risk minimizer,*

 $\widehat{h} = \mathrm{argmin}$ $h \in H$ $\widehat{R}(h)$ ® When poll is active, respond at pollev.com/301601polls **A. Text 301601POLLS to 37607** once to join

Which of the following statements must be true?

$$
\begin{array}{c}c^*=h^*\\c^*=\hat{h}\\h^*=\hat{h}\\c^*=h^*=\hat{h}\\ \text{None of the above}\end{array}
$$

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Key Question

 Given a hypothesis with zero/low training error, what can we say about its true error?

PAC Learning

PAC = **P**robably **A**pproximately **C**orrect

PAC Criterion:

 $P(|R(h) - \hat{R}(h)| \leq \epsilon) \geq 1 - \delta \forall h \in \mathcal{H}$

for some ϵ (difference between expected and empirical risk) and δ (probability of "failure")

 We want the PAC criterion to be satisfied for H with small values of ϵ and δ

Sample **Complexity** • The sample complexity of an algorithm/hypothesis set, \mathcal{H} , is the number of labelled training data points needed to satisfy the PAC criterion for some δ and ϵ

Four cases

- · Realizable vs. Agnostic
	- Realizable $\rightarrow c^* \in \mathcal{H}$
	- Agnostic $\rightarrow c^*$ might or might not be in \mathcal{H}
- Finite vs. Infinite
	- Finite $\rightarrow |\mathcal{H}| < \infty$
	- Infinite $\rightarrow |\mathcal{H}| = \infty$

Theorem 1: Finite, Realizable Case • For a finite hypothesis set H s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$
M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)
$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have $R(h) \leq \epsilon$

- 1. Assume there are K "bad" hypotheses in H , i.e., $h_1, h_2, ..., h_K$ that all have $R(h_k) > \epsilon$
- 2. Pick one bad hypothesis, h_k
	- A. Probability that h_k correctly classifies the first training data point $< 1 - \epsilon$
	- B. Probability that h_k correctly classifies all M training data points $< (1 - \epsilon)^M$
- 3. Probability that at least one bad hypothesis correctly classifies all M training data points $=$ $P(h_1$ correctly classifies all M training data points ∪ h_2 correctly classifies all M training data points ∪ $\ddot{\bullet}$

 \cup h_K correctly classifies all M training data points) Henry Chai - 7/3/23 **14**

 $P(h_1$ correctly classifies all M training data points ∪ h_2 correctly classifies all M training data points ∪ $\frac{1}{2}$ \cup h_K correctly classifies all M training data points)

 \leq $\, \sum_{k} P(h_k)$ correctly classifies all M training data points $k=1$ \overline{K}

by the union bound: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\leq P(A) + P(B)$

 $\left\langle \right\rangle$ $k=1$ \boldsymbol{K} $P(h_{\boldsymbol{k}}$ correctly classifies all M training data points $\langle k(1-\epsilon)^M \leq |\mathcal{H}|(1-\epsilon)^M$

because $k \leq |\mathcal{H}|$

- 3. Probability that at least one bad hypothesis correctly classifies all M training data points $\leq |\mathcal{H}| (1 - \epsilon)^M$
- 4. Using the fact that $1 x \leq \exp(-x) \; \forall \; x$, $|\mathcal{H}| (1 - \epsilon)^M \leq |\mathcal{H}| \exp(-\epsilon)^M = |\mathcal{H}| \exp(-M\epsilon)$
- 5. Probability that at least one bad hypothesis correctly classifies all M training data points $\leq |\mathcal{H}| \exp(-M\epsilon)$, which we want to be *low*, i.e., $|\mathcal{H}| \exp(-M\epsilon) \leq \delta$

$$
|\mathcal{H}| \exp(-M\epsilon) \le \delta \to \exp(-M\epsilon) \le \frac{\delta}{|\mathcal{H}|}
$$

$$
\to -M\epsilon \le \ln\left(\frac{\delta}{|\mathcal{H}|}\right)
$$

$$
\to M \ge \frac{1}{\epsilon} \left(-\ln\left(\frac{\delta}{|\mathcal{H}|}\right)\right)
$$

$$
\to M \ge \frac{1}{\epsilon} \left(\ln\left(\frac{|\mathcal{H}|}{\delta}\right)\right)
$$

$$
\to M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right)\right)
$$

6. Given $M \geq \frac{1}{6}$ ϵ $\ln(|\mathcal{H}|) + \ln\left(\frac{1}{s}\right)$ $\left(\frac{1}{\delta}\right)$) labelled training data points, the probability that ∃ a bad hypothesis $h_k \in \mathcal{H}$ with $R(h_k) > \epsilon$ and $\hat{R}(h_k) = 0$ is $\leq \delta$ \hat{U}

Given $M \geq \frac{1}{\epsilon}$ ϵ $\ln(|\mathcal{H}|) + \ln\left(\frac{1}{s}\right)$ $\left(\frac{1}{\delta}\right)$) labelled training data points, the probability that all hypotheses $h_k \in \mathcal{H}$ with $R(h_k) > \epsilon$ have $\hat{R}(h_k) > 0$ is $\geq 1 - \delta$

Aside: Proof by **Contrapositive**

• The contrapositive of a statement $A \Rightarrow B$ is $\neg B \Rightarrow \neg A$

- A statement and its contrapositive are logically equivalent, i.e., $A \Rightarrow B$ means that $\neg B \Rightarrow \neg A$
- Example: "it's raining ⇒ Henry brings am umbrella"

is the same as saying

"Henry didn't bring an umbrella \Rightarrow it's not raining"

6. Given $M \geq \frac{1}{6}$ ϵ $\ln(|\mathcal{H}|) + \ln\left(\frac{1}{s}\right)$ $\left(\frac{1}{\delta}\right)$) labelled training data points, the probability that ∃ a bad hypothesis $h_k \in \mathcal{H}$ with $R(h_k) > \epsilon$ and $\hat{R}(h_k) = 0$ is $\leq \delta$ \hat{U}

Given $M \geq \frac{1}{\epsilon}$ ϵ $\ln(|\mathcal{H}|) + \ln\left(\frac{1}{s}\right)$ $\left(\frac{1}{\delta}\right)$) labelled training data points, the probability that all hypotheses $h_k \in \mathcal{H}$ with $R(h_k) > \epsilon$ have $\hat{R}(h_k) > 0$ is $\geq 1 - \delta$

6. Given $M \geq \frac{1}{6}$ ϵ $\ln(|\mathcal{H}|) + \ln\left(\frac{1}{s}\right)$ $\left(\frac{1}{\delta}\right)$) labelled training data points, the probability that all hypotheses $h_k \in$ *H* with $R(h_k) > \epsilon$ have $\hat{R}(h_k) > 0$ is $\geq 1 - \delta$ \hat{U}

Given $M \geq \frac{1}{2}$ ϵ $\ln(|\mathcal{H}|) + \ln\left(\frac{1}{s}\right)$ $\left(\frac{1}{\delta}\right)$) labelled training data points, the probability that all hypotheses $h_k \in \mathcal{H}$ with $\widehat{R}(h_k) = 0$ have $R(h_k) \leq \epsilon$ is $\geq 1 - \delta$

(proof by contrapositive)

Theorem 1: Finite, Realizable Case • For a finite hypothesis set H s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$
M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)
$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have $R(h) \leq \epsilon$

• Solving for ϵ gives...