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Front	Matter

� Announcements

� PA5	released	7/13,	due	7/20	at	11:59	PM

� Quiz	7:	Unsupervised	Learning	&	Naïve	Bayes	on	
7/18	(tomorrow!)

� Recommended	Readings

�Murphy,	Chapters	10.1	-	10.5

Henry	Chai	-	7/17/23 2

https://ebookcentral.proquest.com/lib/cm/reader.action?docID=3339490&ppg=338
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Recall:	
How	hard	is	
modelling	
𝑃 𝑋 𝑌 ?



Recall:	
Naïve	Bayes	
Assumption

� Assume	features	are	conditionally	independent	given	the	
label:

𝑃 𝑋 𝑌 = %
*+,

-

𝑃 𝑋* 𝑌

� Pros:

� Significantly	reduces	computational	complexity	

� Also	reduces	model	complexity,	combats	overfitting

� Cons:

� Is	a	strong,	often	illogical	assumption	

�We’ll	see	a	relaxed	version	of	this	later	in	the	
semester	today	when	we	discuss	Bayesian	networks
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Motivating	
Example
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� “the	city’s	warning	system	was	

hacked	late	on	Friday	[4/7/2017]”

� “The	alarms,	which	started	going	off	
around	11:40	p.m.	Friday	and	lasted	

until	1:20	a.m.	Saturday,	…	jarring	
residents	awake	and	flooding	911	

with	thousands	of	calls…”

� “…the	sirens,	which	are	meant	to	

alert	the	public	to	severe	weather	
or	other	emergencies,	…”

� “Social	media	was	flooded	with	

complaints.”
Source: https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html 

https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html


Constructing	
a	Bayesian	
Network

� 𝐻 =	sirens	are	hacked	

� 𝑊 =	extreme	weather	
event	occurred	

� 𝑆	=	sirens	go	off	overnight		

� 𝐶	=	911	flooded	with	
phone	calls	

� 𝑀	=	social	media	flooded	
with	posts

� All	variables	are	binary
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𝑆

𝐻
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Constructing	
a	Bayesian	
Network

� By	the	chain	rule	of	

probability,	the	full	joint	
distribution	is

� 𝑃 𝐻, 𝑊, 𝑆, 𝐶, 𝑀 =
 𝑃 𝑀|𝐶, 𝑆, 𝐻, 𝑊
 𝑃 𝐶|𝑆, 𝐻, 𝑊
 𝑃 𝑆 𝐻, 𝑊  
 𝑃 𝐻 𝑊
 𝑃 𝑊
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𝑆
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Constructing	
a	Bayesian	
Network

� Directed	acyclic	graph	

where	edges	indicate	
conditional	dependency	

� A	variable	is	conditionally	

independent	of	all	its	non-
descendants	(i.e.,	upstream	

variables)	given	its	parents

� 𝑃 𝐻, 𝑊, 𝑆, 𝐶, 𝑀 =
𝑃 𝐻 𝑃 𝑊 𝑃 𝑆 𝐻, 𝑊  
𝑃 𝐶 𝑆 𝑃 𝑀 𝑆
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Naïve	Bayes	as	
a	Bayesian	
Network
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� Assume	features	are	conditionally	independent	
given	the	label:

𝑃 𝑋, 𝑌 = 𝑃 𝑌 𝑃 𝑋 𝑌 = 𝑃 𝑌 &
!"#

$

𝑃 𝑋! 𝑌



Bayesian	
Network	
Example:	
Gene	
Expression
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Bayesian	
Networks:	
Outline

� How	can	we	learn	a	Bayesian	network?	

� Learning	the	graph	structure

� Learning	the	conditional	probabilities

�What	inference	questions	can	we	answer	with	a	

Bayesian	network?	

� Computing	(or	estimating)	marginal	(conditional)	

probabilities

� Implied	(conditional)	independencies
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Learning	a	
Network

1. Specify	the	random	variables

2. Determine	the	conditional	dependencies

� Prior	knowledge

� Domain	expertise

� Learned	from	data	(model	selection)
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Learning	the	
Parameters

� 𝑃 𝐻, 𝑊, 𝑆, 𝐶, 𝑀 =
𝑃 𝐻 𝑃 𝑊 𝑃 𝑆 𝐻, 𝑊  
𝑃 𝐶 𝑆 𝑃 𝑀 𝑆

� How	many	parameters	do	
we	need	to	learn?
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Learning	the	
Parameters
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𝑆

𝐻

𝑀𝐶

𝑊

𝑃 𝐻 = 1

𝑃 𝑊 = 1

𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 1
𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 0
𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 1
𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 0

𝑃 𝐶 = 1|𝑆 = 1
𝑃 𝐶 = 1|𝑆 = 0

𝑃 𝑀 = 1|𝑆 = 1
𝑃 𝑀 = 1|𝑆 = 0



Learning	the	
Parameters
(Fully-observed)

� 𝒟 = 𝐻 . , 𝑊 . , 𝑆 . , 𝐶 . , 𝑀 .
.+,
/

� Set	parameters	via	MLE

𝑃 𝐻 = 1 =
𝑁0+,

𝑁
⋮

𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 1 =
𝑁1+,,0+3,4+,

𝑁0+3,4+,
⋮
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Bayesian	
Networks:	
Outline

� How	can	we	learn	a	Bayesian	network?	

� Learning	the	graph	structure

� Learning	the	conditional	probabilities

�What	inference	questions	can	we	answer	with	a	

Bayesian	network?	

� Computing	(or	estimating)	marginal	(conditional)	

probabilities

� Implied	(conditional)	independencies
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Computing	
Joint	
Probabilities…
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𝑆

𝐻

𝑀𝐶

𝑊
�What	is

𝑃 𝐻 = 1, 𝑊 = 0, 𝑆 = 1, 𝐶 = 1, 𝑀 = 0 ?
=
𝑃 𝐻 = 1 ∗

1 − 𝑃 𝑊 = 1 ∗
𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 0 ∗
𝑃 𝐶 = 1|𝑆 = 1 ∗

1 − 𝑃 𝑀 = 1|𝑆 = 1



Computing	
Joint	
Probabilities	
is	easy

Henry	Chai	-	7/17/23 19

𝑆

𝐻

𝑀𝐶

𝑊
𝑃 𝐻 = 1, 𝑊 = 0, 𝑆 = 1, 𝐶 = 1, 𝑀 = 0
=
𝑃 𝐻 = 1 ∗

1 − 𝑃 𝑊 = 1 ∗
𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 0 ∗
𝑃 𝐶 = 1|𝑆 = 1 ∗

1 − 𝑃 𝑀 = 1|𝑆 = 1



Computing	
Marginal	
Probabilities…

�What	is	𝑃 𝑆 = 1 ?
𝑃 𝑆 = 1

=  5
5,6,7,8

𝑃(

)

𝐻 = ℎ, 𝑊 = 𝑤,

 𝑆 = 1, 𝐶 = 𝑐, 𝑀 = 𝑚
�What	is	𝑃 𝐻 = 1 𝑀 = 1 ?

𝑃 𝐻 = 1 𝑀 = 1 =
𝑃 𝐻 = 1, 𝑀 = 1

𝑃 𝑀 = 1
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𝑆

𝐻

𝑀𝐶

𝑊

=
∑6,9,7 𝑃 𝐻 = 1, 𝑊 = 𝑤, 𝑆 = 𝑠, 𝐶 = 𝑐, 𝑀 = 1

∑5,6,9,7 𝑃 𝐻 = ℎ, 𝑊 = 𝑤, 𝑆 = 𝑠, 𝐶 = 𝑐, 𝑀 = 1



Computing	
Marginal	
Probabilities…

� Computing	arbitrary	marginal	

(conditional)	distributions	requires	
summing	over	exponentially	many	
possible	combinations	of	the	

unobserved	variables

� Computation	can	be	improved	by	

storing	and	reusing	calculated	values	
(dynamic	programming)	

� Still	exponential	in	the	worst	case
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Computing	
Marginal	
Probabilities	
is	(NP-)hard!

� Claim:	3-SAT	reduces	to	computing	marginal	
probabilities	in	a	Bayesian	network

� Proof	(sketch):	Given	a	Boolean	equation	in	3-CNF,	e.g.,	
𝑋, ∨ 𝑋: ∨ 𝑋; ∧ ¬𝑋, ∨ 𝑋< ∨ ¬𝑋/ ∧ ⋯,	construct	the	
corresponding	Bayesian	network	

� 𝑃 𝑌 = 1 > 0 means	the	3-CNF	is	satisfiable!
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𝐶,

𝑋,

𝑌

𝐶:

𝑋: 𝑋<𝑋; 𝑋/⋯

⋯

𝑃 𝑋= = 1 = 0.5

𝑃 𝐶= = 1|𝑋,, … , 𝑋/

= F1 if clause 𝑖 is TRUE
0 otherwise 

𝑃 𝑌 = 1|𝐶,, … = F1 if all 𝐶= = 1
0 otherwise 



Sampling	for	
Bayesian	
Networks
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𝑆

𝐻

𝑀𝐶

𝑊

� Sampling	from	a	Bayesian	network	is	
easy!

1. Sample	all	free	variables										
(𝐻	and	𝑊)	

2. Sample	any	variable	whose	
parents	have	already	been	
sampled

3. Stop	once	all	variables	have	
been	sampled

𝑃 𝑆 = 1 ≈
# of samples w/ 𝑆 = 1 

# of samples



Sampling	for	
Bayesian	
Networks

� Sampling	from	a	Bayesian	network	is	
easy!

1. Sample	all	free	variables										
(𝐻	and	𝑊)	

2. Sample	any	variable	whose	
parents	have	already	been	
sampled

3. Stop	once	all	variables	have	
been	sampled

𝑃 𝐻 = 1|𝑀 = 1

≈
# of samples w/ 𝐻 = 1 and 𝑀 = 1 

# of samples w/ 𝑀 = 1
� If	the	condition	is	rare,	we	need	lots	
of	samples	to	get	a	good	estimate
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Weighted
Sampling	for	
Bayesian	
Networks

� Initialize	𝑁>?.*=@=?. = 𝑁ABC.@ = 0

� Repeatedly
� Draw	a	sample	from	the	full	joint	
distribution

� Set	the	condition	to	be	true	
(set	𝑀 = 1)

� Compute	the	joint	probability	of	
the	adjusted	sample,	𝑤	(easy!)

	 𝑁>?.*=@=?. = 𝑁>?.*=@=?. + 𝑤
� If	the	event	occurs	in	the	adjusted	
sample	(𝐻 = 1?),	update	𝑁ABC.@	

𝑁ABC.@ = 𝑁ABC.@ + 𝑤

� Desired	marginal	conditional	

probability	is	≈ /!"#$%
/&'$()%)'$Henry	Chai	-	7/17/23 25
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Conditional	
Independence

� 𝑋	and	𝑌	are	conditionally	
independent	given	𝑍	(𝑋 ⊥ 𝑌 | 𝑍)	if	

𝑃 𝑋, 𝑌 𝑍 = 𝑃 𝑋 𝑍 𝑃 𝑌 𝑍

� In	a	Bayesian	network,	each	variable	

is	conditionally	independent	of	its	
non-descendants	given	its	parents

� 𝐻	and	𝑀	are	not	independent	
but	they	are	conditionally	

independent	given	𝑆

�What	other	conditional	
independencies	does	a	Bayesian	

network	imply?
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𝑆
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Markov	
Blanket
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� Let	𝒮	be	the	set	of	all	
random	variables	in	a	
Bayesian	network

� A	Markov	blanket	of	𝐴 ∈ 𝒮	
is	any	set	𝐵 ⊆ 𝒮	s.t.	

𝐴 ⊥ 𝒮\𝐵 | 𝐵

� Contains	all	the	useful	
information	about	𝐴

� Trivially,	𝒮	is	always	a	
Markov	blanket	for	any	
random	variable	in	𝒮



Markov	
Boundary
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� Let	𝒮	be	the	set	of	all	
random	variables	in	a	
Bayesian	network

� The	Markov	boundary	of	𝐴	
is	the	smallest	possible	
Markov	blanket	of	𝐴

� The	Markov	boundary	
consists	of	a	variable’s	

children,	parents	and	co-
parents	(the	other	parents	
of	its	children)

Source: https://en.wikipedia.org/wiki/Markov_blanket#/media/File:Diagram_of_a_Markov_blanket.svg 

https://en.wikipedia.org/wiki/Markov_blanket


But	what	if	I	
care	about	the	
relationship	
between	two	
variables?
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� Let	𝒮	be	the	set	of	all	
random	variables	in	a	
Bayesian	network

� The	Markov	boundary	of	𝐴	
is	the	smallest	possible	
Markov	blanket	of	𝐴

� The	Markov	boundary	
consists	of	a	variable’s	

children,	parents	and	co-
parents	(the	other	parents	
of	its	children)

Source: https://en.wikipedia.org/wiki/Markov_blanket#/media/File:Diagram_of_a_Markov_blanket.svg 

https://en.wikipedia.org/wiki/Markov_blanket


D-separation

� Random	variables	𝐴	and	𝐵	are	d-separated	given	evidence	
variables	𝑍	if	𝐴 ⊥ 𝐵 | 𝑍

� Definition	1:	𝐴	and	𝐵	are	d-separated	given	𝑍	iff	every	
undirected	path	between	𝐴	and	𝐵	is	blocked	by	𝑍

� An	undirected	path	between	𝐴	and	𝐵	is	blocked	by	𝑍	if

1. ∃	a	“common	parent”	variable	𝐶	on	the	path	and	𝐶 ∈ 𝑍

2. ∃	a	“cascade”	variable	𝐶	on	the	path	and	𝐶 ∈ 𝑍

3. ∃	a	“collider”	variable	𝐶	on	the	path	and	
𝐶, descendents 𝐶 ∉ 𝑍
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𝐴 ⋯ 𝐶 𝐵⋯

𝐴 ⋯ 𝐶 𝐵⋯

𝐴 ⋯ 𝐶 𝐵⋯



� Random	variables	𝐴	and	𝐵	are	d-separated	given	evidence	
variables	𝑍	if	𝐴 ⊥ 𝐵 | 𝑍

� Definition	2:	𝐴	and	𝐵	are	d-separated	given	𝑍	iff	∄	a	path	
between	𝐴	and	𝐵	in	the	undirected	ancestral	moral	graph	with	
𝑍	removed

1. Keep	only	𝐴, 𝐵, 𝑍	and	their	ancestors	(ancestral	graph)
2. Add	edges	between	all	co-parents	(moral	graph)
3. Undirected:	replace	directed	edges	with	undirected	ones
4. Delete	𝑍	and	check	if	𝐴	and	𝐵	are	connected

� Example:	𝐴 ⊥ 𝐵 | 𝐷, 𝐸 ?

D-separation
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Shortcomings	of	
Bayesian	
Networks

� Graph	structure	must	be	acyclic

� Cannot	encode	temporal/sequential	relationships	

�We’ll	address	these	(related)	problems	next	with		

hidden	Markov	models
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Key	Takeaways

� Bayesian	networks	are	flexible	models	for	modelling	joint	
probability	distributions	

� Trade-off	between	expressiveness	(full	joint	distributions)	
and	computational	tractability	(Naïve	Bayes)

� Bayesian	networks	represent	conditional	dependence	though	a	
directed	acyclic	graph

� Graph	structure	usually	specified,	can	be	learned

� Parameters	in	the	fully-observed	case	learned	via	MLE	

� Computing	marginal	&	conditional	distributions	is	NP-hard

� Can	use	sampling	for	approximate	inference

�Markov	blanket	and	d-separation	provide	notions	of	conditional	
independence	for	single	and	pairs	of	variables	respectively
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