10-301/601: Introduction to Machine Learning Lecture 17 – Learning Theory (Infinite Case)

Henry Chai

7/5/23

Front Matter

Announcements

- PA4 released 6/15, due 7/13 at 11:59 PM
 - You still have one week from this Thursday!
- Quiz 6: Deep Learning & Learning Theory on 7/11
- Recommended Readings
 - Mitchell, Chapter 7.4

Recall: Theorem 1: Finite, Realizable Case • For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \leq \epsilon$

• Solving for *e* gives...

Statistical Learning Theory Corollary • For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , given a training data set S s.t. |S| = M, all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have

$$R(h) \le \frac{1}{M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

with probability at least $1 - \delta$.

Theorem 2: Finite, Agnostic Case • For a finite hypothesis set $\mathcal H$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \ge \frac{1}{2\epsilon^2} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)$$

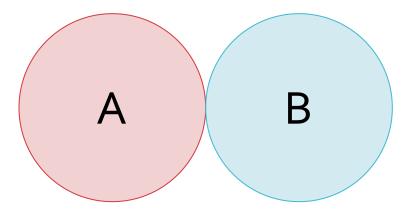
then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ satisfy $|R(h) - \hat{R}(h)| \le \epsilon \implies -\epsilon \le R(h) - R(h) \le \epsilon$

- Bound is inversely quadratic in ϵ , e.g., halving ϵ means we need four times as many labelled training data points
- Solving for *e* gives...

Statistical Learning Theory Corollary • For a finite hypothesis set \mathcal{H} and arbitrary distribution p^* , given a training data set S s.t. |S| = M, all $h \in \mathcal{H}$ have $\int_{a}^{b} \mathcal{H}$ increases, the stiff $\int_{a}^{c^*} \mathcal{H}$ increases, the stiff $\int_{a}^{c^*} \mathcal{H}$ index the $\int_{a}^{c^*} \mathcal{H}$ increases, the stiff $\int_{a}^{c^*} \mathcal{H}$ index the $\int_{a}^{c^*} \mathcal{H}$ is the stiff $\int_{a}^{c^*} \mathcal{H}$ index the $\int_{a}^{c^*} \mathcal{H}$ index the state of the state

with probability at least $1 - \delta$.

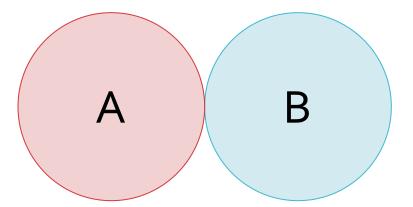
What happens when $|\mathcal{H}| = \infty$?


• For a finite hypothesis set \mathcal{H} and arbitrary distribution p^* , given a training data set S s.t. |S| = M, all $h \in \mathcal{H}$ have

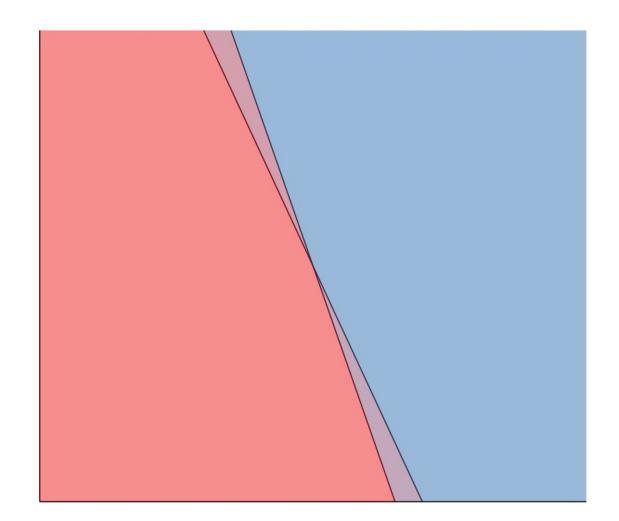
$$R(h) \le \widehat{R}(h) + \sqrt{\frac{1}{2M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)}$$

with probability at least $1 - \delta$.

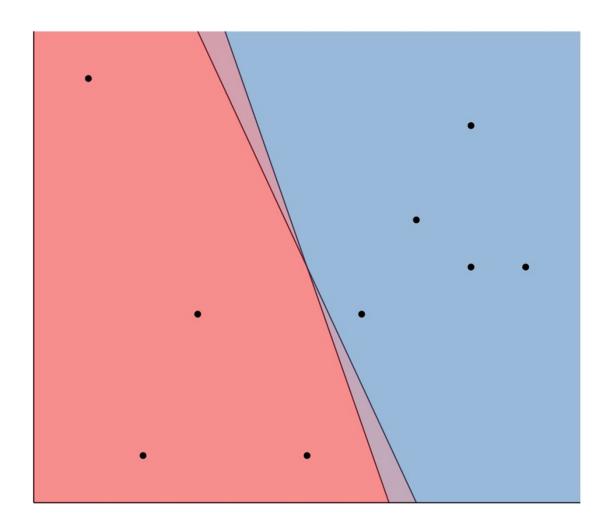
The Union Bound...


$P\{A \cup B\} \le P\{A\} + P\{B\}$

The Union Bound is Bad!


 $P\{A \cup B\} \le P\{A\} + P\{B\}$

 $P\{A \cup B\} = P\{A\} + P\{B\} - P\{A \cap B\}$


Intuition

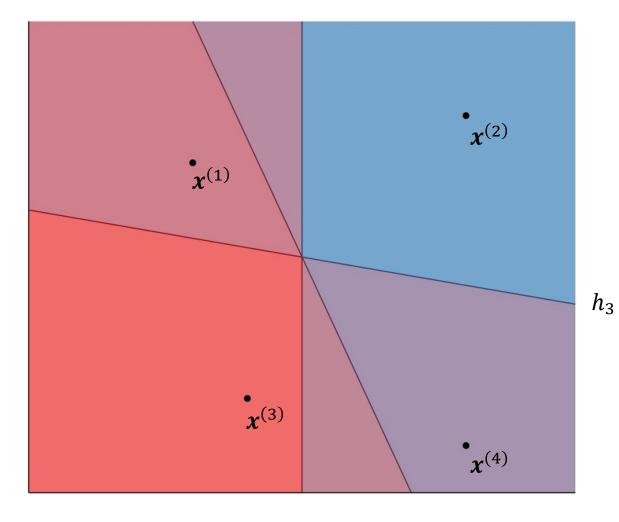
- If two hypotheses $h_1, h_2 \in \mathcal{H}$ are very similar, then the events
 - "h₁ is consistent with the first m training data points"
 - "h₂ is consistent with the first m training data points"
- will overlap a lot!

Intuition

- If two hypotheses $h_1, h_2 \in \mathcal{H}$ are very similar, then the events
 - "h₁ is consistent with the first m training data points"
 - "h₂ is consistent with the first m training data points"
- will overlap a lot!

Labellings

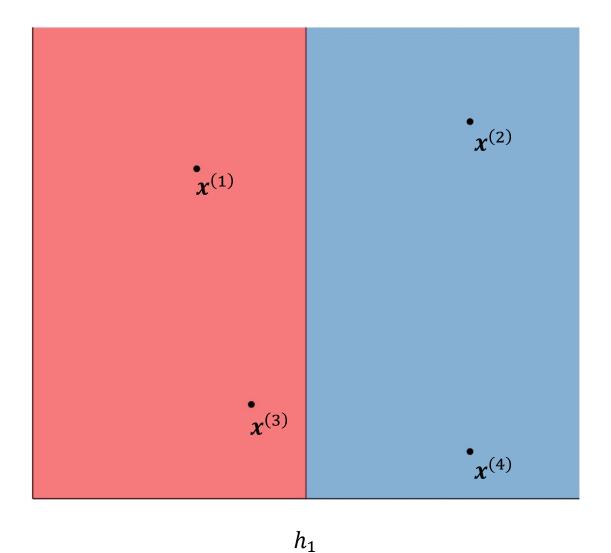
• Given some finite set of data points $S = (x^{(1)}, ..., x^{(M)})$ and some hypothesis $h \in \mathcal{H}$, applying h to each point in S results in a <u>labelling</u>


• $(h(x^{(1)}), ..., h(x^{(M)}))$ is a vector of M +1's and -1's

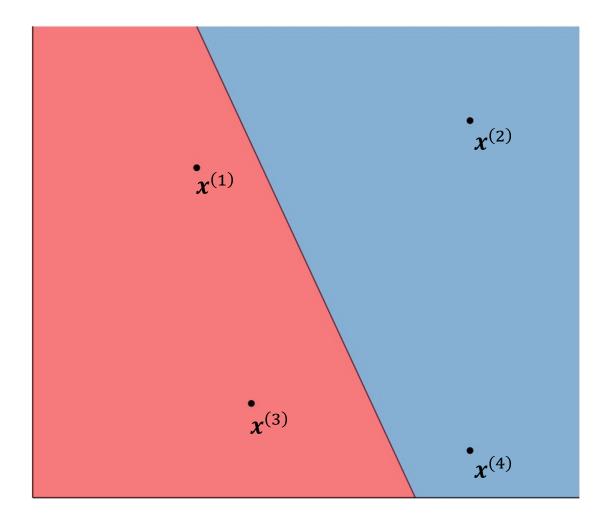
Given S = (x⁽¹⁾, ..., x^(M)), each hypothesis in H induces a labelling but not necessarily a unique labelling
The set of labellings induced by H on S is

 $\mathcal{H}(S) = \left\{ \left(h(\boldsymbol{x}^{(1)}), \dots, h(\boldsymbol{x}^{(M)}) \right) \mid h \in \mathcal{H} \right\}$

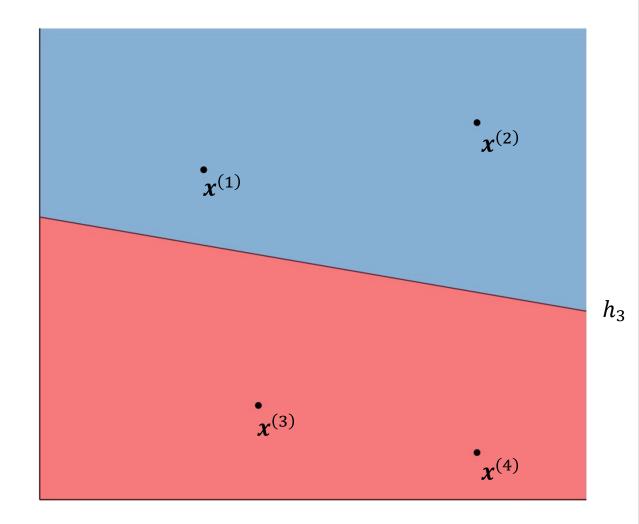
Example: Labellings


 $\mathcal{H} = \{h_1, h_2, h_3\}$

 h_1 h_2



 $\begin{pmatrix} h_1(\mathbf{x}^{(1)}), h_1(\mathbf{x}^{(2)}), h_1(\mathbf{x}^{(3)}), h_1(\mathbf{x}^{(4)}) \end{pmatrix}$ = (-1, +1, -1, +1)

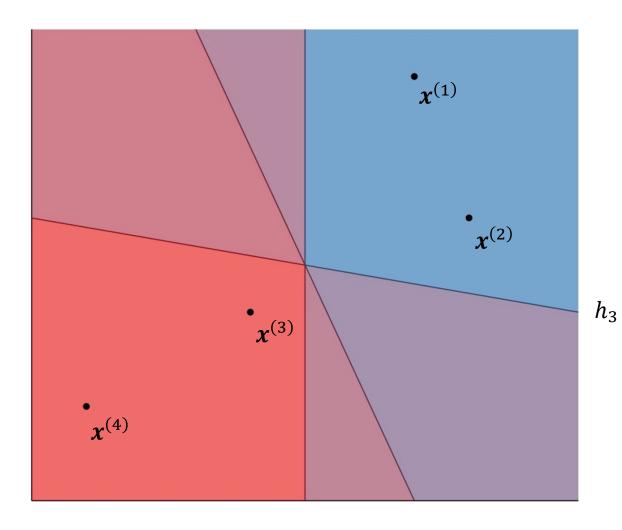


 $(h_2(\mathbf{x}^{(1)}), h_2(\mathbf{x}^{(2)}), h_2(\mathbf{x}^{(3)}), h_2(\mathbf{x}^{(4)}))$ = (-1, +1, -1, +1)

 $\left(h_3(\mathbf{x}^{(1)}), h_3(\mathbf{x}^{(2)}), h_3(\mathbf{x}^{(3)}), h_3(\mathbf{x}^{(4)}) \right)$ = (+1, +1, -1, -1)

Example: Labellings

 $\overline{\mathcal{H}} = \{h_1, h_2, h_3\}$

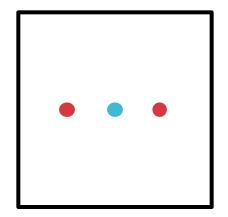

 $\mathcal{H}(S) \\ = \{(+1, +1, -1, -1), (-1, +1, -1, +1)\}$

 $\mathcal{H}(S) = \{(+1, +1, -1, -1)\}$

 $|\mathcal{H}(S)| = 1$

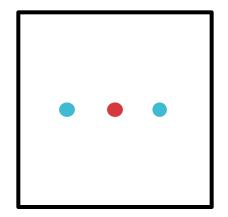
 h_1 h_2

Growth Function

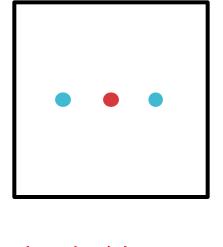

• The **growth function** of \mathcal{H} is the maximum number of distinct labellings \mathcal{H} can induce on **any** set of **M** data points: $g_{\mathcal{H}}(M) = \max_{S : |S|=M} |\mathcal{H}(S)|$ • $g_{\mathcal{H}}(M) \leq 2^M \forall \mathcal{H} \text{ and } M$ • \mathcal{H} shatters S if $|\mathcal{H}(S)| = 2^M$ • If $\exists S$ s.t. |S| = M and \mathcal{H} shatters S, then $g_{\mathcal{H}}(M) = 2^M$ if H sheffers S al ISI=M then $|H(s)| = 2^{M}$

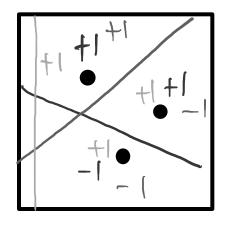
• $\mathbf{x}^{(m)} \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

• What is $g_{\mathcal{H}}(3)$?


• $\mathbf{x}^{(m)} \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

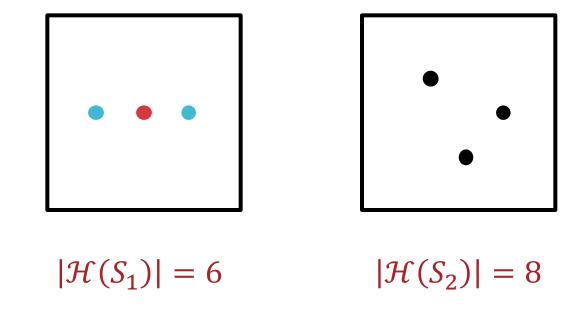
• What is $g_{\mathcal{H}}(3)$?


• $\mathbf{x}^{(m)} \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators


• What is $g_{\mathcal{H}}(3)$?

• $\mathbf{x}^{(m)} \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

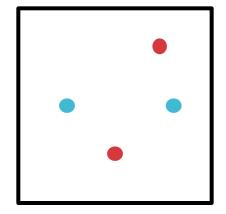
• What is $g_{\mathcal{H}}(3)$?



 $|\mathcal{H}(S_1)| = 6$

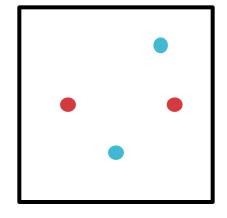
• $\mathbf{x}^{(m)} \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

•
$$g_{\mathcal{H}}(3) = 8 = 2^3$$

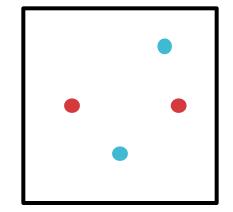


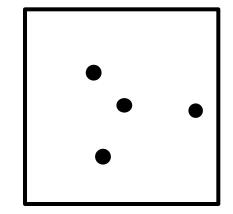
• $\mathbf{x}^{(m)} \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

• What is $g_{\mathcal{H}}(4)$?

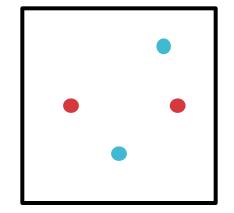

• $\mathbf{x}^{(m)} \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

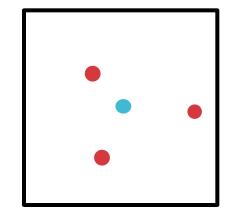
• What is $g_{\mathcal{H}}(4)$?


• $\mathbf{x}^{(m)} \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

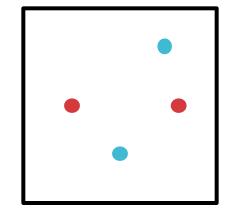

• What is $g_{\mathcal{H}}(4)$?

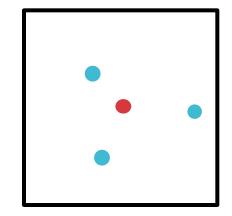
• $\mathbf{x}^{(m)} \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators


• What is $g_{\mathcal{H}}(4)$?

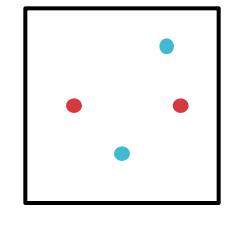


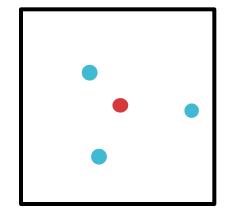
• $\mathbf{x}^{(m)} \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators


• What is $g_{\mathcal{H}}(4)$?



• $\mathbf{x}^{(m)} \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators


• What is $g_{\mathcal{H}}(4)$?



• $\mathbf{x}^{(m)} \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

•
$$g_{\mathcal{H}}(4) = 14 < 2^4$$

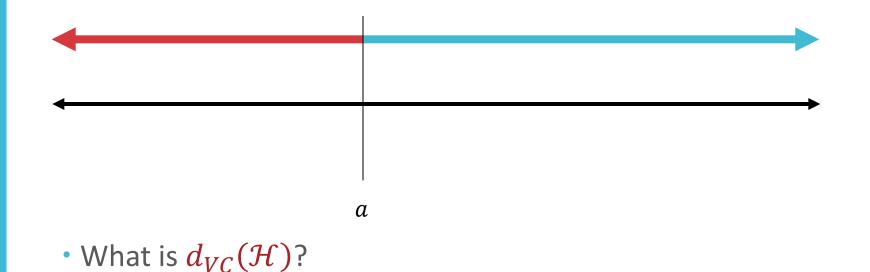
 $|\mathcal{H}(S_1)| = 14$

Theorem 3: Vapnik-Chervonenkis (VC)-Bound • Infinite, realizable case: for any hypothesis set \mathcal{H} and distribution p^* , if the number of labelled training data points satisfies

$$M \geq \frac{2}{\epsilon} \left(\log_2 \left(2g_{\mathcal{H}}(2M) \right) + \log_2 \left(\frac{1}{\delta} \right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $R(h) \ge \epsilon$ have $\hat{R}(h) > 0$

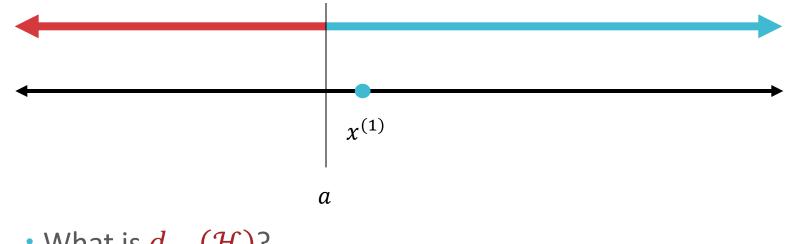
• *M* appears on both sides of the inequality...


Vapnik-Chervonenkis (VC)-Dimension *d_{VC}*(*H*) = the largest value of *M* s.t. *g_H*(*M*) = 2^{*M*}, i.e., the greatest number of data points that can be shattered by *H* If *H* can shatter arbitrarily large finite sets, then *d_{VC}*(*H*) = ∞

• $g_{\mathcal{H}}(M) = O(M^{d_{VC}(\mathcal{H})})$ (Sauer-Shelah lemma)

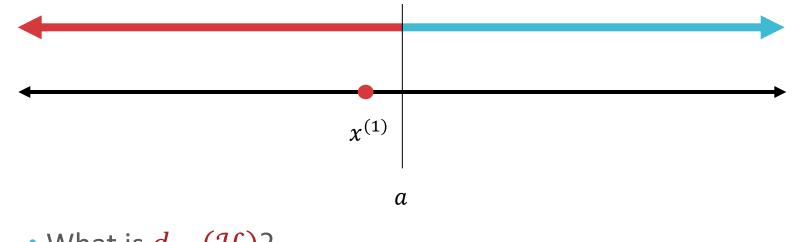
- To prove that $d_{VC}(\mathcal{H}) = C$, you need to show
 - **1**. \exists some set of *C* data points that \mathcal{H} can shatter and
 - 2. \nexists a set of C + 1 data points that \mathcal{H} can shatter

VC-Dimension: Example

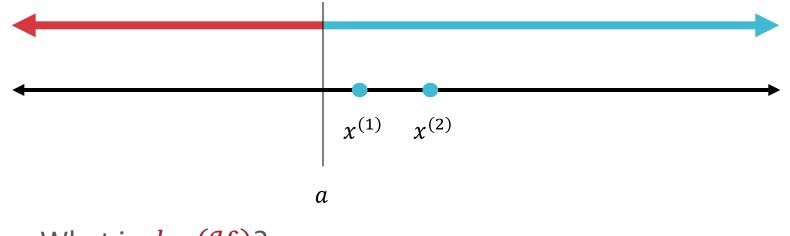

• $x^{(m)} \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x; a) = \operatorname{sign}(x - a)$

Henry Chai - 7/5/23

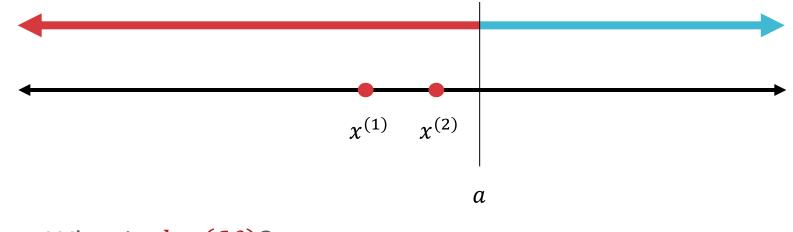
VC-Dimension: Example


• $x^{(m)} \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x; a) = \operatorname{sign}(x - a)$

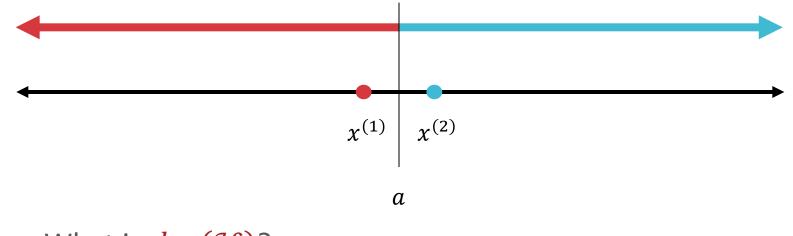
• What is $d_{VC}(\mathcal{H})$?


VC-Dimension: Example

• $x^{(m)} \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x; a) = \operatorname{sign}(x - a)$

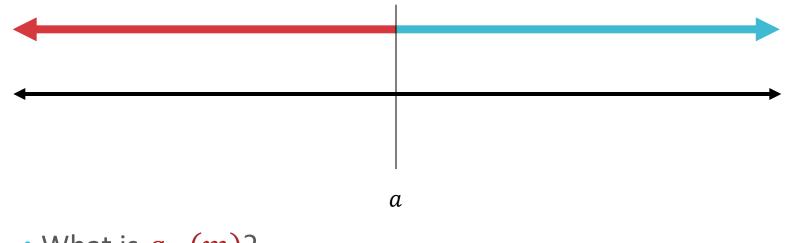


• What is $d_{VC}(\mathcal{H})$?


• $x^{(m)} \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x; a) = \operatorname{sign}(x - a)$

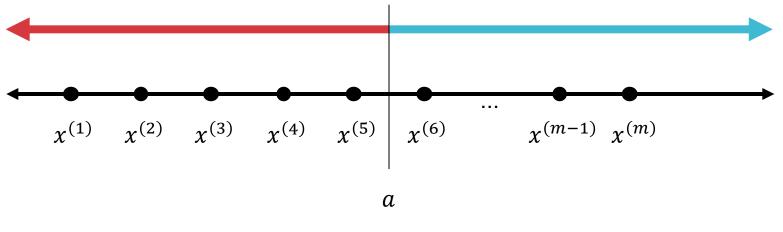
• $x^{(m)} \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x; a) = \operatorname{sign}(x - a)$

• $x^{(m)} \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x; a) = \operatorname{sign}(x - a)$

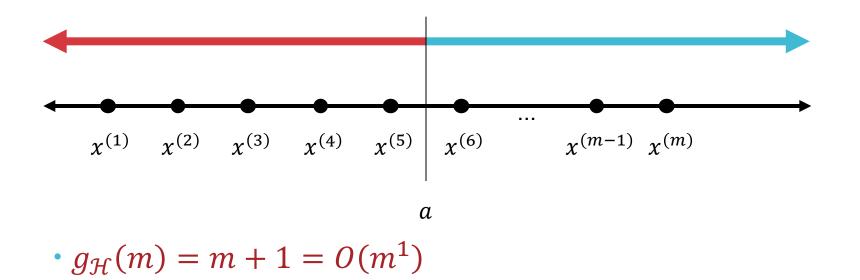


• $x^{(m)} \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive rays, i.e., all hypotheses of the form h(x; a) = sign(x - a) $x^{(1)}$ $x^{(2)}$ a

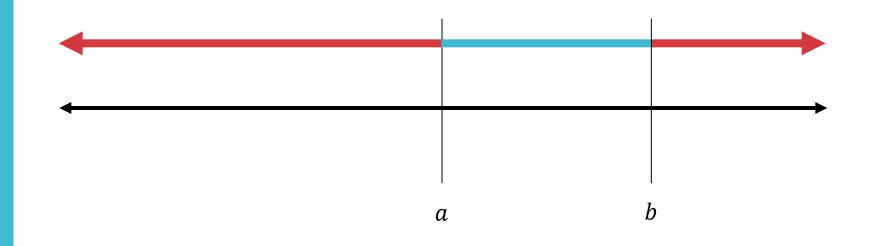
• $x^{(m)} \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive rays, i.e., all hypotheses of the form h(x; a) = sign(x - a) $x^{(1)}$ $x^{(2)}$ а


• $d_{VC}(\mathcal{H}) = 1$

• $x^{(m)} \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x; a) = \operatorname{sign}(x - a)$


• What is $g_{\mathcal{H}}(m)$?

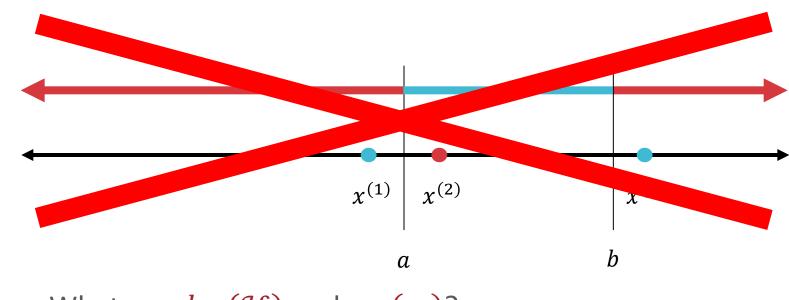
• $x^{(m)} \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x; a) = \operatorname{sign}(x - a)$



• What is $g_{\mathcal{H}}(m)$?

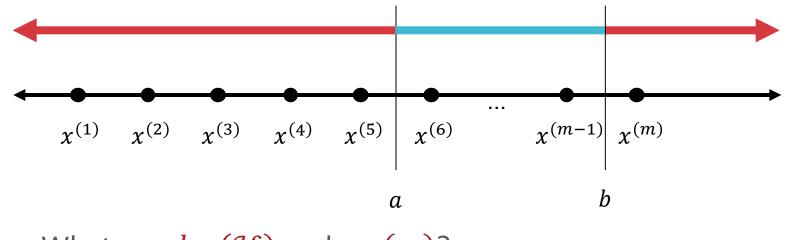
• $x^{(m)} \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x; a) = \operatorname{sign}(x - a)$

• $x^{(m)} \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive intervals

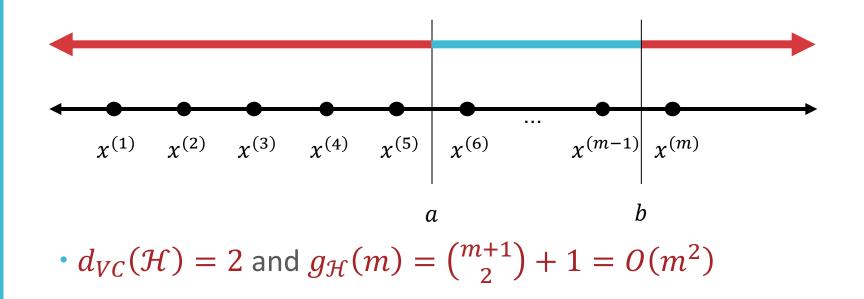

When poll is active, respond at **pollev.com/301601polls**

What are $d_{VC}(H)$ and $g_H(m)$ for 1-dimensional positive *intervals*?

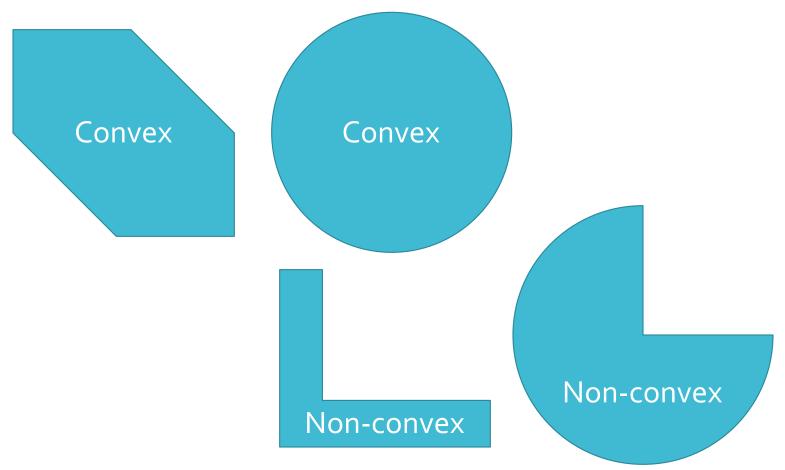
$$egin{array}{lll} 1 \ {
m and} \ m+1 \ 2 \ {
m and} \ m+1 \ 2 \ {
m and} \ rac{1}{2}(m^2+m+1) \ 3 \ {
m and} \ rac{1}{2}(m^2+m+1) \end{array}$$


Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

• $x^{(m)} \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive intervals

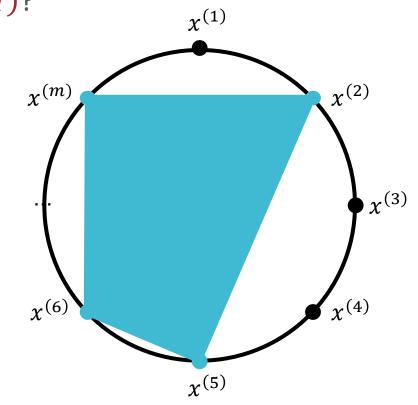

• What are $d_{VC}(\mathcal{H})$ and $g_{\mathcal{H}}(m)$?

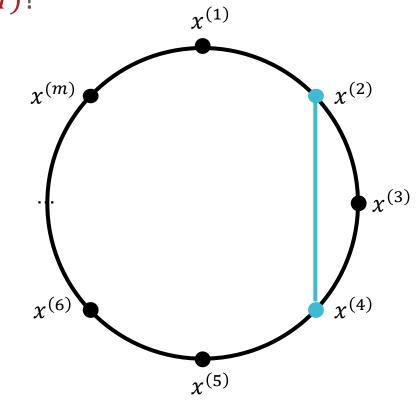
• $x^{(m)} \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive intervals



• What are $d_{VC}(\mathcal{H})$ and $g_{\mathcal{H}}(m)$?

• $x^{(m)} \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive intervals


• $x^{(m)} \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional positive convex sets


• $x^{(m)} \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional positive convex sets

• What are $d_{VC}(\mathcal{H})$ and $g_{\mathcal{H}}(M)$?

- $x^{(m)} \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional positive convex sets
- What are $d_{VC}(\mathcal{H})$ and $g_{\mathcal{H}}(M)$?

- $x^{(m)} \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional positive convex sets
- What are $d_{VC}(\mathcal{H})$ and $g_{\mathcal{H}}(M)$?

• $x^{(m)} \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional positive convex sets

• $d_{VC}(\mathcal{H}) = \infty$ and $g_{\mathcal{H}}(M) = 2^M = O(M^{\infty})_{\chi^{(1)}}$ $x^{(2)}$ $x^{(m)}$ $x^{(3)}$ *x*⁽⁴⁾ $x^{(6)}$ $x^{(5)}$

Theorem 3: Vapnik-Chervonenkis (VC)-Bound • Infinite, realizable case: for any hypothesis set \mathcal{H} and distribution p^* , if the number of labelled training data points satisfies

$$M = O\left(\frac{1}{\epsilon} \left(d_{VC}(\mathcal{H})\log\left(\frac{1}{\epsilon}\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have $R(h) \le \epsilon$

Statistical Learning Theory Corollary • Infinite, realizable case: for any hypothesis set \mathcal{H} and distribution p^* , given a training data set S s.t. |S| = M, all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have

$$R(h) \le O\left(\frac{1}{M}\left(d_{VC}(\mathcal{H})\log\left(\frac{M}{d_{VC}(\mathcal{H})}\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

with probability at least $1 - \delta$.

Theorem 4: Vapnik-Chervonenkis (VC)-Bound • Infinite, agnostic case: for any hypothesis set \mathcal{H} and distribution p^* , if the number of labelled training data points satisfies

$$M = O\left(\frac{1}{\epsilon^2} \left(d_{VC}(\mathcal{H}) + \log\left(\frac{1}{\delta}\right) \right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ have $|R(h) - \hat{R}(h)| \le \epsilon$

Statistical Learning Theory Corollary Infinite, agnostic case: for any hypothesis set *H* and distribution p^{*}, given a training data set S s.t. |S| = M, all h ∈ H have

$$R(h) \leq \widehat{R}(h) + O\left(\sqrt{\frac{1}{M}\left(d_{VC}(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)}\right)$$

with probability at least $1 - \delta$.

Approximation Generalization Tradeoff

How well does *h* generalize? $R(h) \leq \widehat{R}(h) + O\left(\sqrt{\frac{1}{M}}\left(d_{VC}(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)\right)$ How well does *h* approximate *c**?

Approximation Generalization Tradeoff

Increases as $d_{VC}(\mathcal{H})$ increases $R(h) \leq \hat{R}(h) + O\left(\sqrt{\frac{1}{M}}\left(d_{VC}(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)\right)$ Decreases as $d_{VC}(\mathcal{H})$ increases

Key Takeaways

• For infinite hypothesis sets, use the VC-dimension (or the growth function) as a measure of complexity

- Computing $d_{VC}(\mathcal{H})$ and $g_{\mathcal{H}}(M)$
- Connection between VC-dimension and the growth function (Sauer-Shelah lemma)
- Sample complexity and statistical learning theory style bounds using $d_{VC}(\mathcal{H})$

• Assume a regression task with squared error and let $h_S \in \mathcal{H} =$ the hypothesis trained on training data S

•
$$err_D(h_S) = \mathbb{E}_{\boldsymbol{x} \sim D}\left[\left(h_S(\boldsymbol{x}) - c^*(\boldsymbol{x})\right)^2\right]$$

• Assume a regression task with squared error and let $h_S \in \mathcal{H} =$ the hypothesis trained on training data S

•
$$err_D(h_S) = \mathbb{E}_{\boldsymbol{x} \sim D} \left[\left(h_S(\boldsymbol{x}) - c^*(\boldsymbol{x}) \right)^2 \right]$$

•
$$\mathbb{E}_{S}[err_{D}(h_{S})] = \mathbb{E}_{\boldsymbol{x}\sim D}\left[\mathbb{E}_{S}[h_{S}(\boldsymbol{x})^{2}] - 2\overline{h}(\boldsymbol{x})c^{*}(\boldsymbol{x}) + c^{*}(\boldsymbol{x})^{2}\right]$$

How much does
$$h$$

change if the training
data set changes?
$$\mathbb{E}_{S}[err_{D}(h_{S})] = \mathbb{E}_{x\sim D} \left[\mathbb{E}_{S}[h_{S}(x)^{2} - \bar{h}(x)^{2}] + \left(\bar{h}(x) - c^{*}(x)\right)^{2} \right]$$

How well on
average does h

approximate *c**?

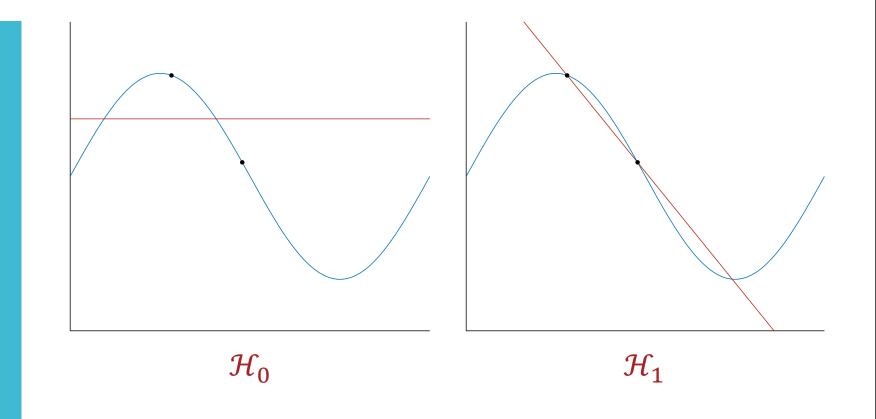
How well could
$$h$$

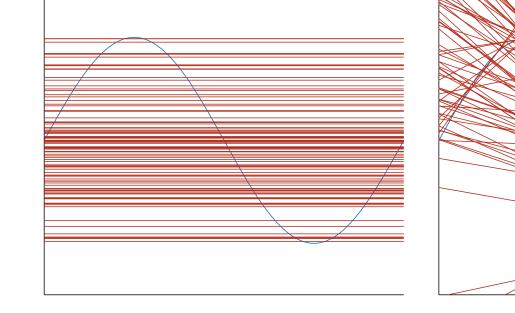
approximate
anything?
$$\mathbb{E}_{S}[err_{D}(h_{S})] = \mathbb{E}_{\boldsymbol{x}\sim D} \left[\mathbb{E}_{S}[h_{S}(\boldsymbol{x})^{2} - \bar{h}(\boldsymbol{x})^{2}] + \left(\bar{h}(\boldsymbol{x}) - c^{*}(\boldsymbol{x})\right)^{2} \right]$$

How well on
average does h

approximate *c**?

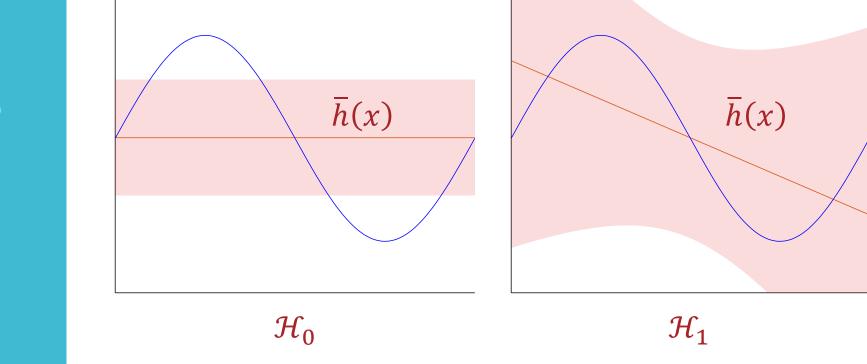
Increases as ${\cal H}$ becomes more complex $\mathbb{E}_{S}[err_{D}(h_{S})] = \mathbb{E}_{\boldsymbol{x}\sim D}\left[\mathbb{E}_{S}[h_{S}(\boldsymbol{x})^{2} - \bar{h}(\boldsymbol{x})^{2}] + \left(\bar{h}(\boldsymbol{x}) - c^{*}(\boldsymbol{x})\right)^{2}\right]$ Decreases as ${\cal H}$ becomes more

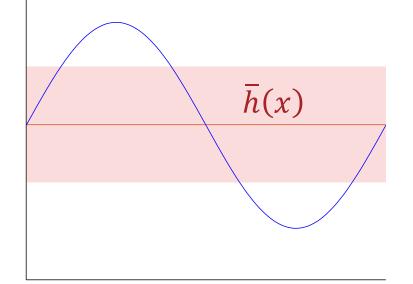

complex

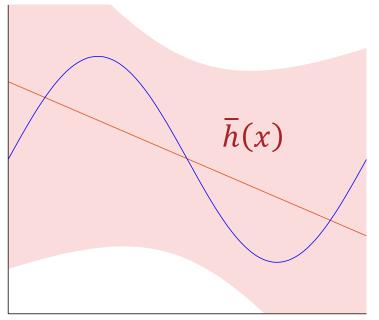

• $x^{(i)} \in \mathbb{R}$ and $D = \text{Uniform}(0, 2\pi)$

• $c^* = \sin(\cdot)$, i.e., $y = \sin(x)$

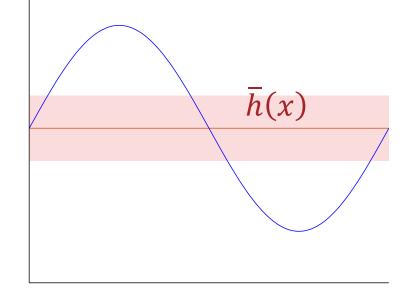
•
$$N = 2 \rightarrow \mathcal{D} = \{ (x^{(1)}, \sin(x^{(1)})), (x^{(2)}, \sin(x^{(2)})) \}$$

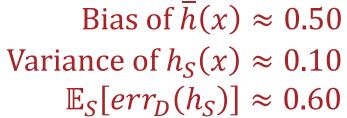

•
$$\mathcal{H}_0 = \{h : h(x) = b\}$$
 and $\mathcal{H}_1 = \{h : h(x) = ax + b\}$

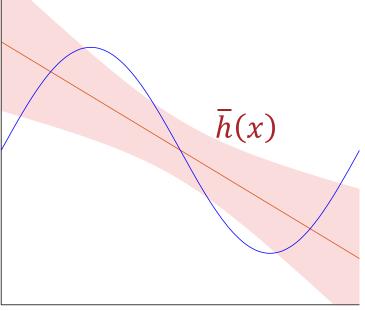


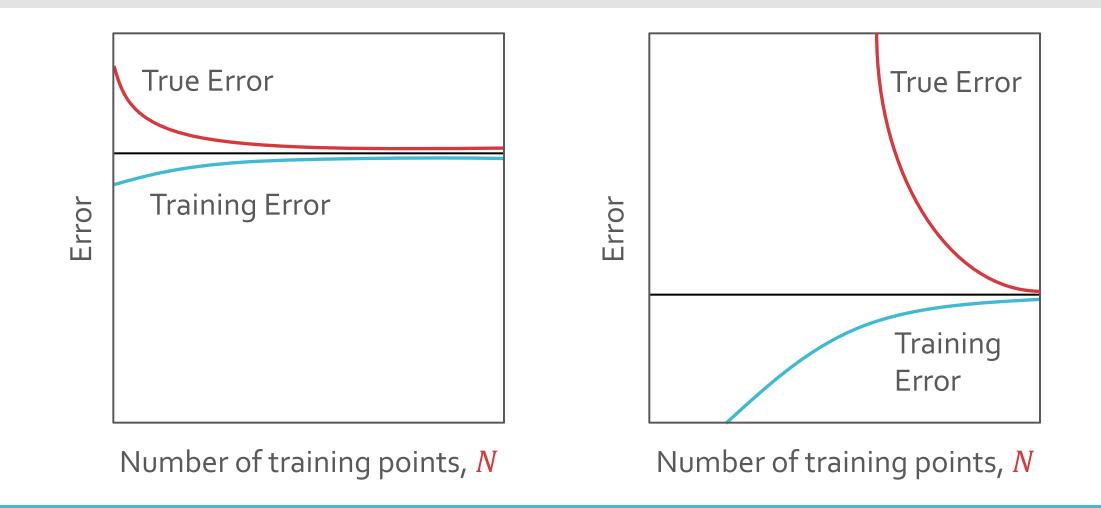

 \mathcal{H}_{0}

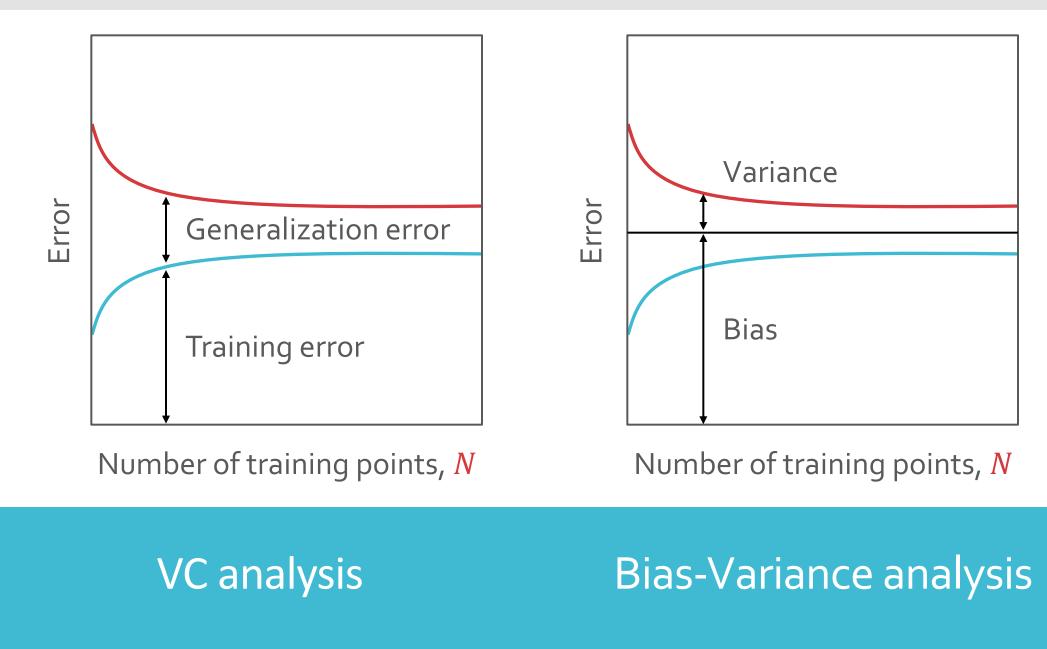
 \mathcal{H}_1






Bias of $\overline{h}(x) \approx 0.50$ Variance of $h_S(x) \approx 0.25$ $\mathbb{E}_S[err_D(h_S)] \approx 0.75$


Bias of $\overline{h}(x) \approx 0.21$ Variance of $h_S(x) \approx 1.74$ $\mathbb{E}_S[err_D(h_S)] \approx 1.95$ Bias-Variance Tradeoff: Example (N = 5)



Bias of $\overline{h}(x) \approx 0.21$ Variance of $h_S(x) \approx 0.21$ $\mathbb{E}_S[err_D(h_S)] \approx 0.42$

Simple model

Complex model

