10-301/601: Introduction to Machine Learning Lecture 19: Clustering

Front Matter

- Announcements
 - PA4 released 6/15, due 7/13 at 11:59 PM
- Recommended Readings
 - Murphy, <u>Chapters 25.5.1 25.5.2</u>
 - Daumé III, Chapter 15: Unsupervised Learning

Learning Paradigms

- Supervised learning $\mathcal{D} = \{(\mathbf{x}^{(n)}, \mathbf{y}^{(n)})\}_{n=1}^{N}$
 - Regression $y^{(n)} \in \mathbb{R}$
 - Classification $y^{(n)} \in \{1, ..., C\}$
- Unsupervised learning $\mathcal{D} = \{x^{(n)}\}_{n=1}^{N}$
 - Clustering
 - Dimensionality reduction

Clustering

- Goal: split an unlabeled data set into groups or clusters of (similar" data points
- Use cases:
 - Organizing data
 - Discovering patterns or structure
 - Preprocessing for downstream machine learning tasks
- Applications:

Recall: Similarity for kNN

- Intuition: predict the label of a data point to be the label of the "most similar" training point two points are "similar" if the distance between them is small
- Euclidean distance: $d(x, x') = ||x x'||_2$

Partition-Based Clustering

- Given a desired number of clusters, K, return a partition of the data set into K groups or clusters, $\{C_1, \ldots, C_K\}$, that optimize some objective function
- 1. What objective function should we optimize?

2. How can we perform optimization in this setting?

Option A

Option B

Which do you prefer?

Which partition do you prefer?

Option A

Option B

General Recipe for Machine Learning

Define a model and model parameters

Write down an objective function

Optimize the objective w.r.t. the model parameters

Recipe for K-means

 Define a model and model parameters - Assume there are K clusters - 1) se the Euclidean distance cluster assignments: Write down an objective function - 1)se block roordinate descent

Coordinate Descent

Goal: minimize some objective

$$\widehat{\boldsymbol{\theta}} = \operatorname{argmin} J(\boldsymbol{\theta})$$

• Idea: iteratively pick one variable and minimize the objective w.r.t. just that variable, *keeping all others fixed*.

Block Coordinate Descent

Goal: minimize some objective

$$\widehat{\boldsymbol{\alpha}}, \widehat{\boldsymbol{\beta}} = \operatorname{argmin} J(\boldsymbol{\alpha}, \boldsymbol{\beta})$$

- Idea: iteratively pick one *block* of variables (α or β) and minimize the objective w.r.t. that block, keeping the other(s) fixed.
 - Ideally, blocks should be the largest possible set of variables that can be efficiently optimized simultaneously

Optimizing the *K*-means objective

$$\hat{\mu}_1, \dots, \hat{\mu}_K, \hat{z}^{(1)}, \dots, \hat{z}^{(N)} = \operatorname{argmin} \sum_{n=1}^N ||x^{(n)} - \mu_{z^{(n)}}||_2$$

• If $\mu_1, ..., \mu_K$ are fixed

$$\hat{Z}^{(n)} = \underset{k \in \mathcal{E}_{1}, ..., K}{\operatorname{argmin}} \| x^{(n)} - y_{k} \|_{Z}$$

• If $z^{(1)}, \dots, z^{(N)}$ are fixed

where
$$N_k = \frac{1}{N_k} \sum_{n: z^{(n)} = k}^{(n)} x^{(n)}$$

where $N_k = \text{the of data points}$ m

cluster k

K-means Algorithm

- Input: $\mathcal{D} = \left\{ \left(\boldsymbol{x}^{(n)} \right) \right\}_{n=1}^{N}, K$
- 1. Initialize cluster centers $\mu_1, ..., \mu_K$
- While NOT CONVERGED
 - Assign each data point to the cluster with the nearest cluster center:

$$z^{(n)} = \underset{k}{\operatorname{argmin}} \| \boldsymbol{x}^{(n)} - \boldsymbol{\mu}_k \|_2$$

b. Recompute the cluster centers:

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n: z^{(n)} = k} \boldsymbol{x}^{(n)}$$

where N_k is the number of data points in cluster k

• Output: cluster centers $\mu_1, ..., \mu_K$ and cluster assignments $z^{(1)}, ..., z^{(N)}$

Henry Chai - 7/11/23 Figure courtesy of Matt Gormley

Henry Chai - 7/11/23 Figure courtesy of Matt Gormley

Henry Chai - 7/11/23 Figure courtesy of Matt Gormley

Henry Chai - 7/11/23 Figure courtesy of Matt Gormley

Setting *K*

• Idea: choose the value of K that minimizes the objective function

• Common choice: choose *K* data points at random to be the initial cluster centers (Lloyd's method)

• Common choice: choose K data points at random to be the initial cluster centers (Lloyd's method)

• Common choice: choose *K* data points at random to be the initial cluster centers (Lloyd's method)

 Common choice: choose K data points at random to be the initial cluster centers (Lloyd's method)

•

•

• Common choice: choose *K* data points at random to be the initial cluster centers (Lloyd's method)

• Common choice: choose *K* data points at random to be the initial cluster centers (Lloyd's method)

- Lloyd's method converges to a local minimum and that local minimum can be arbitrarily bad (relative to the optimal clusters)
- Intuition: want initial cluster centers to be far apart from one another

K-means++ (Arthur and Vassilvitskii, 2007)

- 1. Choose the first cluster center randomly from the data points.
- 2. For each other data point x, compute D(x), the distance between x and the closest cluster center.
- 3. Select the next cluster center proportional to $D(x)^2$.
- 4. Repeat 2 and 3 K-1 times.
- K-means++ achieves a $O(\log K)$ approximation to the optimal clustering in expectation
- Both Lloyd's method and K-means++ can benefit from multiple random restarts.

Key Takeaways

- *K*-means objective function & model parameters
- Block-coordinate descent
- Setting *K*
- Initializing K means