10-301/601: Introduction to Machine Learning Lecture 21 – Bayesian Networks

Henry Chai

7/17/23

Front Matter

- Announcements
 - PA5 released 7/13, due 7/20 at 11:59 PM
 - Quiz 7: Unsupervised Learning & Naïve Bayes on 7/18 (tomorrow!)
- Recommended Readings
 - Murphy, <u>Chapters 10.1 10.5</u>

Recall: How hard is modelling P(X|Y)?

<i>X</i> ₁ ("hat")	X ₂ ("cat")	<i>X</i> ₃ ("dog")	<i>X</i> ₄ ("fish")	<i>X</i> ₅ ("mom")	X_6 ("dad")	P(X Y=1)	P(X Y=0)
0	0	0	0	0	0	$ heta_1$	$ heta_{64}$
1	0	0	0	0	0	$ heta_2$	$ heta_{65}$
1	1	0	0	0	0	$ heta_3$	θ_{66}
1	0	1	0	0	0	$ heta_4$	$ heta_{67}$
÷	:	:	:	:	:	:	:
1	1	1	1	1	1	$1 - \sum_{i=1}^{63} \theta_i$	$1 - \sum_{i=64}^{126} \theta_i$

Recall: Naïve Bayes Assumption

• **Assume** features are conditionally independent given the label:

$$P(X|Y) = \prod_{d=1}^{D} P(X_d|Y)$$

- Pros:
 - Significantly reduces computational complexity
 - Also reduces model complexity, combats overfitting
- · Cons:
 - Is a strong, often illogical assumption
 - We'll see a relaxed version of this later in the semester today when we discuss Bayesian networks

Hacking Attack Woke Up Dallas With Emergency Sirens, Officials Say

Motivating Example

Warning sirens in Dallas, meant to alert the public to emergencies like severe weather, started sounding around 11:40 p.m. Friday, and were not shut off until 1:20 a.m. ${\tt Rex~C.}$ Curry for The New York Times

- "the city's warning system was hacked late on Friday [4/7/2017]"
- "The alarms, which started going off around 11:40 p.m. Friday and lasted until 1:20 a.m. Saturday, ... jarring residents awake and flooding 911 with thousands of calls..."
- "...the sirens, which are meant to alert the public to severe weather or other emergencies, ..."
- "Social media was flooded with complaints."

Constructing a Bayesian Network

 $\binom{C}{C}$

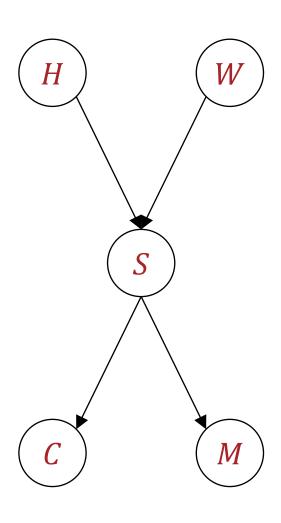
- *H* = sirens are **h**acked
- *W* = extreme <u>w</u>eather event occurred
- $S = \underline{s}$ irens go off overnight
- *C* = 911 flooded with phone <u>c</u>alls
- M = social <u>m</u>edia flooded with posts
- All variables are binary

Constructing a Bayesian Network

 $\binom{C}{C}$

- By the chain rule of probability, the full joint distribution is
- P(H, W, S, C, M) = P(M|C, S, H, W) P(C|S, H, W) P(S|H, W) P(H|W) P(W)

Constructing a Bayesian Network

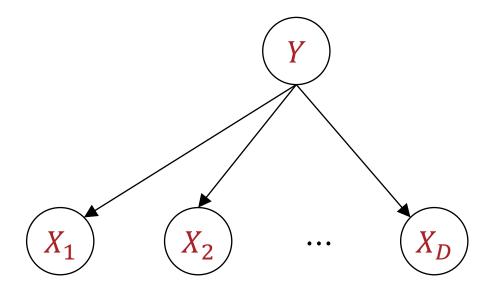


- Directed acyclic graph
 where edges indicate
 conditional dependency
- A variable is conditionally independent of all its nondescendants (i.e., upstream variables) given its parents
- P(H,W,S,C,M) = P(H)P(W)P(S|H,W) P(C|S)P(M|S)

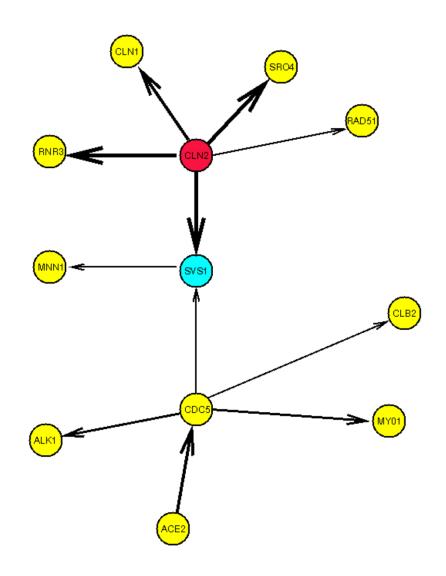
Naïve Bayes as a Bayesian Network

• **Assume** features are conditionally independent given the label:

$$P(X,Y) = P(Y)P(X|Y) = P(Y) \prod_{d=1}^{D} P(X_d|Y)$$



Bayesian Network Example: Gene Expression



Henry Chai - 7/17/23 Figure courtesy of Ziv Bar-Joseph 10

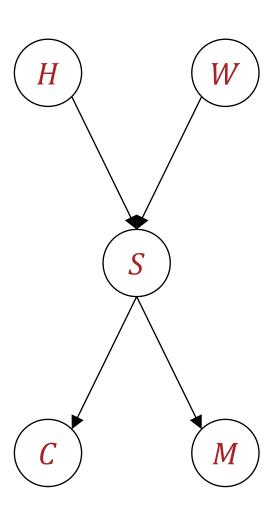
Bayesian Networks: Outline

- How can we learn a Bayesian network?
 - Learning the graph structure
 - Learning the conditional probabilities
- What inference questions can we answer with a Bayesian network?
 - Computing (or estimating) marginal (conditional) probabilities
 - Implied (conditional) independencies

Learning a Network

- 1. Specify the random variables
- 2. Determine the conditional dependencies
 - Prior knowledge
 - Domain expertise
 - Learned from data (model selection)

Learning the Parameters



- P(H,W,S,C,M) = P(H)P(W)P(S|H,W) P(C|S)P(M|S)
- How many parameters do we need to learn?

How many parameters do you need to learn in order to fully specify this Bayesian network?

5

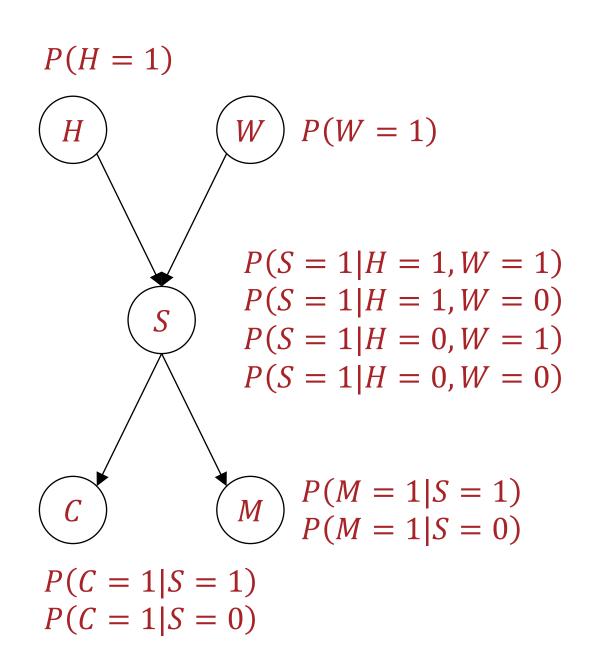
9

1(

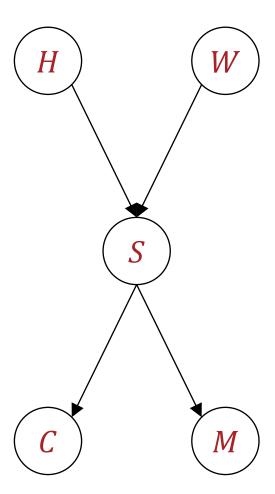
20

31

Learning the Parameters



Learning the **Parameters** (Fully-observed)



•
$$\mathcal{D} = \{ (H^{(n)}, W^{(n)}, S^{(n)}, C^{(n)}, M^{(n)}) \}_{n=1}^{N}$$

Set parameters via MLE

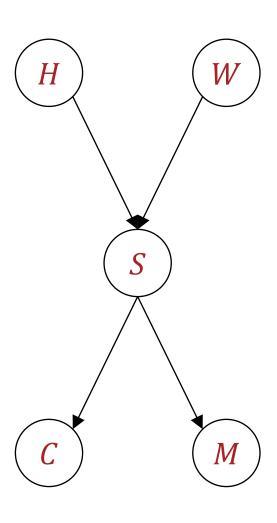
$$P(H=1) = \frac{N_{H=1}}{N}$$

$$P(S = 1|H = 0, W = 1) = \frac{N_{S=1,H=0,W=1}}{N_{H=0,W=1}}$$

Bayesian Networks: Outline

- How can we learn a Bayesian network?
 - Learning the graph structure
 - Learning the conditional probabilities
- What inference questions can we answer with a Bayesian network?
 - Computing (or estimating) marginal (conditional) probabilities
 - Implied (conditional) independencies

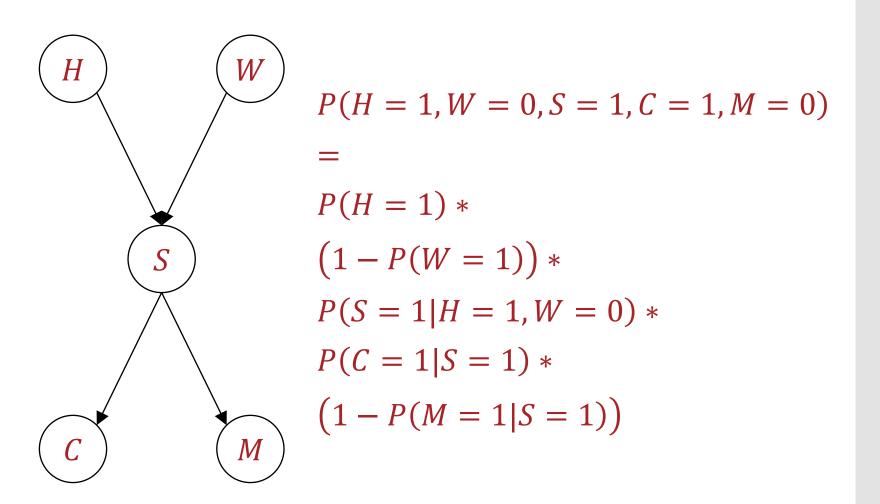
Computing
Joint
Probabilities...



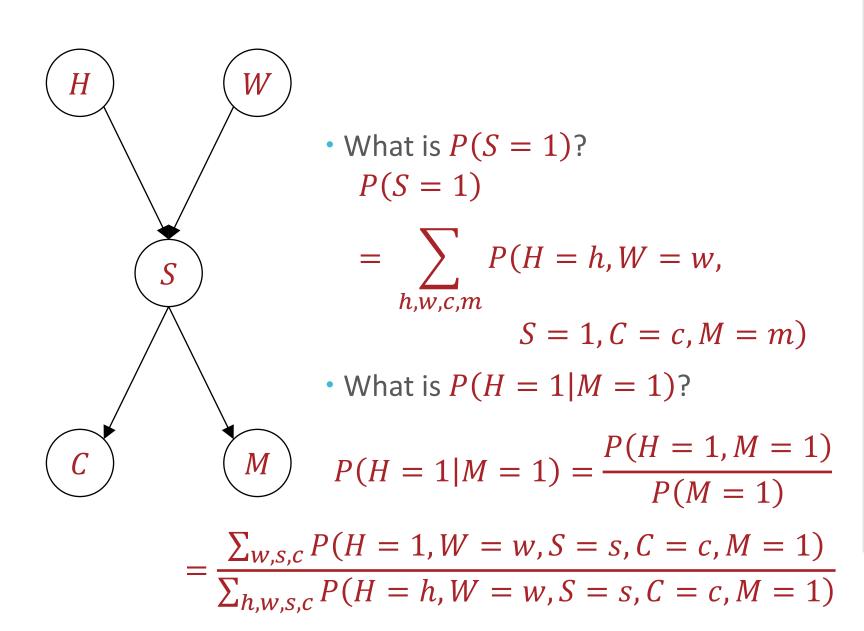
What is

$$P(H = 1, W = 0, S = 1, C = 1, M = 0)$$
?

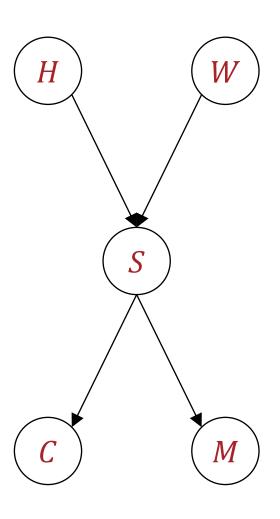
Computing Joint Probabilities is easy



Computing Marginal Probabilities...



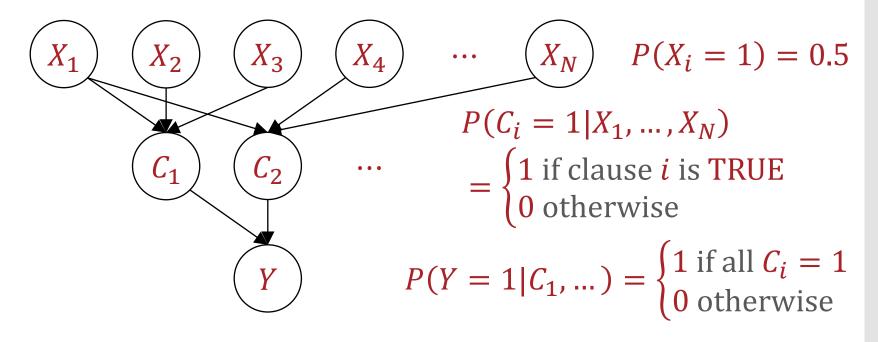
Computing Marginal Probabilities...



- Computing arbitrary marginal (conditional) distributions requires summing over exponentially many possible combinations of the unobserved variables
- Computation can be improved by storing and reusing calculated values (dynamic programming)
 - Still exponential in the worst case

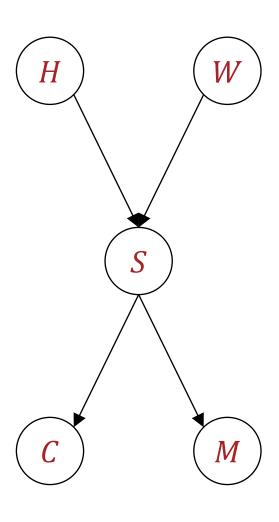
Computing Marginal Probabilities is (NP-)hard!

- Claim: 3-SAT reduces to computing marginal probabilities in a Bayesian network
- Proof (sketch): Given a Boolean equation in 3-CNF, e.g., $(X_1 \lor X_2 \lor X_3) \land (\neg X_1 \lor X_4 \lor \neg X_N) \land \cdots$, construct the corresponding Bayesian network



• P(Y = 1) > 0 means the 3-CNF is satisfiable!

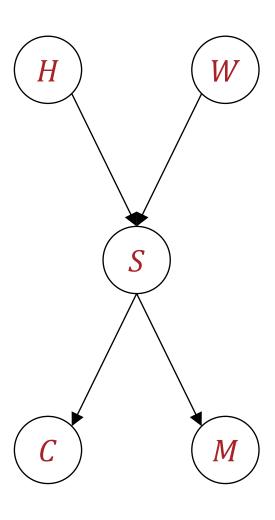
Sampling for Bayesian Networks



- Sampling from a Bayesian network is easy!
 - Sample all free variables
 (*H* and *W*)
 - Sample any variable whose parents have already been sampled
 - 3. Stop once all variables have been sampled

$$P(S = 1) \approx \frac{\text{# of samples w}/S = 1}{\text{# of samples}}$$

Sampling for Bayesian Networks



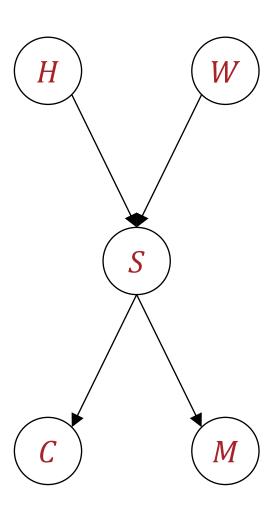
- Sampling from a Bayesian network is easy!
 - Sample all free variables
 (*H* and *W*)
 - Sample any variable whose parents have already been sampled
 - 3. Stop once all variables have been sampled

$$P(H = 1|M = 1)$$

$$\approx \frac{\text{# of samples w}/H = 1 \text{ and } M = 1}{\text{# of samples w}/M = 1}$$

• If the condition is rare, we need lots of samples to get a good estimate

Weighted Sampling for Bayesian Networks



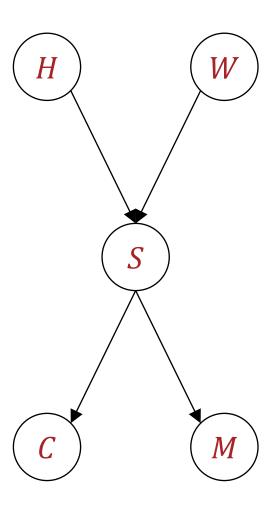
- Initialize $N_{Condition} = N_{Event} = 0$
- Repeatedly
 - Draw a sample from the full joint distribution
 - Set the condition to be true (set M = 1)
 - Compute the joint probability of the adjusted sample, w (easy!)

$$N_{Condition} = N_{Condition} + w$$

• If the event occurs in the adjusted sample (H=1?), update N_{Event} $N_{Event}=N_{Event}+w$

• Desired marginal conditional probability is $\approx \frac{N_{Event}}{N_{Condition}}$

Conditional Independence

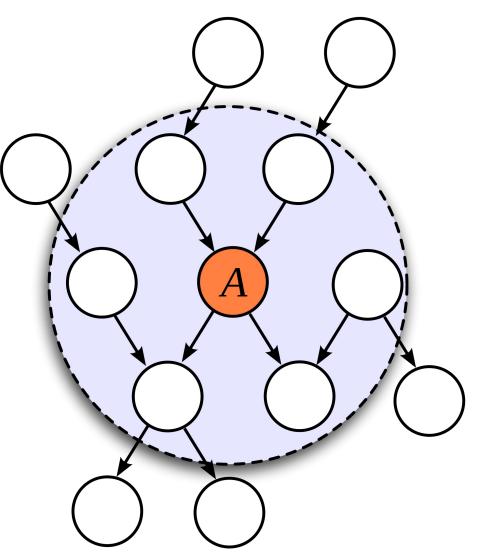


- X and Y are conditionally independent given $Z(X \perp Y \mid Z)$ if P(X,Y|Z) = P(X|Z)P(Y|Z)
- In a Bayesian network, each variable is conditionally independent of its non-descendants given its parents
 - H and M are not independent but they are conditionally independent given S
- What other conditional independencies does a Bayesian network imply?

Markov Blanket

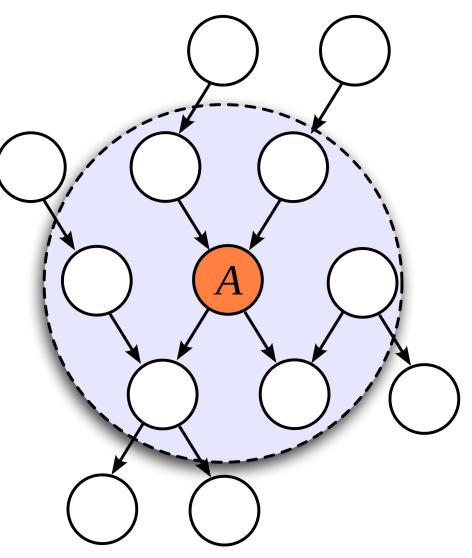
- Let S be the set of all random variables in a Bayesian network
- A Markov blanket of $A \in \mathcal{S}$ is any set $B \subseteq \mathcal{S}$ s.t. $A \perp \mathcal{S} \backslash B \mid B$
 - Contains all the useful information about A
- Trivially, S is always a Markov blanket for any random variable in S

Markov Boundary



- Let S be the set of all random variables in a Bayesian network
- The Markov boundary of A
 is the smallest possible
 Markov blanket of A
- The Markov boundary consists of a variable's children, parents and coparents (the other parents of its children)

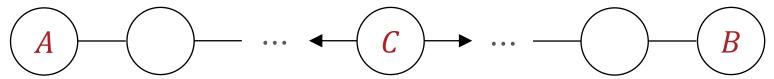
But what if I care about the relationship between two variables?



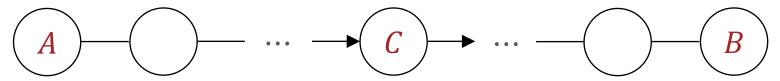
- Let S be the set of all random variables in a Bayesian network
- The Markov boundary of A
 is the smallest possible
 Markov blanket of A
- The Markov boundary consists of a variable's children, parents and coparents (the other parents of its children)

D-separation

- Random variables A and B are d-separated given evidence variables Z if $A \perp B \mid Z$
- Definition 1: A and B are d-separated given Z iff every undirected path between A and B is blocked by Z
- An undirected path between A and B is blocked by Z if
 - 1. \exists a "common parent" variable C on the path and $C \in Z$



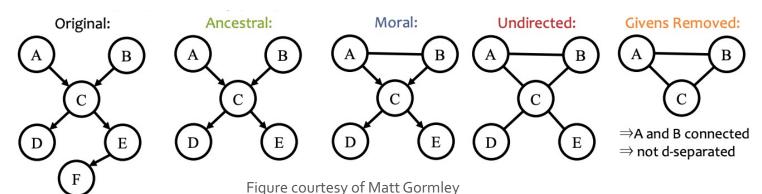
2. \exists a "cascade" variable C on the path and $C \in Z$



3. \exists a "collider" variable C on the path and $\{C, \operatorname{descendents}(C)\} \notin Z$

D-separation

- Random variables A and B are d-separated given evidence variables Z if $A \perp B \mid Z$
- Definition 2: A and B are d-separated given Z iff $\not\exists$ a path between A and B in the undirected ancestral moral graph with Z removed
 - 1. Keep only A, B, Z and their ancestors (ancestral graph)
 - 2. Add edges between all co-parents (moral graph)
 - 3. Undirected: replace directed edges with undirected ones
 - 4. Delete Z and check if A and B are connected
- Example: $A \perp B \mid \{D, E\}$?



Shortcomings of Bayesian Networks

- Graph structure must be acyclic
- Cannot encode temporal/sequential relationships

 We'll address these (related) problems next with hidden Markov models

Key Takeaways

- Bayesian networks are flexible models for modelling joint probability distributions
 - Trade-off between expressiveness (full joint distributions)
 and computational tractability (Naïve Bayes)
- Bayesian networks represent conditional dependence though a directed acyclic graph
 - Graph structure usually specified, can be learned
 - Parameters in the fully-observed case learned via MLE
- Computing marginal & conditional distributions is NP-hard
 - Can use sampling for approximate inference
- Markov blanket and d-separation provide notions of conditional independence for single and pairs of variables respectively