10-301/601: Introduction to Machine Learning Lecture 22: Hidden Markov Models

Henry Chai

7/18/23

Front Matter

Announcements

- PA5 released 7/13, due 7/20 at 11:59 PM
- Recommended Readings
	- Murphy, Chapters 17.1 17.5

Structured Data

- For many machine learning tasks, the training data will have some implicit structure or ordering.
	- Time series data
	- Text data
	- Audio/video data

 $\boldsymbol{\cdot} \ \mathcal{D} = \{(\textbf{\textit{x}}^{(n)}, \textbf{\textit{y}}^{(n)})$ $n=1$ \overline{N} where each training data point consists of multiple observations in *sequence*:

$$
\mathbf{x}^{(n)} = \begin{bmatrix} x_1^{(n)}, \dots, x_{T_n}^{(n)} \end{bmatrix}
$$

$$
\mathbf{y}^{(n)} = \begin{bmatrix} y_1^{(n)}, \dots, y_{T_n}^{(n)} \end{bmatrix}
$$

Part-of-Speech (PoS) Tagging

Part-of-Speech (PoS) Tagging: Example

Naïve Bayes for PoS Tagging

(Dynamic) Bayesian Network for PoS Tagging

Label Correct Tags

Hidden Markov Models for PoS Tagging

Hidden Markov **Models**

- Two types of variables: observations (observed) and states (hidden or latent)
	- Set of states usually pre-specified via domain expertise/prior knowledge: $\{s_1, ..., s_M\}$
	- Emission model:
		- Current observation is conditionally independent of all other variables given the current state: $P(X_t|Y_t)$
	- Transition model (Markov assumption):
		- Current state is conditionally independent of all earlier states given the previous state (Markov assumption): $P(Y_t | Y_{t-1}, ..., Y_0) = P(Y_t | Y_{t-1})$

Hidden Markov Models vs. Bayesian **Networks**

- Two types of variables: observations (observed) and states (hidden or latent)
	- Set of states usually pre-specified via domain expertise/prior knowledge: $\{s_1, ..., s_M\}$
	- Emission & transition models are fixed over time steps

 $P(X_t|Y_t = s_i) = P(X_{t'}|Y_{t'} = s_i) \forall t, t'$ $P(Y_t|Y_{t-1} = s_i) = P(Y_{t'}|Y_{t'-1} = s_i) \forall t, t'$

- Parameter reuse makes learning efficient
- Can handle sequences of varying lengths

1st Order Hidden Markov Models for PoS Tagging

2nd Order Hidden Markov Models for PoS Tagging

Hidden Markov Models: **Outline**

- How can we learn the conditional probabilities used by a hidden Markov model?
- What inference questions can we answer with a hidden Markov model? (tomorrow)
	- 1. Computing the distribution of a single state (or a sequence of states) given a sequence of observations
	- 2. Finding the most-probable sequence of states given a sequence of observations
	- 3. Computing the probability of a sequence of observations

Learning the **Parameters** (Fullyobserved)

 \cdot Given C possible observations and M possible states plus special START/END states, how many parameters do we need to learn?

Given C possible observations and M possible states plus special START/END states, how many parameters are in the emission matrix, A ?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Given C possible observations and M possible states plus special START/END states, how many parameters are in the transition matrix, B ?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Learning the Parameters (Fullyobserved)

 \cdot Given C possible observations and M possible states plus special START/END states, how many parameters do we need to learn?

 $a_{ij} = P(X_t = o_i | Y_t = s_j)$

Emission matrix, A Transition matrix, B

$$
b_{ij} = P(Y_t = s_i | Y_{t-1} = s_j)
$$

Learning the **Parameters** (Fullyobserved)

- $\cdot \mathcal{D} = \{ (x^{(n)}, y^{(n)}) \}_{n=1}^N$
- . Set the parameters via MLE

Emission matrix, A $\hat{a}_{ij} = \frac{\sum_{t=1}^{T} N_{X_t = o_i, Y_t = s_j}}{\sum_{t=1}^{T} N_{Y_t = s_j}}$

Transition matrix, B $\hat{b}_{ij} = \frac{\sum_{t=1}^{T+1} N_{Y_t = s_i, Y_{t-1} = s_j}}{\sum_{t=1}^{T+1} N_{Y_{t-1} = s_j}}$

Key Takeaways

 HMMs are an instantiation of (dynamic) Bayesian networks where certain parameters are shared

Parameters can be set by MLE