10-301/601: Introduction to Machine Learning Lecture 22: Hidden Markov Models

Henry Chai

7/18/23

Front Matter

Announcements

- PA5 released 7/13, due 7/20 at 11:59 PM
- Recommended Readings
 - Murphy, Chapters 17.1 17.5

Structured Data

- For many machine learning tasks, the training data will have some implicit structure or ordering.
 - Time series data
 - Text data
 - Audio/video data

• $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$ where each training data point consists of multiple observations in *sequence*:

$$\boldsymbol{x}^{(n)} = \begin{bmatrix} \boldsymbol{x}_1^{(n)}, \dots, \boldsymbol{x}_{T_n}^{(n)} \end{bmatrix}$$
$$\boldsymbol{y}^{(n)} = \begin{bmatrix} y_1^{(n)}, \dots, y_{T_n}^{(n)} \end{bmatrix}$$

Part-of-Speech (PoS) Tagging

Part-of-Speech (PoS) Tagging: Example

Naïve Bayes for PoS Tagging

(Dynamic)BayesianNetwork forPoS Tagging

Label

 X_1

Correct

 X_2

Tags

 X_3

Hidden Markov Models for PoS Tagging

Hidden Markov Models

- Two types of variables: observations (observed) and states (hidden or latent)
 - Set of states usually pre-specified via domain expertise/prior knowledge: {s₁, ..., s_M}
 - Emission model:
 - Current observation is conditionally independent of all other variables given the current state: $P(X_t|Y_t)$
 - Transition model (Markov assumption):
 - Current state is conditionally independent of all earlier states given the previous state (Markov assumption): $P(Y_t|Y_{t-1}, ..., Y_0) = P(Y_t|Y_{t-1})$

Hidden Markov Models vs. Bayesian Networks

- Two types of variables: observations (observed) and states (hidden or latent)
 - Set of states usually pre-specified via domain expertise/prior knowledge: $\{s_1, \dots, s_M\}$
 - Emission & transition models are fixed over time steps

 $P(X_t | Y_t = s_j) = P(X_{t'} | Y_{t'} = s_j) \forall t, t'$ $P(Y_t | Y_{t-1} = s_j) = P(Y_{t'} | Y_{t'-1} = s_j) \forall t, t'$

- Parameter reuse makes learning efficient
- Can handle sequences of varying lengths

1st Order Hidden Markov Models for PoS Tagging

2nd Order Hidden Markov Models for PoS Tagging

Hidden Markov Models: Outline

- How can we learn the conditional probabilities used by a hidden Markov model?
- What inference questions can we answer with a hidden Markov model? (tomorrow)
 - Computing the distribution of a single state (or a sequence of states) given a sequence of observations
 - Finding the most-probable sequence of states given a sequence of observations
 - Computing the probability of a sequence of observations

Learning the Parameters (Fullyobserved) • Given *C* possible observations and *M* possible states plus special START/END states, how many parameters do we need to learn?

Given C possible observations and M possible states plus special START/END states, how many parameters are in the emission matrix, A?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Given C possible observations and M possible states plus special START/END states, how many parameters are in the transition matrix, B?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Learning the Parameters (Fullyobserved) Given *C* possible observations and *M* possible states plus special START/END states, how many parameters do we need to learn?

	<i>s</i> ₁	•••	S _M		START	<i>S</i> ₁	•••	S _M
<i>o</i> ₁	<i>a</i> ₁₁	•••	a_{1M}	<i>s</i> ₁	b_{10}	b_{11}	•••	b_{1M}
<i>0</i> ₂	<i>a</i> ₂₁	•••	a _{2M}	:	:	:	•.	• •
:	•	•.	•	S _M	b_{M0}	b_{M1}	•••	b_{MM}
<i>o</i> _{<i>C</i>}	a_{C1}	•••	a _{CM}	END	$b_{(M+1)0}$	$b_{(M+1)1}$	•••	$b_{(M+1)M}$

Emission matrix, A

 $a_{ij} = P(X_t = o_i | Y_t = s_j)$

Transition matrix, **B**

$$b_{ij} = P(Y_t = s_i | Y_{t-1} = s_j)$$

Learning the Parameters (Fullyobserved)

- $\mathcal{D} = \left\{ \left(\boldsymbol{x}^{(n)}, \boldsymbol{y}^{(n)} \right) \right\}_{n=1}^{N}$
- Set the parameters via MLE

	<i>s</i> ₁	•••	S _M		START	<i>s</i> ₁	•••	S _M
<i>o</i> ₁	<i>a</i> ₁₁	•••	a_{1M}	<i>s</i> ₁	b_{10}	b_{11}	•••	b_{1M}
<i>0</i> ₂	<i>a</i> ₂₁	•••	a _{2M}	•	:	:	•.	• •
•	•	•.	:	S _M	b_{M0}	b_{M1}	•••	b_{MM}
<i>0C</i>	a_{C1}	•••	a _{CM}	END	$b_{(M+1)0}$	$b_{(M+1)1}$	•••	$b_{(M+1)M}$

Emission matrix, A $\hat{a}_{ij} = \frac{\sum_{t=1}^{T} N_{X_t=o_i, Y_t=s_j}}{\sum_{t=1}^{T} N_{Y_t=s_j}}$ Transition matrix, B $\hat{b}_{ij} = \frac{\sum_{t=1}^{T+1} N_{Y_t = s_i, Y_{t-1} = s_j}}{\sum_{t=1}^{T+1} N_{Y_{t-1} = s_j}}$

Key Takeaways

• HMMs are an instantiation of (dynamic) Bayesian networks where certain parameters are shared

• Parameters can be set by MLE