10-301/601: Introduction to Machine Learning Lecture 22: Hidden Markov Models

Henry Chai

7/18/23

Front Matter

- Announcements
 - PA5 released 7/13, due 7/20 at 11:59 PM
- Recommended Readings
 - Murphy, Chapters 17.1 17.5

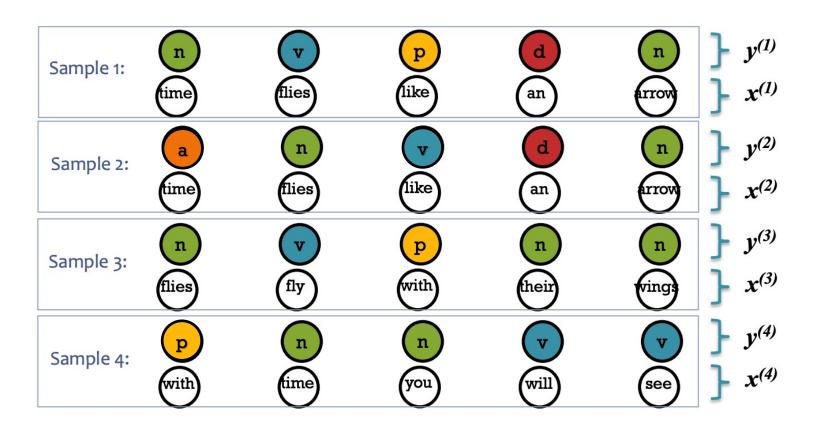
Structured Data

- For many machine learning tasks, the training data will have some implicit structure or ordering.
 - Time series data
 - Text data
 - Audio/video data
- $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$ where each training data point consists of multiple observations in *sequence*:

$$\boldsymbol{x}^{(n)} = \left[\boldsymbol{x}_1^{(n)}, \dots, \boldsymbol{x}_{T_n}^{(n)}\right]$$

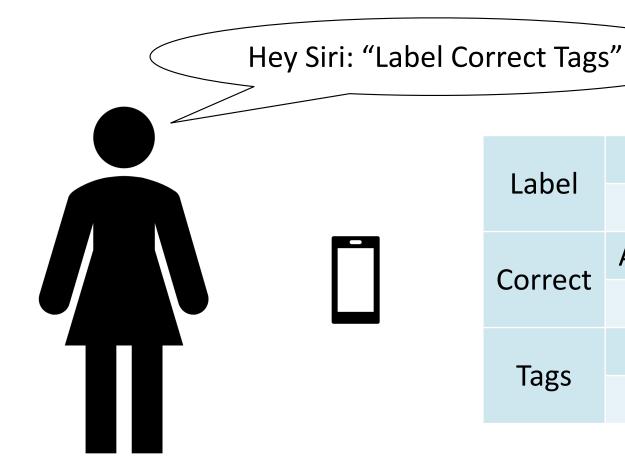
$$\mathbf{y}^{(n)} = \left[y_1^{(n)}, \dots, y_{T_n}^{(n)} \right]$$

Part-of-Speech (PoS) Tagging



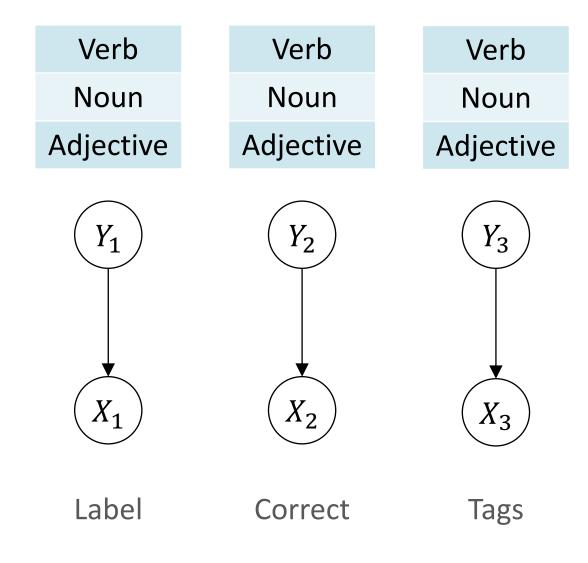
Henry Chai - 7/18/23 Figure courtesy of Matt Gormley

Part-of-Speech (PoS) Tagging: Example



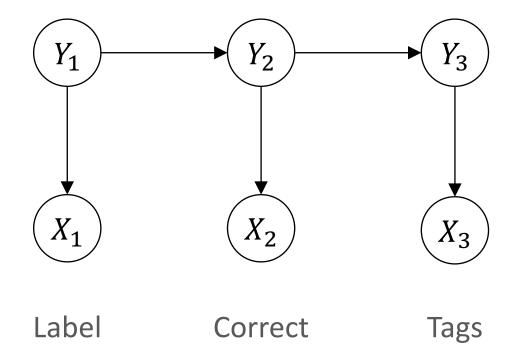
Label	Verb	
Labei	Noun	
Correct	Adjective	
	Verb	
Tags	Noun	
	Verb	

Naïve Bayes for PoS Tagging

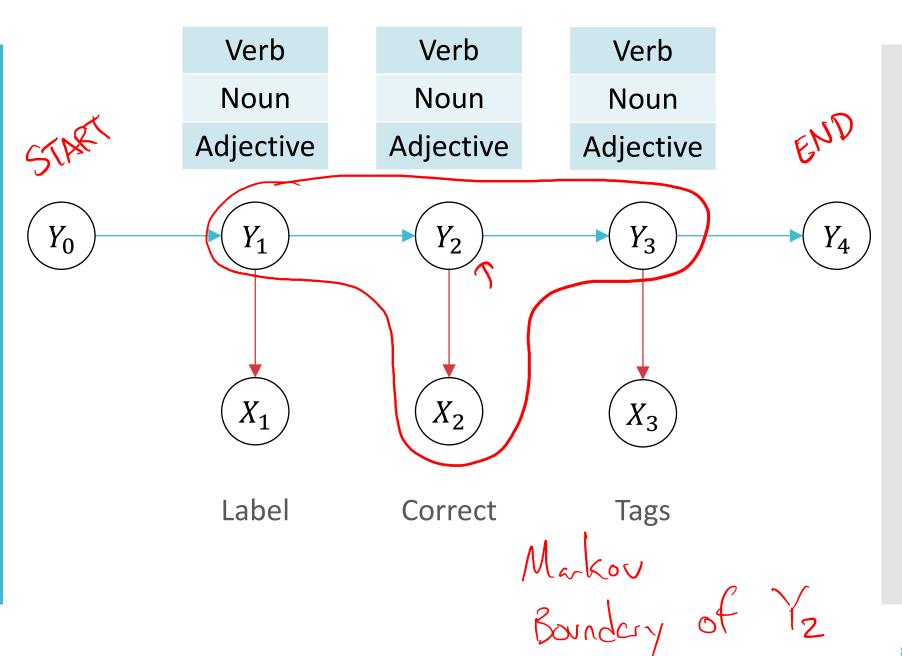


(Dynamic)
Bayesian
Network for
PoS Tagging

VerbVerbNounNounNounAdjectiveAdjective



Hidden Markov Models for PoS Tagging



Hidden Markov Models

- Two types of variables: observations (observed) and states (hidden or latent)
 - Set of states usually pre-specified via domain expertise/prior knowledge: $\{s_1, ..., s_M\}$
 - Emission model:
 - Current observation is conditionally independent of all other variables given the current state: $P(X_t|Y_t)$
 - Transition model:
 - Current state is conditionally independent of all earlier states given the previous state (Markov assumption): $P(Y_t|Y_{t-1},...,Y_0) = P(Y_t|Y_{t-1})$

Hidden Markov Models vs. Bayesian Networks

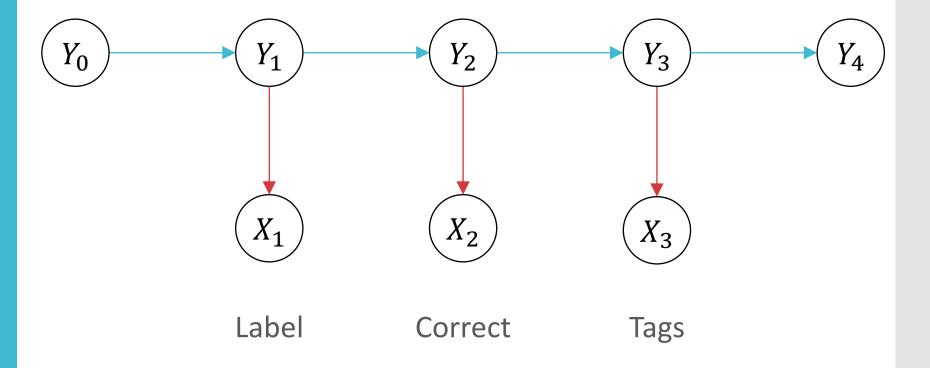
- Two types of variables: observations (observed) and states (hidden or latent)
 - Set of states usually pre-specified via domain expertise/prior knowledge: $\{s_1, ..., s_M\}$
 - Emission & transition models are fixed over time steps

$$P(X_{t}|Y_{t} = s_{j}) = P(X_{t'}|Y_{t'} = s_{j}) \ \forall \ t, t'$$

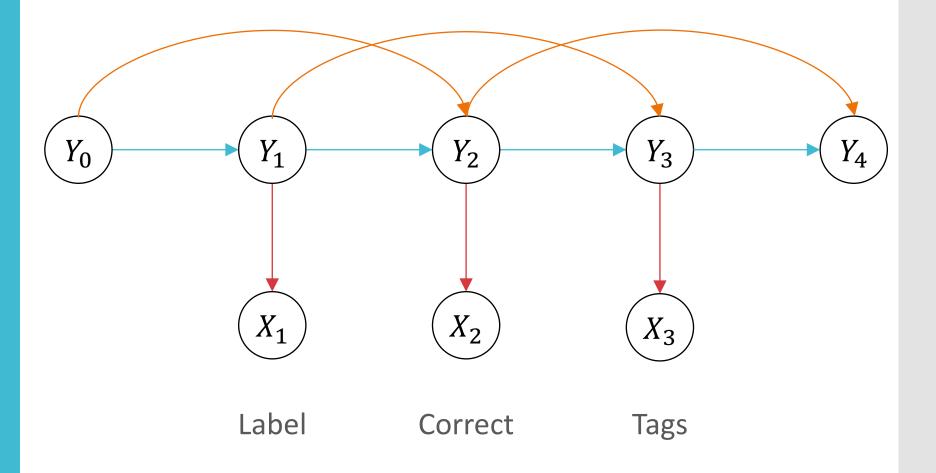
$$P(Y_{t}|Y_{t-1} = s_{j}) = P(Y_{t'}|Y_{t'-1} = s_{j}) \ \forall \ t, t'$$

- Parameter reuse makes learning efficient
- Can handle sequences of varying lengths

1st Order Hidden Markov Models for PoS Tagging



2nd Order Hidden Markov Models for PoS Tagging



Hidden Markov Models: Outline

- How can we learn the conditional probabilities used by a hidden Markov model?
- What inference questions can we answer with a hidden Markov model? (tomorrow)
 - Computing the distribution of a single state (or a sequence of states) given a sequence of observations
 - Finding the most-probable sequence of states given a sequence of observations
 - 3. Computing the probability of a sequence of observations

Learning the Parameters (Fully-observed)

• Given *C* possible observations and *M* possible states plus special START/END states, how many parameters do we need to learn?

Lecture 22 Polls

0 done

Given C possible observations and M possible states plus special START/END states, how many parameters are in the emission matrix, A?

$$MC \ M(C-1) \ C^2 \ C(C-1)$$

Given C possible observations and M possible states plus special START/END states, how many parameters are in the transition matrix, B?

$$M^2 \ M(M-1) \ M(M+1) \ (M+1)^2$$

Learning the **Parameters** (Fullyobserved)

 Given C possible observations and M possible states plus special START/END states, how many parameters do we need to learn?

	s_1	•••	S_{M}		START	s_1	•••	s_M
o_1	a_{11}	•••	a_{1M}	s_1	b_{10}	b_{11}	•••	b_{1M}
02	a_{21}	•••	a_{2M}	:	:	:	••	:
:	:	•••	:	s_M	b_{M0}	b_{M1}	•••	b_{MM}
$o_{\mathcal{C}}$	α_{C1}	• • •	q_{CM}	END	$b_{(M+1)0}$	$b_{(M+1)1}$	•••	$b_{(M+1)M}$
$a_{C1} \cdots a_{CM}$ END $b_{(M+1)0} b_{(M+1)1} \cdots b_{(M+1)M}$ Emission matrix, A								
2 manarda mada ka								

$$\alpha_{ij} = P(x_t = 0_i | Y_t = S_j)$$

$$4 + 1$$

$$b_{ij} = P(Y_t = S_i \mid Y_t, \vec{s})$$

Learning the Parameters (Fully-observed)

•
$$\mathcal{D} = \left\{ \left(\boldsymbol{x}^{(n)}, \boldsymbol{y}^{(n)} \right) \right\}_{n=1}^{N}$$

Set the parameters via MLE

	s_1	•••	S_{M}
o_1	a_{11}	•••	a_{1M}
02	a_{21}	• • •	a_{2M}
:	:	٠.	•
o_C	a_{C1}	•••	a_{CM}

	START	s_1	•••	s_M
s_1	b_{10}	b_{11}	•••	b_{1M}
:	:	:	٠.	•
S_{M}	b_{M0}	b_{M1}	•••	b_{MM}
END	$b_{(M+1)0}$	$b_{(M+1)1}$	•••	$b_{(M+1)M}$

Emission matrix, A

$$\hat{A}_{ij} = \frac{\sum_{t=1}^{T} N_{x_t=0; \ \gamma_t=S_i}}{\sum_{t=1}^{T} N_{\gamma_t=S_i}}$$

Transition matrix, B $S = \sum_{t=1}^{N} N_{t} = S_{i}, Y_{t} = S_{i}$

Key Takeaways

- HMMs are an instantiation of (dynamic) Bayesian networks where certain parameters are shared
 - Parameters can be set by MLE