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* Announcements

* PAS released 7/13, due 7/20 at 11:59 PM

* Quiz 7: Unsupervised Learning & Naive Bayes on
7/18 (tomorrow!)

Front Matter

- Recommended Readings

* Murphy, Chapters 10.1 - 10.5
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https://ebookcentral.proquest.com/lib/cm/reader.action?docID=3339490&ppg=338
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- Assume features are conditionally independent given the
label:

D
Pexiv) =] [ PXaln)
d=1

* Pros:

Recall: o | |
* Significantly reduces computational complexity

Naive Bayes
Assumption * Also reduces model complexity, combats overfitting

* Cons:
* Is a strong, often illogical assumption

- We’'ll see a relaxed version of this laterin-the
semester today when we discuss Bayesian networks
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* “the city’s warning system was
hacked late on Friday [4/7/2017]”

Hacking Attack Woke Up Dallas With

Emergency Sirens, Officials Say * “The alarms, which started going off

around 11:40 p.m. Friday and lasted

tf Ghethisarticle 2> []

until 1:20 a.m. Saturday, ... jarring

residents awake and flooding 911

Motivating

with thousands of calls...”

Example

« “...the sirens, which are meant to

alert the public to severe weather

or other emergencies, ...”

Warning sirens in Dallas, meant to alert the public to emergencies like severe weather,
started sounding around 11:40 p.m. Friday, and were not shut off until 1:20 a.m. Rex C.

prsdeg i ot * “Social media was flooded with

complaints.”

Henry Chai-7/17/23 Source: https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html



https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html

* H = sirens are hacked

@ @ - W = extreme weather

event occurred

Constructing - S =sirens go off overnight

a Bayesian @ * C =911 flooded with
Network phone calls

* M = social media flooded

@ @ with posts

* All variables are binary
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Constructing

a Bayesian
Network

Henry Chai-7/17/23

* By the chain rule of

probability, the full joint

distribution is

- P(H,W,S,C,M) =

P(M|C,S,H,W)
P(C|S, H,W)
P(S|H,W)
P(H|W)

P(W)



Constructing

a Bayesian
Network

Henry Chai-7/17/23

* Directed acyclic graph

where edges indicate

conditional dependency

- A variable is conditionally

independent of all its non-
descendants (i.e., upstream

variables) given its parents

P(H,W,S,C,M) =

P(H)P(W)P(S|H, W)
P(C|S)P(M|S)



- Assume features are conditionally independent
given the label:

D
P(X,Y) = P(Y)P(X|Y) = P(Y) HP(XdIY)
d=1

Naive Bayes as

a Bayesian
Network
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Bayesian
Network

Example:
Gene
Expression
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Bayesian

Networks:
Outline
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* How can we learn a Bayesian network?

* Learning the graph structure

* Learning the conditional probabilities

- What inference questions can we answer with a

Bayesian network?
* Computing (or estimating) marginal (conditional)

probabilities

* Implied (conditional) independencies

11



Learning a

Network

Henry Chai-7/17/23

1. Specify the random variables

2. Determine the conditional dependencies
* Prior knowledge
- Domain expertise

* Learned from data (model selection)

12



Learning the

Parameters

Henry Chai-7/17/23

- P(H,W,S,C,M) =

P(H)P(W)P(S|H, W)
P(C|S)P(M|S)

* How many parameters do

we need to learn?

13



[ & When poll is active, respond at pollev.com/301601polls [

How many parameters do you need to learn in order to fully
specify this Bayesian network?

10
20
31

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



. — H=1,W=
Learning the — 1 H=1W =
Parameters =1H=0W =

= H:O)W:
P(M=1|S=1)
P(M =1|S =0)

P(C=1|S=1)
P(C =1|S =0)

Henry Chai-7/17/23

O = O K
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Learning the

Parameters
(Fully-observed)

Henry Chai-7/17/23

@ CD = {(H(n), wm s C(n),M(”))}N 1
n=

* Set parameters via MLE

NH=1
N

P(H=1) =

NS=1,H=O,W=1

P(S=1H=0,W =1) =

Ny—ow=1

16



Bayesian

Networks:
Outline

Henry Chai-7/17/23

* How can we learn a Bayesian network?

* Learning the graph structure

* Learning the conditional probabilities

- What inference questions can we answer with a

Bayesian network?
* Computing (or estimating) marginal (conditional)

probabilities

* Implied (conditional) independencies

17



Computing
Joint

Probabilities...

Henry Chai-7/17/23

* What is
PH=1,W=0S=1C=1,M =0)?

18



Computing

Joint
Probabilities e
NEERY

Henry Chai-7/17/23

@ PH=1W=0,S=1,C=1,M = 0)

P(H=1)*

(1-PW =1))=
P(S=1|H =1,W =0) *
P(C=1S=1)=

@ (1-PM=1|S=1))

19



* Whatis P(§ =1)?
Computing P(S=1)

Marginal = P(H=hW =w,
Probabilities... e z

hw,com
S=1,C=c¢c,M =m)
*WhatisP(H = 1|M = 1)?

Q @ P(H=1|M=1)=P(H=1'M=1)

P(M = 1)
- Zw,s,cP(H =1, W=w,S=s5C=c,M= 1)

Henry Chai - 7/17/23 - Zh,W,S,C P(H — h, W = W,S =S, C = C,M = 1)
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Computing
Marginal

Probabilities...

Henry Chai-7/17/23

- Computing arbitrary marginal

(conditional) distributions requires
summing over exponentially many
possible combinations of the

unobserved variables

- Computation can be improved by

storing and reusing calculated values
(dynamic programming)

- Still exponential in the worst case

21



* Claim: 3-SAT reduces to computing marginal
probabilities in a Bayesian network

* Proof (sketch): Given a Boolean equation in 3-CNF, e.g.,

(X VX, VX)) A(=X{ VXLV —Xy) A, construct the
corresponding Bayesian network

Computing
Marginal

P(Xl — 1) = 0.5

Probabilities

is (NP-)hard! P )

_ 1 if clause i is TRUE
0 otherwise

lifallC; =1
P(Y =1|Cq,...) = L
( €y {O otherwise

- P(Y = 1) > 0 means the 3-CNF is satisfiable!

Henry Chai-7/17/23 22



Sampling for

Bayesian
Networks

Henry Chai-7/17/23

- Sampling from a Bayesian network is

easy!

1. Sample all free variables
(H and W)

2. Sample any variable whose
parents have already been
sampled

3. Stop once all variables have
been sampled

# of samplesw/S =1

P(S=1) =
( ) # of samples

23



Sampling for

Bayesian
Networks

Henry Chai-7/17/23

- Sampling from a Bayesian network is

easy!
1. Sample all free variables
(H and W)

2. Sample any variable whose
parents have already been
sampled

3. Stop once all variables have
been sampled

P(H=1M=1)
# of samplesw/H=1and M =1

# of samplesw/ M =1

* If the condition is rare, we need lots

of samples to get a good estimate

24



Weighted
Sampling for

Bayesian
Networks

Henry Chai-7/17/23

* Initialize Ncongition = Nevent = 0

* Repeatedly
* Draw a sample from the full joint
distribution

- Set the condition to be true
(set M = 1)
- Compute the joint probability of
the adjusted sample, w (easy!)
Ncondition = Ncondition + W
* If the event occurs in the adjusted
sample (H = 17?), update Ngyent
Ngvent = Ngvent + W

* Desired marginal conditional

NEvent

probability is ~ .
Condition



Conditional

Independence
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- X and Y are conditionally

independentgivenZ (X LY | Z)if
P(X,Y|Z) =P(X|Z)P(Y|Z)

* In a Bayesian network, each variable

is conditionally independent of its

non-descendants given its parents

- H and M are not independent
but they are conditionally

independent given S

- What other conditional

independencies does a Bayesian

network imply?

26



Markov

Blanket

Henry Chai-7/17/23

* Let § be the set of all

random variables in a

Bayesian network

* A Markov blanket of A € §

isanyset B C § s.t.
A1LS\B|B

* Contains all the useful

information about A

* Trivially, § is always a

Markov blanket for any

random variablein §

27



* Let § be the set of all
random variables in a

Bayesian network

* The Markov boundary of A
is the smallest possible
Markov blanket of A

Markov

Boundary

* The Markov boundary
consists of a variable’s
children, parents and co-
parents (the other parents

of its children)

Henry Chai-7/17/23 Source: https://en.wikipedia.org/wiki/Markov_blanket#/media/File:Diagram_of a Markov_blanket.svg 28



https://en.wikipedia.org/wiki/Markov_blanket

But what if |
care about the

relationship
between two
variables?

* Let § be the set of all

random variables in a

Bayesian network

* The Markov boundary of A

is the smallest possible
Markov blanket of A

* The Markov boundary

consists of a variable’s
children, parents and co-
parents (the other parents

of its children)

Henry Chai-7/17/23 Source: https://en.wikipedia.org/wiki/Markov_blanket#/media/File:Diagram_of a Markov_blanket.svg


https://en.wikipedia.org/wiki/Markov_blanket

- Random variables A and B are d-separated given evidence
variablesZifA L B | Z

* Definition 1: A and B are d-separated given Z iff every
undirected path between A and B is blocked by Z

* An undirected path between A and B is blocked by Z if

1. 3 a“common parent” variable C on the pathand C € Z

D-separation m 4_@_. 4@7

2. 3 a “cascade” variable C on the pathand C € Z

3. 3 a “collider” variable C on the path and
{C,descendents(C)} & Z

Henry Chai-7/17/23 m —>‘ : )4— —( ’7 20




- Random variables A and B are d-separated given evidence
variablesZifA L B | Z

* Definition 2: A and B are d-separated given Z iff 4 a path
between A and B in the undirected ancestral moral graph with
Z removed

1. Keep only A4, B, Z and their ancestors (ancestral graph)

. 2. Add edges between all co-parents (moral graph)
D-separatlon 3. Undirected: replace directed edges with undirected ones

4. Delete Z and check if A and B are connected

* Example: A L B |{D,E}?

Original: Ancestral: Moral: Undirected: Givens Removed:

T O T 0 0T O
= not d-separated

Figure courtesy of Matt Gormley 31
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Shortcomings of

Bayesian
Networks
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* Graph structure must be acyclic

- Cannot encode temporal/sequential relationships

* We’ll address these (related) problems next with

hidden Markov models

32
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* Bayesian networks are flexible models for modelling joint

probability distributions

* Trade-off between expressiveness (full joint distributions)
and computational tractability (Naive Bayes)

* Bayesian networks represent conditional dependence though a

directed acyclic graph

* Graph structure usually specified, can be learned

* Parameters in the fully-observed case learned via MLE

- Computing marginal & conditional distributions is NP-hard

* Can use sampling for approximate inference

- Markov blanket and d-separation provide notions of conditional

independence for single and pairs of variables respectively
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