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10-301/601:	Introduction	
to	Machine	Learning
Lecture	17	–	Learning	
Theory	(Infinite	Case)



Front	Matter

� Announcements

� PA4	released	6/15,	due	7/13	at	11:59	PM

� You	still	have	one	week	from	this	Thursday!

� Quiz	6:	Deep	Learning	&	Learning	Theory	on	7/11

� Recommended	Readings
�Mitchell,	Chapter	7.4
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Recall:	
Theorem	1:	
Finite,	
Realizable	Case
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� For	a	finite	hypothesis	set	ℋ	s.t.	𝑐∗ ∈ ℋ	and	arbitrary	
distribution	𝑝∗,	if	the	number	of	labelled	training	data	
points	satisfies	

𝑀 ≥
1
𝜖 ln ℋ + ln

1
𝛿

then	with	probability	at	least	1 − 𝛿,	all	ℎ ∈ ℋ	with	
/𝑅 ℎ = 0	have	𝑅 ℎ ≤ 𝜖

� Solving	for	𝜖	gives...	



Statistical	
Learning	
Theory	
Corollary
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� For	a	finite	hypothesis	set	ℋ	s.t.	𝑐∗ ∈ ℋ	and	arbitrary	

distribution	𝑝∗,	given	a	training	data	set	𝑆	s.t. 𝑆 = 𝑀,	

all	ℎ ∈ ℋ	with	 /𝑅 ℎ = 0 have

𝑅 ℎ ≤
1
𝑀 ln ℋ + ln

1
𝛿

with	probability	at	least	1 − 𝛿.



Theorem	2:	
Finite,		
Agnostic	Case
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� For	a	finite	hypothesis	set	ℋ	and	arbitrary	distribution	
𝑝∗,	if	the	number	of	labelled	training	data	points	satisfies	

𝑀 ≥
1

2𝜖" ln ℋ + ln
2
𝛿

then	with	probability	at	least	1 − 𝛿,	all	ℎ ∈ ℋ	satisfy		

𝑅 ℎ − /𝑅 ℎ ≤ 𝜖

� Bound	is	inversely	quadratic	in	𝜖,	e.g.,	halving	𝜖	means	

we	need	four	times	as	many	labelled	training	data	points

� Solving	for	𝜖	gives…



Statistical	
Learning	
Theory	
Corollary
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� For	a	finite	hypothesis	set	ℋ	and	arbitrary	distribution	

𝑝∗,	given	a	training	data	set	𝑆	s.t. 𝑆 = 𝑀,	all	ℎ ∈ ℋ	
have

𝑅 ℎ ≤ /𝑅 ℎ +
1

2𝑀 ln ℋ + ln
2
𝛿

with	probability	at	least	1 − 𝛿.
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� For	a	finite	hypothesis	set	ℋ	and	arbitrary	distribution	

𝑝∗,	given	a	training	data	set	𝑆	s.t. 𝑆 = 𝑀,	all	ℎ ∈ ℋ	
have

𝑅 ℎ ≤ /𝑅 ℎ +
1

2𝑀 ln ℋ + ln
2
𝛿

with	probability	at	least	1 − 𝛿.

What	happens	
when	 ℋ = ∞?



The	Union	
Bound…

8

A B

𝑃 𝐴 ∪ 𝐵 ≤ 𝑃 𝐴 + 𝑃{𝐵}
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B

𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃{𝐴 ∩ 𝐵}

The	Union	
Bound	is	Bad!

9

A

𝑃 𝐴 ∪ 𝐵 ≤ 𝑃 𝐴 + 𝑃{𝐵}
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Intuition

� If	two	hypotheses	ℎ#, ℎ" ∈ ℋ	are	
very	similar,	then	the	events	

� “ℎ#	is	consistent	with	the	first	𝑚	
training	data	points”	

� “ℎ"	is	consistent	with	the	first	𝑚	
training	data	points”

� will	overlap	a	lot!	

10Henry	Chai	-	7/5/23



Intuition

11

� If	two	hypotheses	ℎ#, ℎ" ∈ ℋ	are	
very	similar,	then	the	events	

� “ℎ#	is	consistent	with	the	first	𝑚	
training	data	points”	

� “ℎ"	is	consistent	with	the	first	𝑚	
training	data	points”

� will	overlap	a	lot!	
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Labellings

� Given	some	finite	set	of	data	points	𝑆 = 𝒙 # , … , 𝒙 $ 	

and	some	hypothesis	ℎ ∈ ℋ,	applying	ℎ	to	each	point	in	
𝑆	results	in	a	labelling	

� ℎ 𝒙 # , … , ℎ 𝒙 $ 	is	a	vector	of	𝑀	+1’s	and	-1’s	

� Given	𝑆 = 𝒙 # , … , 𝒙 $ ,	each	hypothesis	in	ℋ	

induces	a	labelling	but	not	necessarily	a	unique	labelling

� The	set	of	labellings	induced	by	ℋon	𝑆	is								

ℋ 𝑆 = ℎ 𝒙 # , … , ℎ 𝒙 $  ℎ ∈ ℋ

12Henry	Chai	-	7/5/23



Example:	Labellings

� ℋ = {ℎ#, ℎ", ℎ%}	

13

ℎ!ℎ"

ℎ#

𝒙 "

𝒙 #

𝒙 !

𝒙 $
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ℋ = {ℎ#, ℎ", ℎ%}	

ℎ# 𝒙 # , ℎ# 𝒙 " , ℎ# 𝒙 % , ℎ# 𝒙 (

� = −1, +1, −1, +1

14

ℎ"

𝒙 "

𝒙 #

𝒙 !

𝒙 $

Example:	Labellings

Henry	Chai	-	7/5/23



Example:	Labellings

15

ℎ!

𝒙 "

𝒙 #

𝒙 !

𝒙 $

ℋ = {ℎ#, ℎ", ℎ%}	

ℎ" 𝒙 # , ℎ" 𝒙 " , ℎ" 𝒙 % , ℎ" 𝒙 (

� = −1, +1, −1, +1
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Example:	Labellings

16

ℎ#

𝒙 "

𝒙 #

𝒙 !

𝒙 $

ℋ = {ℎ#, ℎ", ℎ%}	

ℎ% 𝒙 # , ℎ% 𝒙 " , ℎ% 𝒙 % , ℎ% 𝒙 (

� = +1, +1, −1, −1
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Example:	Labellings

ℋ = {ℎ#, ℎ", ℎ%}

ℋ 𝑆
= +1, +1, −1, −1 , −1, +1, −1, +1

ℋ 𝑆 = 2

17

ℎ!ℎ"

ℎ#

𝒙 "

𝒙 #

𝒙 !

𝒙 $
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Example:	Labellings

ℋ = ℎ#, ℎ", ℎ%

ℋ 𝑆 =
+1, +1, −1, −1

ℋ 𝑆 = 1
� 	

18

ℎ!ℎ"

ℎ#

𝒙 "

𝒙 #

𝒙 !

𝒙 $
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� The	growth	function	of	ℋ	is	the	maximum	number	of	

distinct	labellings	ℋ	can	induce	on	any	set	of	𝑀	data	points:	

𝑔ℋ 𝑀 = max
* ∶ * -$

ℋ 𝑆

� 𝑔ℋ 𝑀 ≤ 2$ ∀ ℋ	and	𝑀

� ℋ	shatters	𝑆	if	 ℋ 𝑆 = 2$

� If	∃ 𝑆	s.t. 𝑆 = 𝑀	and	ℋ	shatters	𝑆,	then	𝑔ℋ 𝑀 = 2$

Growth	
Function

19Henry	Chai	-	7/5/23



Growth	
Function:	
Example

� 𝒙 . ∈ ℝ" and ℋ =	all	2-dimensional	linear	separators	

�What	is	𝑔ℋ 3 ?

20Henry	Chai	-	7/5/23



� 𝒙 . ∈ ℝ" and ℋ =	all	2-dimensional	linear	separators	

�What	is	𝑔ℋ 3 ?Growth	
Function:	
Example

21Henry	Chai	-	7/5/23



� 𝒙 . ∈ ℝ" and ℋ =	all	2-dimensional	linear	separators	

�What	is	𝑔ℋ 3 ?Growth	
Function:	
Example

22Henry	Chai	-	7/5/23



Growth	
Function:	
Example

� 𝒙 . ∈ ℝ" and ℋ =	all	2-dimensional	linear	separators	

�What	is	𝑔ℋ 3 ?

23

ℋ 𝑆# = 6 ℋ 𝑆" = 8
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Growth	
Function:	
Example

� 𝒙 . ∈ ℝ" and ℋ =	all	2-dimensional	linear	separators		

� 𝑔ℋ 3 = 8 = 2%

24

ℋ 𝑆# = 6 ℋ 𝑆" = 8

Henry	Chai	-	7/5/23



Growth	
Function:	
Example

� 𝒙 . ∈ ℝ" and ℋ =	all	2-dimensional	linear	separators	

�What	is	𝑔ℋ 4 ?

25Henry	Chai	-	7/5/23



Growth	
Function:	
Example

� 𝒙 . ∈ ℝ" and ℋ =	all	2-dimensional	linear	separators	

�What	is	𝑔ℋ 4 ?
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Growth	
Function:	
Example

� 𝒙 . ∈ ℝ" and ℋ =	all	2-dimensional	linear	separators	

�What	is	𝑔ℋ 4 ?

27

ℋ 𝑆# = 14
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Growth	
Function:	
Example

� 𝒙 . ∈ ℝ" and ℋ =	all	2-dimensional	linear	separators	

�What	is	𝑔ℋ 4 ?
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ℋ 𝑆# = 14
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Growth	
Function:	
Example

� 𝒙 . ∈ ℝ" and ℋ =	all	2-dimensional	linear	separators	

�What	is	𝑔ℋ 4 ?

29

ℋ 𝑆# = 14
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Growth	
Function:	
Example

� 𝒙 . ∈ ℝ" and ℋ =	all	2-dimensional	linear	separators	

�What	is	𝑔ℋ 4 ?

30

ℋ 𝑆# = 14
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Growth	
Function:	
Example

� 𝒙 . ∈ ℝ" and ℋ =	all	2-dimensional	linear	separators	

� 𝑔ℋ 4  = 14 < 2(

31

ℋ 𝑆# = 14 ℋ 𝑆" = 14
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Theorem	3:	
Vapnik-
Chervonenkis	
(VC)-Bound

32

� Infinite,	realizable	case:	for	any	hypothesis	set	ℋ	and	

distribution	𝑝∗,	if	the	number	of	labelled	training	data	
points	satisfies	

𝑀 ≥
2
𝜖 log" 2𝑔ℋ 2𝑀 + log"

1
𝛿

then	with	probability	at	least	1 − 𝛿,	all	ℎ ∈ ℋ	with	

𝑅 ℎ ≥ 𝜖	have	 /𝑅 ℎ > 0

� 𝑀	appears	on	both	sides	of	the	inequality…
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Vapnik-
Chervonenkis	
(VC)-Dimension

� 𝑑/0 ℋ =	the	largest	value	of	𝑀	s.t.	𝑔ℋ 𝑀 = 2 $,	i.e.,	the	

greatest	number	of	data	points	that	can	be	shattered	by	ℋ
� If	ℋ can	shatter	arbitrarily	large	finite	sets,	then	

𝑑/0 ℋ = ∞	

� 𝑔ℋ 𝑀 = 𝑂 𝑀1!" ℋ 	(Sauer-Shelah	lemma)

� To	prove	that	𝑑/0 ℋ = 𝐶,	you	need	to	show

1. 	∃	some	set	of	𝐶	data	points	that	ℋ	can	shatter	and

2. 	∄	a	set	of	𝐶 + 1	data	points	that	ℋ	can	shatter	

33Henry	Chai	-	7/5/23



VC-Dimension:	
Example

34

� 𝑥 . ∈ ℝ	and	ℋ =	all	1-dimensional	positive	rays,	i.e.,	

all	hypotheses	of	the	form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

�What	is	𝑑/0 ℋ ?
𝑎

Henry	Chai	-	7/5/23



VC-Dimension:	
Example

35

� 𝑥 . ∈ ℝ	and	ℋ =	all	1-dimensional	positive	rays,	i.e.,	

all	hypotheses	of	the	form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

�What	is	𝑑/0 ℋ ?
𝑎

𝑥 "

Henry	Chai	-	7/5/23



VC-Dimension:	
Example

36

� 𝑥 . ∈ ℝ	and	ℋ =	all	1-dimensional	positive	rays,	i.e.,	

all	hypotheses	of	the	form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

�What	is	𝑑/0 ℋ ?
𝑎

𝑥 "
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VC-Dimension:	
Example

37

� 𝑥 . ∈ ℝ	and	ℋ =	all	1-dimensional	positive	rays,	i.e.,	

all	hypotheses	of	the	form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

�What	is	𝑑/0 ℋ ?
𝑎

𝑥 " 𝑥 !
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VC-Dimension:	
Example

38

� 𝑥 . ∈ ℝ	and	ℋ =	all	1-dimensional	positive	rays,	i.e.,	

all	hypotheses	of	the	form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

�What	is	𝑑/0 ℋ ?

𝑥 " 𝑥 !

𝑎

Henry	Chai	-	7/5/23



VC-Dimension:	
Example

39

� 𝑥 . ∈ ℝ	and	ℋ =	all	1-dimensional	positive	rays,	i.e.,	

all	hypotheses	of	the	form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

�What	is	𝑑/0 ℋ ?

𝑥 " 𝑥 !

𝑎
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VC-Dimension:	
Example

40

� 𝑥 . ∈ ℝ	and	ℋ =	all	1-dimensional	positive	rays,	i.e.,	

all	hypotheses	of	the	form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

�What	is	𝑑/0 ℋ ?

𝑥 " 𝑥 !

𝑎

Henry	Chai	-	7/5/23



VC-Dimension:	
Example

41

� 𝑥 . ∈ ℝ	and	ℋ =	all	1-dimensional	positive	rays,	i.e.,	

all	hypotheses	of	the	form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

� 𝑑/0 ℋ = 1

𝑥 " 𝑥 !

𝑎

Henry	Chai	-	7/5/23



VC-Dimension:	
Example

42

� 𝑥 . ∈ ℝ	and	ℋ =	all	1-dimensional	positive	rays,	i.e.,	

all	hypotheses	of	the	form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

�What	is	𝑔ℋ 𝑚 ?
𝑎

Henry	Chai	-	7/5/23



VC-Dimension:	
Example

43

� 𝑥 . ∈ ℝ	and	ℋ =	all	1-dimensional	positive	rays,	i.e.,	

all	hypotheses	of	the	form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

�What	is	𝑔ℋ 𝑚 ?

…
𝑥 " 𝑥 ! 𝑥 # 𝑥 $ 𝑥 % 𝑥 & 𝑥 '(" 𝑥 '

𝑎
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VC-Dimension:	
Example

44

� 𝑥 . ∈ ℝ	and	ℋ =	all	1-dimensional	positive	rays,	i.e.,	

all	hypotheses	of	the	form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

� 𝑔ℋ 𝑚 = 𝑚 + 1 = 𝑂 𝑚#

…
𝑥 " 𝑥 ! 𝑥 # 𝑥 $ 𝑥 % 𝑥 & 𝑥 '(" 𝑥 '

𝑎
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� 𝑥 . ∈ ℝ	and	ℋ =	all	1-dimensional	positive	intervals

VC-Dimension:	
Example

45

𝑎 𝑏

Henry	Chai	-	7/5/23





� 𝑥 . ∈ ℝ	and	ℋ =	all	1-dimensional	positive	intervals

�What	are	𝑑/0 ℋ 	and	𝑔ℋ 𝑚 ?

VC-Dimension:	
Example

47

𝑎 𝑏

𝑥 " 𝑥 #𝑥 !
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� 𝑥 . ∈ ℝ	and	ℋ =	all	1-dimensional	positive	intervals

�What	are	𝑑/0 ℋ 	and	𝑔ℋ 𝑚 ?

VC-Dimension:	
Example

48

𝑎 𝑏

…
𝑥 " 𝑥 ! 𝑥 # 𝑥 $ 𝑥 % 𝑥 & 𝑥 '(" 𝑥 '
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� 𝑥 . ∈ ℝ	and	ℋ =	all	1-dimensional	positive	intervals

� 𝑑/0 ℋ = 2	and	𝑔ℋ 𝑚 = .5#
" + 1 = 𝑂 𝑚"

VC-Dimension:	
Example

49

𝑎 𝑏

…
𝑥 " 𝑥 ! 𝑥 # 𝑥 $ 𝑥 % 𝑥 & 𝑥 '(" 𝑥 '
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Growth	
Function:	
Example

50

� 𝑥 . ∈ ℝ"	and	ℋ =	all	2-dimensional	positive	convex	sets	

ConvexConvex

Non-convex
Non-convex

Henry	Chai	-	7/5/23



Growth	
Function:	
Example

51

…

𝑥 "

𝑥 !

𝑥 #

𝑥 '

𝑥 $

𝑥 %

𝑥 &

� 𝑥 . ∈ ℝ"	and	ℋ =	all	2-dimensional	positive	convex	sets	

�What	are	𝑑/0 ℋ 	and	𝑔ℋ 𝑀 ?

Henry	Chai	-	7/5/23



� 𝑥 . ∈ ℝ"	and	ℋ =	all	2-dimensional	positive	convex	sets	

�What	are	𝑑/0 ℋ 	and	𝑔ℋ 𝑀 ?

Growth	
Function:	
Example

52

…

𝑥 "

𝑥 !

𝑥 #

𝑥 '

𝑥 $

𝑥 %

𝑥 &
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� 𝑥 . ∈ ℝ"	and	ℋ =	all	2-dimensional	positive	convex	sets	

�What	are	𝑑/0 ℋ 	and	𝑔ℋ 𝑀 ?

Growth	
Function:	
Example

53

…

𝑥 "

𝑥 !

𝑥 #

𝑥 '

𝑥 $

𝑥 %

𝑥 &
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� 𝑥 . ∈ ℝ"	and	ℋ =	all	2-dimensional	positive	convex	sets	

� 𝑑/0 ℋ = ∞	and	𝑔ℋ 𝑀 = 2$ = 𝑂 𝑀6

Growth	
Function:	
Example

54

…

𝑥 "

𝑥 !

𝑥 #

𝑥 '

𝑥 $

𝑥 %

𝑥 &
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Theorem	3:	
Vapnik-
Chervonenkis	
(VC)-Bound

55

� Infinite,	realizable	case:	for	any	hypothesis	set	ℋ	and	

distribution	𝑝∗,	if	the	number	of	labelled	training	data	
points	satisfies	

𝑀 = 𝑂
1
𝜖 𝑑/0 ℋ log

1
𝜖 + log

1
𝛿

then	with	probability	at	least	1 − 𝛿,	all	ℎ ∈ ℋ	with	
/𝑅 ℎ = 0	have	𝑅 ℎ ≤ 𝜖

Henry	Chai	-	7/5/23



Statistical	
Learning	
Theory	
Corollary

56

� Infinite,	realizable	case:	for	any	hypothesis	set	ℋ	and	

distribution	𝑝∗,	given	a	training	data	set	𝑆	s.t. 𝑆 = 𝑀,	

all	ℎ ∈ ℋ	with	 /𝑅 ℎ = 0 have

𝑅 ℎ ≤ 𝑂
1
𝑀 𝑑/0 ℋ log

𝑀
𝑑/0 ℋ + log

1
𝛿

with	probability	at	least	1 − 𝛿.
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Theorem	4:	
Vapnik-
Chervonenkis	
(VC)-Bound

57

� Infinite,	agnostic	case:	for	any	hypothesis	set	ℋ	and	

distribution	𝑝∗,	if	the	number	of	labelled	training	data	
points	satisfies	

𝑀 = 𝑂
1
𝜖" 𝑑/0 ℋ + log

1
𝛿

then	with	probability	at	least	1 − 𝛿,	all	ℎ ∈ ℋ	have	

𝑅 ℎ − /𝑅 ℎ ≤ 𝜖

Henry	Chai	-	7/5/23



Statistical	
Learning	
Theory	
Corollary

58

� Infinite,	agnostic	case:	for	any	hypothesis	set	ℋ	and	

distribution	𝑝∗,	given	a	training	data	set	𝑆	s.t. 𝑆 = 𝑀,	
all	ℎ ∈ ℋ	have	

𝑅 ℎ ≤ /𝑅 ℎ + 𝑂
1
𝑀 𝑑/0 ℋ + log

1
𝛿

with	probability	at	least	1 − 𝛿.

Henry	Chai	-	7/5/23
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Approximation	
Generalization	
Tradeoff

Henry	Chai	-	7/5/23

Agnostic	case:	for	any	hypothesis	class	ℋ	and	

distribution	𝐷,	given	a	training	data	set	𝑆 𝑆 = 𝑚,	all	ℎ ∈
ℋ	have	

𝑅 ℎ ≤ /𝑅 ℎ + 𝑂
1
𝑀 𝑑/0 ℋ + log

1
𝛿

with	probability	at	least	1 − 𝛿.How well does ℎ 
approximate 𝑐∗?

How well does 
ℎ generalize?
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Approximation	
Generalization	
Tradeoff
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Agnostic	case:	for	any	hypothesis	class	ℋ	and	

distribution	𝐷,	given	a	training	data	set	𝑆 𝑆 = 𝑚,	all	ℎ ∈
ℋ	have	

𝑅 ℎ ≤ /𝑅 ℎ + 𝑂
1
𝑀 𝑑/0 ℋ + log

1
𝛿

with	probability	at	least	1 − 𝛿.

Increases as 
𝑑/0 ℋ  increases

Decreases as 
𝑑/0 ℋ  increases



Key	Takeaways

� For	infinite	hypothesis	sets,	use	the	VC-dimension	(or	

the	growth	function)	as	a	measure	of	complexity

� Computing	𝑑/0 ℋ 	and	𝑔ℋ 𝑀

� Connection	between	VC-dimension	and	the	growth	

function	(Sauer-Shelah	lemma)

� Sample	complexity	and	statistical	learning	theory	

style	bounds	using	𝑑/0 ℋ
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� Assume	a	regression	task	with	squared	error	and	let									
ℎ* ∈ ℋ =	the	hypothesis	trained	on	training	data	𝑆

� 𝑒𝑟𝑟7 ℎ* = 𝔼𝒙∼7 ℎ* 𝒙 − 𝑐∗ 𝒙 "

� 𝔼* 𝑒𝑟𝑟7 ℎ* = 𝔼* 𝔼𝒙∼7 ℎ* 𝒙 − 𝑐∗ 𝒙 "

� 𝔼* 𝑒𝑟𝑟7 ℎ* = 𝔼𝒙∼7 𝔼* ℎ* 𝒙 − 𝑐∗ 𝒙 "

� 𝔼* 𝑒𝑟𝑟7 ℎ* = 𝔼𝒙∼7 𝔼* ℎ* 𝒙 " − 2ℎ* 𝒙 𝑐∗ 𝒙 + 𝑐∗ 𝒙 "

� 𝔼* 𝑒𝑟𝑟7 ℎ* = 𝔼𝒙∼7 𝔼* ℎ* 𝒙 " − 2_ℎ 𝒙 𝑐∗ 𝒙 + 𝑐∗ 𝒙 "

� where	_ℎ �⃗� =	𝔼* ℎ* 𝒙

Bias-Variance	
Tradeoff

62

≈
1
𝑘 c

9-#

:

ℎ*# 𝒙
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� Assume	a	regression	task	with	squared	error	and	let																	
ℎ* ∈ ℋ =	the	hypothesis	trained	on	training	data	𝑆

� 𝑒𝑟𝑟7 ℎ* = 𝔼𝒙∼7 ℎ* 𝒙 − 𝑐∗ 𝒙 "

� 𝔼* 𝑒𝑟𝑟7 ℎ* = 𝔼𝒙∼7 𝔼* ℎ* 𝒙 " − 2_ℎ 𝒙 𝑐∗ 𝒙 + 𝑐∗ 𝒙 "

� 𝔼* 𝑒𝑟𝑟7 ℎ* = 𝔼𝒙∼7 𝔼* ℎ* 𝒙 " − _ℎ 𝒙 "

�  − +_ℎ 𝒙 " − 2_ℎ 𝒙 𝑐∗ 𝒙 + 𝑐∗ 𝒙 "

� 𝔼* 𝑒𝑟𝑟7 ℎ* = 𝔼𝒙∼7 𝔼* ℎ* 𝒙 " − _ℎ 𝒙 " + _ℎ 𝒙 − 𝑐∗ 𝒙
"

� 𝔼* 𝑒𝑟𝑟7 ℎ* = 𝔼𝒙∼7 Variance of ℎ* 𝒙 + Bias of _ℎ 𝒙

Bias-Variance	
Tradeoff

63Henry	Chai	-	7/5/23



64

Bias-Variance	
Tradeoff

How well on 
average does ℎ 
approximate 𝑐∗?

How much does ℎ 
change if the training 
data set changes?

𝔼* 𝑒𝑟𝑟7 ℎ* = 𝔼𝒙∼7 𝔼* ℎ* 𝒙 " − _ℎ 𝒙 " + _ℎ 𝒙 − 𝑐∗ 𝒙
"

Henry	Chai	-	7/5/23
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Bias-Variance	
Tradeoff

How well on 
average does ℎ 
approximate 𝑐∗?

How well could ℎ 
approximate 
anything?

𝔼* 𝑒𝑟𝑟7 ℎ* = 𝔼𝒙∼7 𝔼* ℎ* 𝒙 " − _ℎ 𝒙 " + _ℎ 𝒙 − 𝑐∗ 𝒙
"

Henry	Chai	-	7/5/23
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Bias-Variance	
Tradeoff 𝔼* 𝑒𝑟𝑟7 ℎ* = 𝔼𝒙∼7 𝔼* ℎ* 𝒙 " − _ℎ 𝒙 " + _ℎ 𝒙 − 𝑐∗ 𝒙

"

Decreases as ℋ 
becomes more 
complex

Increases as ℋ 
becomes more 
complex

Henry	Chai	-	7/5/23



Bias-Variance	
Tradeoff:	
Example

� 𝑥 9 ∈ ℝ	and	𝐷 = Uniform 0, 2𝜋

� 𝑐∗ = sin l , i.e., 𝑦 = sin 𝑥

� 𝑁 = 2 → 𝒟 = 𝑥 # , sin 𝑥 # , 𝑥 " , sin 𝑥 "

� ℋ; = ℎ ∶ ℎ 𝑥 = 𝑏  and	ℋ# = ℎ ∶ ℎ 𝑥 = 𝑎𝑥 + 𝑏
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Bias-Variance	
Tradeoff:	
Example
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ℋ; ℋ#
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Bias-Variance	
Tradeoff:	
Example
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ℋ; ℋ#
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Bias-Variance	
Tradeoff:	
Example
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_ℎ 𝑥_ℎ 𝑥

ℋ; ℋ#
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Bias-Variance	
Tradeoff:	
Example

71

Variance of ℎ* 𝑥 ≈ 0.25
Bias of _ℎ 𝑥 ≈ 0.50 Bias of _ℎ 𝑥 ≈ 0.21

Variance of ℎ* 𝑥 ≈ 1.74
𝔼* 𝑒𝑟𝑟7 ℎ* ≈ 0.75 𝔼* 𝑒𝑟𝑟7 ℎ* ≈ 1.95

_ℎ 𝑥_ℎ 𝑥
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Variance of ℎ* 𝑥 ≈ 0.10
Bias of _ℎ 𝑥 ≈ 0.50 Bias of _ℎ 𝑥 ≈ 0.21

Variance of ℎ* 𝑥 ≈ 0.21
𝔼* 𝑒𝑟𝑟7 ℎ* ≈ 0.60 𝔼* 𝑒𝑟𝑟7 ℎ* ≈ 0.42

_ℎ 𝑥_ℎ 𝑥Bias-Variance	
Tradeoff:
Example	
𝑁 = 5

Henry	Chai	-	7/5/23



Simple	model
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True Error

Training Error

Number of training points, 𝑁

Er
ro

r

True Error

Training 
Error

Number of training points, 𝑁

Complex model

Er
ro

r
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VC	analysis
74

Bias-Variance analysis

Number of training points, 𝑁

Training error

Generalization error

Number of training points, 𝑁

Bias

Variance

Er
ro

r

Er
ro

r
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