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* Announcements

* PA4 released 6/15, due 7/13 at 11:59 PM

* You still have one week from this Thursday!

Front Matter

* Quiz 6: Deep Learning & Learning Theory on 7/11

* Recommended Readings
* Mitchell, Chapter 7.4
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Recall:
Theorem 1:
Finite,
Realizable Case
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* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, if the number of labelled training data

points satisfies

M > %(m(m) +1n (1))

)

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€

* Solving for € gives...



* For a finite hypothesis set H s.t. ¢® € H and arbitrary
distribution p*, given a training data set S s.t. |[S| = M,
Statistical all h € H with R(h) = 0 have

Learning
Theory
Corollary with probability at least 1 — 4.

R(h) < %(ln(lﬂ-[l) +1n (1))

)
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Theorem 2:
Finite,
Agnostic Case
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* For a finite hypothesis set H and arbitrary distribution

p*, if the number of labelled training data points satisfies

M > Ziez(ln(l}[l) + In (;))

then with probability atleast 1 — §,allh € H satisfy

R(W) —R(W)|<e = -—-€ 412([4) )Z(L\.é

* Bound is inversely quadratic in €, e.g., halving € means

we need four times as many labelled training data points

* Solving for € gives...



Statistical
Learning

Theory
Corollary
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* For a finite hypothesis set H and arbitrary distribution

p*, given a training data

!

< R(h) < R(h) +

have

setSs.t.|S|=M,allh eH

o M mmcovsu,#a }uﬁ'

onder oo
L (ln(lf]—[l) +1n (3)) g

B \

2M o)
— &mmeg

with probability at least 1

— 4.




* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset S s.t. [S| = M, allh € H

have

What happens

when ? R(h) < R(h) +V%(ln(|7’[|) +1In (%))

with probability at least 1 — §.
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P{A U B} < P{A} + P{B)

The Union

Bound...
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P{A U B} < P{A} + P{B)

P{A U B} = P{A} + P{B} — P{A N B)

The Union

Bound is Bad!
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Intuition

If two hypotheses h{, h, € H are
very similar, then the events

* “h4 is consistent with the first m
training data points”

* “h, is consistent with the first m
training data points”

will overlap a lot!
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Labellings
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* Given some finite set of data points § = (x(l), e x(M))

and some hypothesis h € H, applying h to each point in

S results in a labelling

g (h(x(l)), o h(x(M))) is a vector of M +1’s and -1’s

- Given S = (x(l), ...,x(M)), each hypothesis in H

induces a labelling but not necessarily a unique labelling

* The set of labellings induced by Hon S is
H(S) = {(h(x®), .., n(x™)) | n € 7]



Example: Labellings

H = {h1: h,, h3}
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Example: Labellings

H = {h1: h,, h3}

(hl(x(l)), hy (x@), by (x®), hl(x(‘”))
=(-1,+1,-1,+1)

Henry Chai - 7/5/23



Example: Labellings

H = {h1: h,, h3}

(hz (x®), hy(x@), by (x®), b, (x(4)))
=(-1,+1,-1,+1)
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Example: Labellings

H = {h1: h,, h3}

(h3 (x®), hy(x@), hy (x®), by (x(4)))
= (+1,+1,-1,-1)
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Example: Labellings
H = {hq, hy, h3}

7 (S)
= {(+1,+1,-1,-1), (-1, +1,-1,+1)}

|H(S)| =2
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Example: Labellings
H = {hl' h2! h3}

H((S) =
{(+1,+1,-1,—-1)}

[HS) =1
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Growth
Function
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* The growth function of H is the maximum number of

distinct labellings H can induce on any set of M data points:

—

gy (M) = smax, |H(S)|

V——

c ger(M) < 2M VYV H and M

- I shatters S if | H(S)| = 2M

*1f3 S s.t. |S| = M and H shatters S, then g4 (M) = 2M

i ‘F\ 3\/\5&(@ S o ‘S) :M
fa WO} 22" -




- x(™M € R? and H = all 2-dimensional linear separators

e * What is g+ (3)?

Function:
Example
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- xM € R2 and H = all 2-dimensional linear separators

Growth * What is g+ (4)?

Function:
Example
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- xM € R2 and H = all 2-dimensional linear separators

Growth (g () =14 <2

Function:
Example

|H (S| =14 |H(S2)| =14
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Theorem 3:
Vapnik-

Chervonenkis
(VC)-Bound
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* Infinite, realizable case: for any hypothesis set H and

distribution p*, if the number of labelled training data
points satisfies

M > é(logz(zg}[(ZM ) + log; @»

then with probability at least 1 — 6, all h € H with
R(h) = e have R(h) > 0

- M appears on both sides of the inequality...




* dyc(H) = the largest value of M s.t. gor(M) = 2M, j.e., the
greatest number of data points that can be shattered by H

* If H can shatter arbitrarily large finite sets, then
dyc(H) = o
Vapnik-
Chervonenkis
(VC)-Dimension

» gre(M) = 0(MIvcUD) (Sauer-Shelah lemma)

* To prove that dy-(H) = C, you need to show
1. 3 some set of C data points that H can shatter and
2. A asetof C+ 1data points that H can shatter

AS Wt Sow Avc CQ*A linecr gL@o«cj@TﬁB:B
- d\/C Cé “CX\‘MU\?‘O“&\ \‘\r\ew SQ@NL&&ISB - é+
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- x(M € R and H = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

VC-Dimension:

Example

* What is dvc(}[)?
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- x(M € R and H = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

VC-Dimension:

Example

* What is g3, (m)?
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- x(M € R and H = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

VC-Dimension: —o—o—o0—0—0—0— —eo

Example x®  x@ x@ @ 56 | 56 K (=1 ()

* What is g3, (m)?
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- x(M € R and H = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

VC-Dimension: —o—o—o0—0—0—0— —eo

Example x®  x@ x@ @ 56 | 56 K (=1 ()

a

rg(m) =m+1=0(@m")
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- x(M € R and H = all 1-dimensional positive intervals

VC-Dimension:

Example
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& When poll is active, respond at pollev.com/301601polls

What are dy o (H) and g () for 1-dimensional positive
intervals?

land m + 1

2and m +1
2and%(m2+m+1)
3and%(m2+m+1)

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



- x(M € R and H = all 1-dimensional positive intervals

VC-Dimension:
Example x® | @

a

* What are dy(H) and g4r(m)?
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- x(M € R and H = all 1-dimensional positive intervals

VC-Dimension: oo

Example NOIENORNINO BN ORING

a

* What are dy(H) and g3r(m)?
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- xM € R and H = all 1-dimensional positive intervals

VC-Dimension: «—o—o—o—0o—0o—0o—o—o

Example x®  x@ x@ @ 56 | 56 (D) ()

a b
* dyc(H) = 2 and gy (m) = (m;’l) +1=00m?
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- x(M € R2 and H = all 2-dimensional positive convex sets

Growth
Function:
Example
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Growth
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(M)
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- x(M € R2 and H = all 2-dimensional positive convex sets

* dyc(3) = oo and gg(M) = 2" = 0(M™)

@

Growth
Function:
Example

(M)
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* Infinite, realizable case: for any hypothesis set H and

distribution p*, if the number of labelled training data

Theorem 3: points satisfies

Vapnik-

Chervonenkis M=0 (1 (dvc(}[ )log (%) +log G»)

€ o)

(VC)-Bound

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€
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* Infinite, realizable case: for any hypothesis set H and
distribution p*, given a training data set S s.t. |S| = M,

Stat|5t|ca| all h € ‘H with ﬁ(h) = (0 have

Learning
1

g;?(()) Igry =0 (ﬁ (e (dvcﬂszf )+ o (E))>

with probability at least 1 — §.
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* Infinite, agnostic case: for any hypothesis set H and

distribution p*, if the number of labelled training data

Theorem 4: points satisfies

Vapnik-

Chervonenkis M=0 (i (dvc(}[) + log (l)))

(VC)-Bound a ’

then with probability at least 1 — §, all h € H have
|R(h) = ﬁ(h)| <€
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* Infinite, agnostic case: for any hypothesis set H and

- distribution p*, given a training data set S s.t. [S| = M,
Statistical A B € 2 have

Learning

Theory R(h) < R(h) + 0 %(dvc(}[) +log (1))

N 5
Corollary

with probability at least 1 — §.

Henry Chai - 7/5/23




How well does
h generalize?

- N J
Approximation Y

Generalization

Tradeoff R(h) Sﬁ(ﬁi” ﬁ(dw(}f”bg@)))

4 A
How well does h
approximate ¢*?
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Increases as
dyc(H) increases

- N J
Approximation Y

Generalization

Tradeoff R(h) Sﬁ(ﬁi” ﬁ(dw(}f”bg@)))

4 A

Decreases as
dyc(H) increases
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* For infinite hypothesis sets, use the VC-dimension (or

the growth function) as a measure of complexity

* Computing dy(H) and g+ (M)

Key Takeaways - Connection between VC-dimension and the growth

function (Sauer-Shelah lemma)

- Sample complexity and statistical learning theory

style bounds using dy(H)
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* Assume a regression task with squared error and let
hs € H = the hypothesis trained on training data S

cerrp(hg) = E,p [(hs(x) — c*(x))z]

Bias-Variance
Tradeoff
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* Assume a regression task with squared error and let
hs € H = the hypothesis trained on training data S

- errp(hg) = Exep [(hs(®) — " ()]

: - * Es[errp (hs)] = Ex-p|Es[hs(x)?] = 2h(x)c* (x) + c*(x)?]
Bias-Variance

Tradeoff
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How much does h
change if the training
data set changes?

\ J
Y

Ec[errp(hg)] = Ex-p [Eg[hs(x)Z _ i_z(x)Z] + (f_l(x) — C*(x))zl

Bias-Variance

Tradeoff A
, N

How well on
average does h
approximate ¢*?
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How well could h
approximate
anything?
N J
Y

Ec[errp(hg)] = Ex-p [Eg[hs(x)Z _ i_z(x)Z] + (f_l(x) — C*(x))zl

Bias-Variance

Tradeoff A
, N

How well on
average does h
approximate ¢*?
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Increases as H
becomes more
complex

\ J
Y

Ec[errp(hg)] = Ex-p [Eg[hs(x)Z _ i_z(x)Z] + (f_l(x) — C*(x))zl

Bias-Variance

Tradeoff A
, N

Decreases as H
becomes more
complex
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- x®W € Rand D = Uniform(0, 27)

« c* = sin(+), i.e., y = sin(x)

Bias-Variance
Tradeoff:
Example

N =25 D = {(x,sin(xV)), (x@,sin(x@))}

*Ho=1{h:h(x) =b}and H; ={h: h(x) = ax + b}
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Bias-Variance
Tradeoft:

Example
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Bias-Variance
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Bias-Variance
Tradeoft:

Example
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Bias-Variance Ao

Tradeoff: \/
Example

Bias of h(x) =~ 0.50 Bias of h(x) =~ 0.21
Variance of h¢(x) = 0.25  Variance of hg(x) = 1.74
Eclerrp(hs)]|= 0.75 Eclerrp(hs)] = 1.95
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Bias-Variance
Tradeoft:

Example
(N =5)
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h(x)

N

Bias of h(x) ~ 0.50
Variance of h¢(x) = 0.10
E¢lerrp(hs)] = 0.60

Bias of h(x) =~ 0.21

Variance of hg(x)
Eglerrp(hs)]

~ 0.21

~ (0.42




Wrror True Error

_—
Training
Error

Training Error
Number of training points, N Number of training points, N

Simple model Complex model




\

Generalization error

v
ﬁ

Training error

VC analysis

Number of training points, N

Variance

A ‘\

\
4

Number of training points, N

Bias-Variance analysis




