10-301/601: Introduction to Machine Learning Lecture 23: Hidden Markov Models

Front Matter

- Announcements
 - PA5 released 7/13, due 7/20 (tomorrow) at 11:59 PM
 - PA6 released 7/20 (tomorrow), due 7/27 at 11:59 PM
- Recommended Readings
 - Murphy, Chapters 17.1 17.5

Recall: Hidden Markov Models

- Two types of variables: observations (observed) and states (hidden or latent)
 - Set of states usually pre-specified via domain expertise/prior knowledge: $\{s_1, ..., s_M\}$
 - Emission model:
 - Current observation is conditionally independent of all other variables given the current state: $P(X_t|Y_t)$
 - Transition model (Markov assumption):
 - Current state is conditionally independent of all earlier states given the previous state:

$$P(Y_t|Y_{t-1},...,Y_0) = P(Y_t|Y_{t-1})$$

Hidden Markov Models: Outline

- How can we learn the conditional probabilities used by a hidden Markov model?
- What inference questions can we answer with a hidden Markov model?
 - Computing the distribution of a single state (or a sequence of states) given a sequence of observations
 - Finding the most-probable sequence of states given a sequence of observations
 - 3. Computing the probability of a sequence of observations

3 Inference Questions for **HMMs**

Marginal Computation: $P(Y_t = s_i | \mathbf{x}^{(n)})$ (or $P(Y | \mathbf{x}^{(n)})$)

$$P(Y|\mathbf{x}^{(n)}) = \frac{P(\mathbf{x}^{(n)}|Y)P(Y)}{P(\mathbf{x}^{(n)})} = \frac{\prod_{t=1}^{T} P(\mathbf{x}^{(n)}|Y_t)P(Y_t|Y_{t-1})}{P(\mathbf{x}^{(n)})}$$

- 2. Decoding: $\hat{Y} = \operatorname{argmax} P(Y|x^{(n)})$
- 3. Evaluation: $P(x^{(n)})$

$$P(x^{(n)}) = \sum_{\substack{y \in \{\text{all possible sequences}\}\\ \text{of states}}} P(x^{(n)}|y)P(y)$$

The Brute Force Algorithm

- Inputs: query $P(x^{(n)})$, emission matrix A, transition matrix B
- Initialize p = 0
- For $y \in \{\text{all possible sequences}\} \longrightarrow M^T$
 - Compute the joint probability

$$P(\mathbf{x}^{(n)}, \mathcal{Y}) = P(\mathbf{x}^{(n)}|\mathcal{Y})P(\mathcal{Y}) = \prod_{t=1}^{l} P(\mathbf{x}_{t}^{(n)}|\mathcal{Y}_{t})P(\mathcal{Y}_{t}|\mathcal{Y}_{t-1})$$

$$p += P(x^{(n)}, y)$$

• Return $p = P(x^{(n)})$

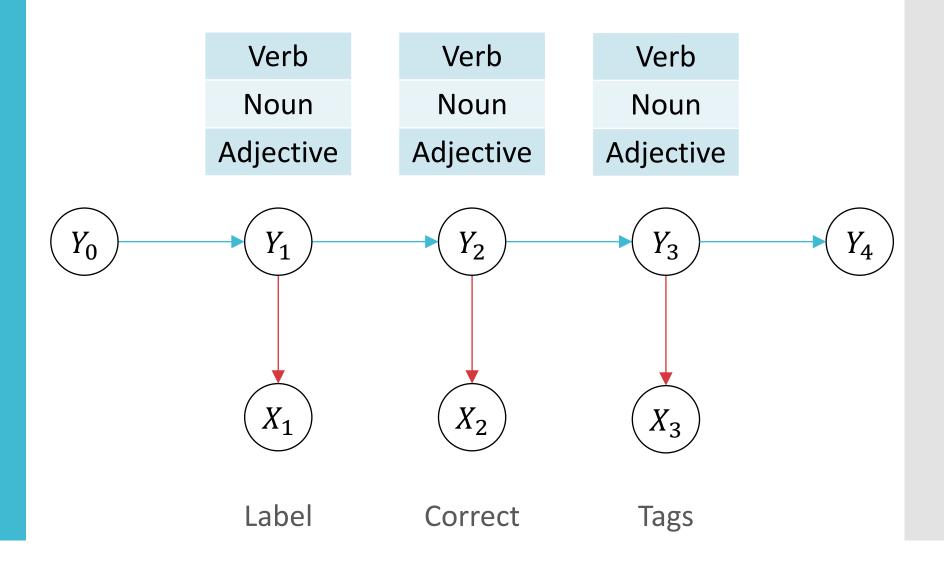
Lecture 23 Polls

0 done

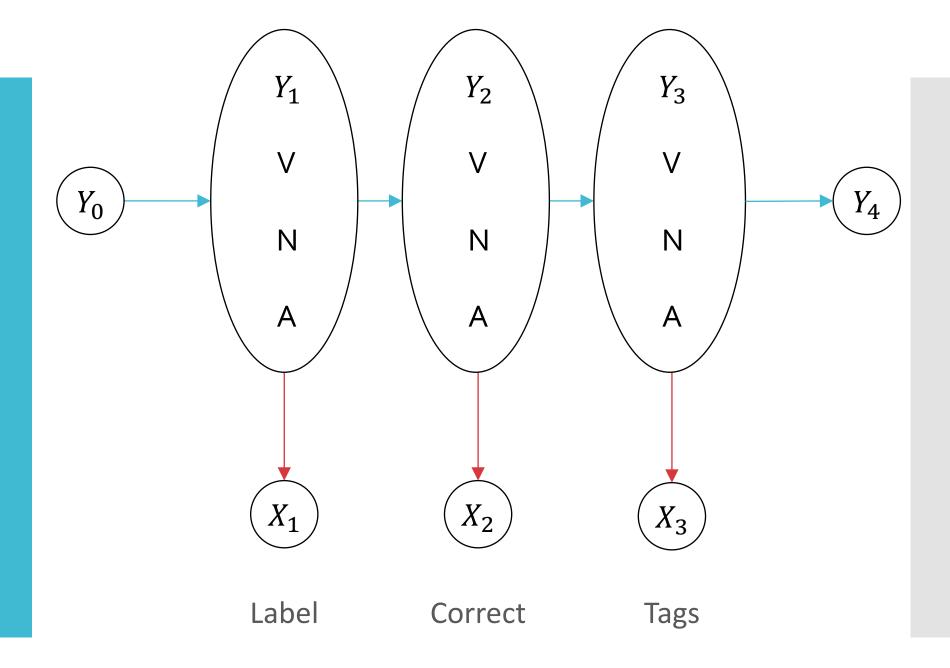
Given C possible observations and M possible states plus special START/END states, how many possible sequences of length T (not counting the START and END states) are there?

TC	
TM	
T^M	
M^T	

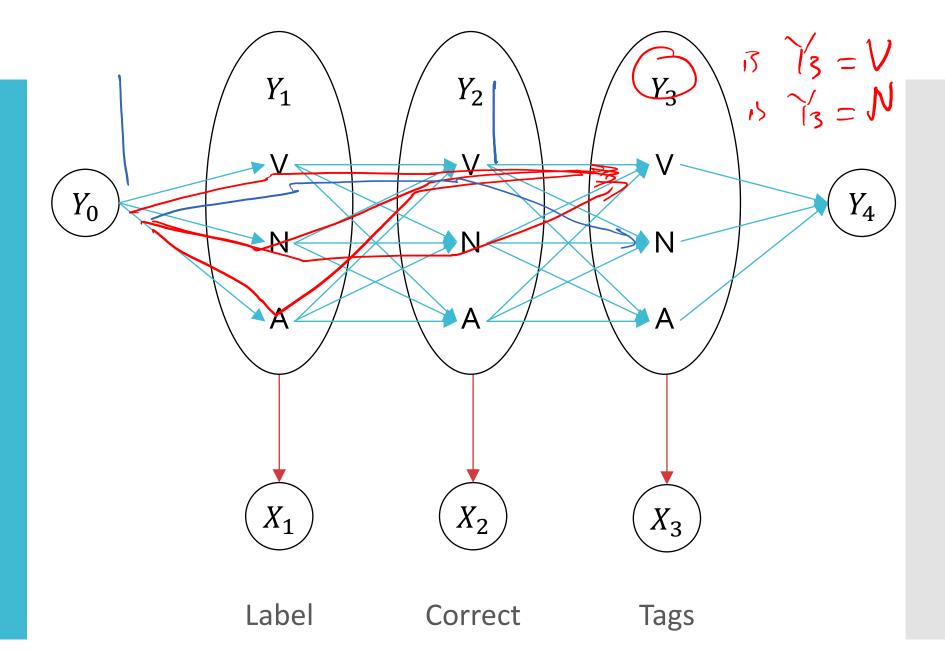
Inference with HMMs: PoS Tagging Example



Inference with HMMs: PoS Tagging Example



Inference with HMMs: PoS Tagging Example



3 Inference Questions for HMMs

1. Marginal Computation: $P(Y_t = s_j | x^{(n)})$ (or $P(Y | x^{(n)})$)

$$P(Y_t = s_j \mid \boldsymbol{x}^{(n)}) = \frac{P(Y_t = s_j, \boldsymbol{x}^{(n)})}{P(\boldsymbol{x}^{(n)})}$$

- 2. Decoding: $\hat{Y} = \underset{Y}{\operatorname{argmax}} P(Y|\mathbf{x}^{(n)})$
- 3. Evaluation: $P(x^{(n)})$

$$P(\mathbf{x}^{(n)}) = \sum_{m=1}^{M} P(Y_t = s_m, \mathbf{x}^{(n)})$$

Recursive Marginals

$$P\left(Y_{t} = S_{j}, X_{1}^{(n)}, ..., X_{T}^{(n)}\right)$$

$$= P\left(X_{t+1}^{(n)}, ..., X_{T}^{(n)} \mid Y_{t} = S_{j}, X_{1}^{(n)}, ..., X_{t}^{(n)}\right) P\left(Y_{t} = S_{j}, X_{1}^{(n)}, ..., X_{t}^{(n)}\right)$$

$$= P\left(X_{t+1}^{(n)}, ..., X_{T}^{(n)} \mid Y_{t} = S_{j}\right) P\left(Y_{t} = S_{j}, X_{1}^{(n)}, ..., X_{t}^{(n)}\right)$$

$$= P\left(X_{t+1}^{(n)}, ..., X_{T}^{(n)} \mid Y_{t} = S_{j}\right) P\left(Y_{t} = S_{j}, X_{1}^{(n)}, ..., X_{t}^{(n)}\right)$$

$$\vdots = P_{t}(j) Q_{t}(j)$$

$$\alpha_t(j) \coloneqq P\left(Y_t = s_j, \boldsymbol{x}_1^{(n)}, \dots, \boldsymbol{x}_t^{(n)}\right)$$

$$= \sum_{m=1}^{M} P\left(Y_t = s_j, Y_{t-1} = s_m, \boldsymbol{x}_1^{(n)}, \dots, \boldsymbol{x}_t^{(n)}\right)$$

$$= \sum_{m=1}^{M} P\left(\mathbf{x}_{t}^{(n)} | Y_{t} = s_{j}, Y_{t-1} = s_{m}, \mathbf{x}_{1}^{(n)}, \dots, \mathbf{x}_{t-1}^{(n)}\right) *$$

$$P(Y_t = s_j, Y_{t-1} = s_m, \mathbf{x}_1^{(n)}, \dots, \mathbf{x}_{t-1}^{(n)})$$

Forward Algorithm

Forward Algorithm

$$\alpha_{t}(j) := P\left(Y_{t} = s_{j}, x_{1}^{(n)}, ..., x_{t}^{(n)}\right)$$

$$P\left(Y_{t-1} = S_{m}, Y_{t} = S_{j}, x_{1}^{(n)}, ..., x_{t}^{(n)}\right)$$

$$P\left(X_{t}^{(n)} \mid Y_{t-1} = S_{m}, Y_{t} = S_{j}, x_{1}^{(n)}, ..., x_{t-1}^{(n)}\right)$$

$$P\left(Y_{t-1} = S_{m}, Y_{t} = S_{j}, X_{1}^{(n)}, ..., x_{t-1}^{(n)}\right)$$

$$P\left(X_{t}^{(n)} \mid Y_{t} = S_{j}\right) P\left(Y_{t} = S_{j}^{(n)} \mid Y_{t-1} = S_{m}, x_{1}^{(n)}, ..., x_{t-1}^{(n)}\right)$$

$$P\left(X_{t-1} = S_{m}, x_{1}^{(n)}, ..., x_{t-1}^{(n)}\right)$$

$$P\left(X_{t-1} = S_{m}, x_{1}^{(n)}, ..., x_{t-1}^{(n)}\right)$$

$$P\left(X_{t-1} = S_{m}, x_{1}^{(n)}, ..., x_{t-1}^{(n)}\right) = d_{t-1}^{(n)}$$

$$P\left(X_{t-1} = S_{m}, x_{1}^{(n)}, ..., x_{t-1}^{(n)}\right)$$

$$P\left(X_{t-1} = S_{m}, x_{1}^{(n)}, ..., x_{t-1}^{(n)}\right) = d_{t-1}^{(n)}$$

$$P\left(X_{t-1} = S_{m}, x_{1}^{(n)}, ..., x_{t-1}^{(n)}\right) = d_{t-1}^{(n)}$$

$$\beta_t(j) \coloneqq P\left(\mathbf{x}_{t+1}^{(n)}, \dots, \mathbf{x}_T^{(n)} \middle| Y_t = s_j\right)$$

$$= \sum_{m=1}^{M} P\left(x_{t+1}^{(n)}, \dots, x_{T}^{(n)}, Y_{t+1} = s_{m} \middle| Y_{t} = s_{j}\right)$$

$$= \sum_{m=1}^{M} P\left(x_{t+2}^{(n)}, \dots, x_{T}^{(n)} \middle| Y_{t} = s_{j}, x_{t+1}^{(n)}, Y_{t+1} = s_{m}\right) *$$

$$P\left(\mathbf{x}_{t+1}^{(n)}, Y_{t+1} = s_m \middle| Y_t = s_j\right)$$

Backward Algorithm

$$\beta_{t}(j) := P\left(x_{t+1}^{(n)}, ..., x_{T}^{(n)} | Y_{t} = s_{j}\right)$$

$$= \sum_{m=1}^{\infty} P\left(x_{t+1}^{(n)}, ..., x_{T}^{(n)} | Y_{t} = s_{m} | Y_{t} = s_{j}\right)$$

$$= \sum_{m=1}^{\infty} P\left(x_{t+1}^{(n)}, ..., x_{T}^{(n)} | X_{t+1}^{(n)}, Y_{t+1} = s_{m}, Y_{t} = s_{m}, Y_{t} = s_{j}\right)$$

$$= \sum_{m=1}^{\infty} P\left(x_{t+1}^{(n)}, Y_{t+1} = s_{m} | Y_{t} = s_{j}\right) P\left(Y_{t+1} = s_{m}, Y_{t} = s_{j}\right)$$

$$= \sum_{m=1}^{\infty} P\left(x_{t+1}^{(n)}, Y_{t+1} = s_{m}, Y_{t} = s_{m}\right) P\left(x_{t+1}^{(n)}, Y_{t+1} = s_{m}\right)$$

$$= \sum_{m=1}^{\infty} P\left(x_{t+2}^{(n)}, ..., x_{T}^{(n)}, Y_{t+1} = s_{m}\right) P\left(x_{t+1}^{(n)}, Y_{t+1} = s_{m}\right)$$

$$= \sum_{m=1}^{\infty} P\left(x_{t+2}^{(n)}, ..., x_{T}^{(n)}, Y_{t+1} = s_{m}\right) P\left(x_{t+1}^{(n)}, Y_{t+1} = s_{m}\right)$$

$$= \sum_{m=1}^{\infty} P\left(x_{t+2}^{(n)}, ..., x_{T}^{(n)}, Y_{t+1} = s_{m}\right) P\left(x_{t+1}^{(n)}, Y_{t+1} = s_{m}\right)$$

$$= \sum_{m=1}^{\infty} P\left(x_{t+2}^{(n)}, ..., x_{T}^{(n)}, Y_{t+1} = s_{m}\right) P\left(x_{t+1}^{(n)}, Y_{t+1} = s_{m}\right)$$

$$= \sum_{m=1}^{\infty} P\left(x_{t+2}^{(n)}, ..., x_{T}^{(n)}, Y_{t+1} = s_{m}\right) P\left(x_{t+1}^{(n)}, Y_{t+1} = s_{m}\right)$$

$$= \sum_{m=1}^{\infty} P\left(x_{t+2}^{(n)}, ..., x_{T}^{(n)}, Y_{t+1} = s_{m}\right) P\left(x_{t+1}^{(n)}, Y_{t+1} = s_{m}\right)$$

$$= \sum_{m=1}^{\infty} P\left(x_{t+2}^{(n)}, ..., x_{T}^{(n)}, Y_{t+1} = s_{m}\right) P\left(x_{t+1}^{(n)}, Y_{t+1} = s_{m}\right)$$

$$= \sum_{m=1}^{\infty} P\left(x_{t+2}^{(n)}, ..., x_{T}^{(n)}, Y_{t+1} = s_{m}\right) P\left(x_{t+1}^{(n)}, Y_{t+1} = s_{m}\right)$$

$$= \sum_{m=1}^{\infty} P\left(x_{t+2}^{(n)}, ..., x_{T}^{(n)}, Y_{t+1} = s_{m}\right) P\left(x_{t+1}^{(n)}, Y_{t+1} = s_{m}\right)$$

$$= \sum_{m=1}^{\infty} P\left(x_{t+2}^{(n)}, ..., x_{T}^{(n)}, Y_{t+1} = s_{m}\right) P\left(x_{t+1}^{(n)}, Y_{t+1} = s_{m}\right)$$

The Forward-Backward Algorithm

- Inputs: query $P(Y_t = s_i | x^{(n)})$, emission matrix A, transition matrix B
- Initialize $\alpha_0(\text{START}) = 1$ and $\beta_{T+1}(\text{END}) = 1$

• Initialize
$$\alpha_0(\text{START}) = 1$$
 and $\beta_{T+1}(\text{END}) = 1$
• For $\tau = 1, ..., T$
• For $m = 1, ..., M$

- For $\tau = T$ 1
 - For m = 1, ..., M

$$\beta_{\tau}(m) = \sum_{k=1}^{M} \beta_{\tau+1}(k) P\left(x_{\tau+1}^{(n)} \middle| Y_{\tau+1} = s_k\right) P(Y_{\tau+1} = s_k \middle| Y_{\tau} = s_m)$$

• Return $P(Y_t = s_j \mid \boldsymbol{x}^{(n)}) = \frac{P(Y_t = s_j, \boldsymbol{x}^{(n)})}{P(\boldsymbol{x}^{(n)})} = \frac{\beta_t(j)\alpha_t(j)}{\sum_{m=1}^{M} \beta_t(m)\alpha_t(m)}$

Given C possible observations and M possible states plus special START/END states, what is the runtime of the forward-backward algorithm on sequences of length T?

O(TM)
$O(T^2M)$
$O(TM^2)$
$O(T^2M^2)$

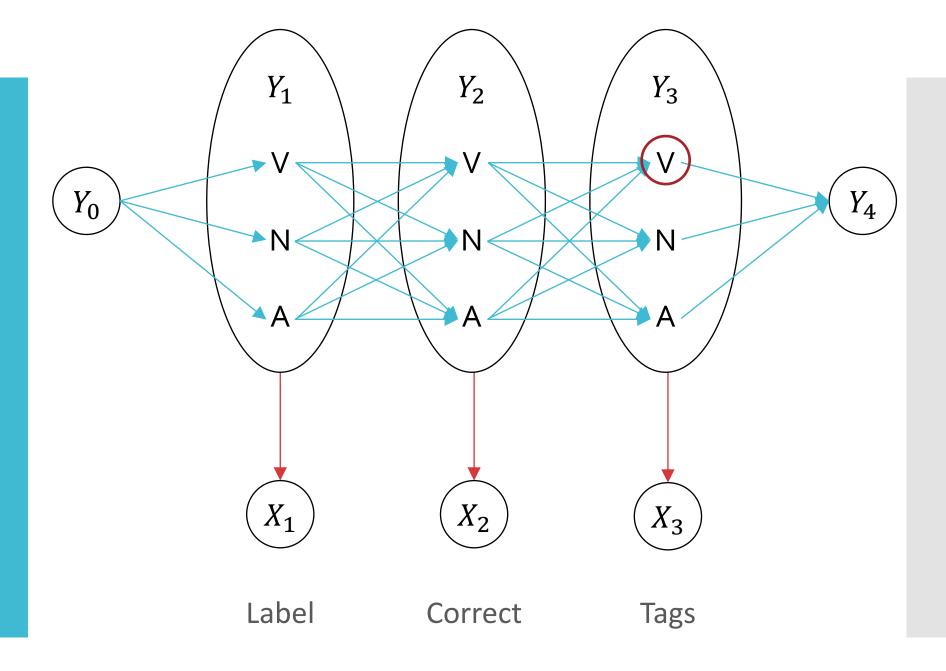
Most Probable State Sequence

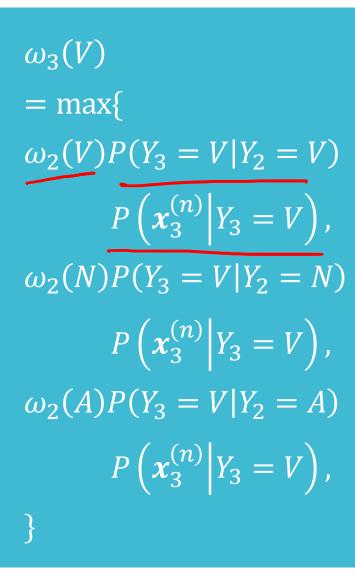
Decoding:
$$\hat{Y} = \underset{Y}{\operatorname{argmax}} P(Y|\mathbf{x}^{(n)})$$

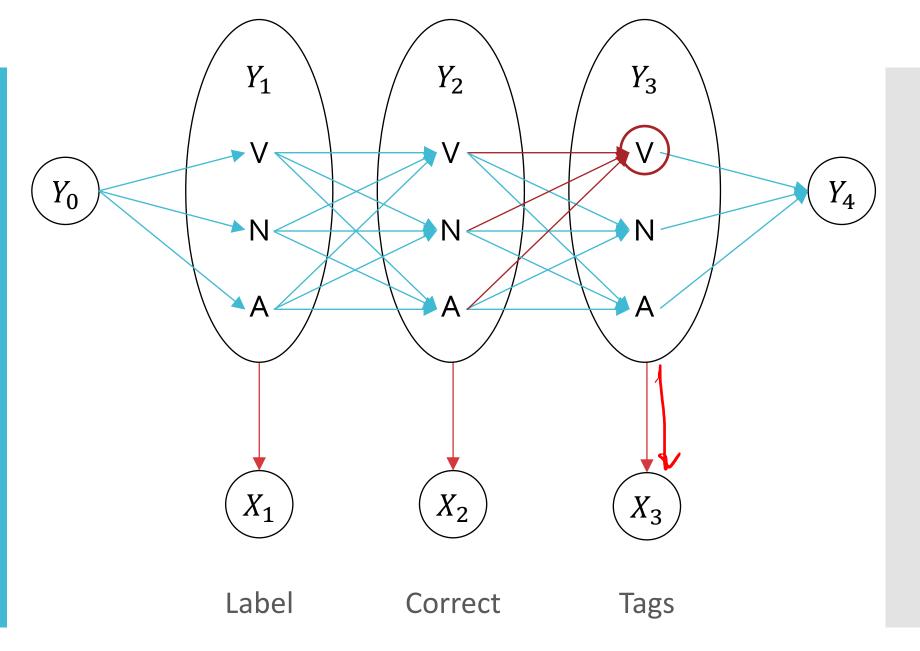
$$\omega_t(j) \coloneqq \max_{\mathcal{Y} \in \{\text{all possible sequences of } t-1 \text{ states}\}} P\left(\mathcal{Y}, Y_t = s_j, \boldsymbol{x}_1^{(n)}, \dots, \boldsymbol{x}_t^{(n)}\right)$$

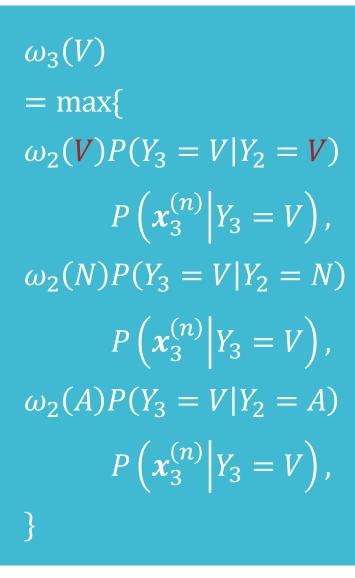
= the probability of the most probable sequence of t states that ends in s_i , conditioned on the first t observations

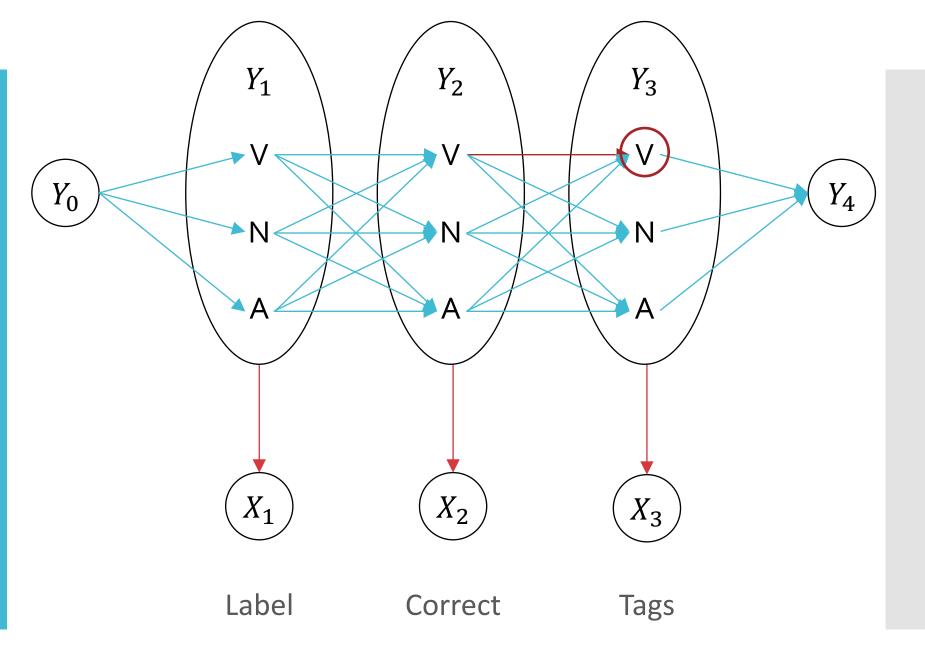
 $\omega_3(V)$

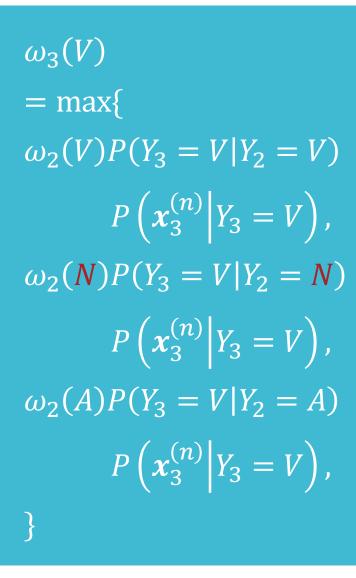


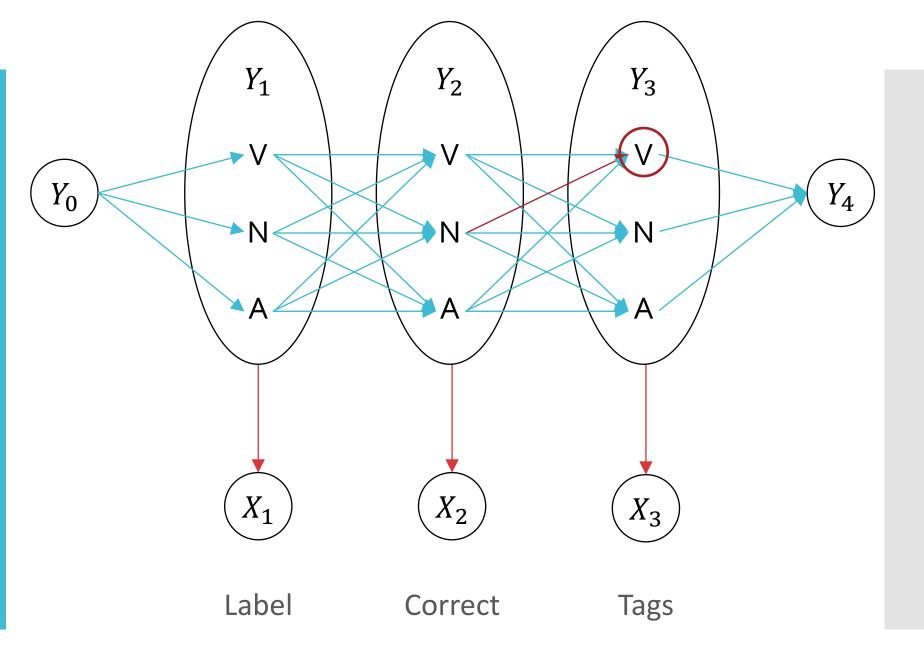


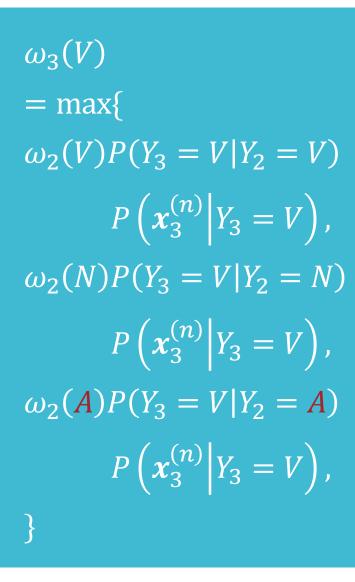


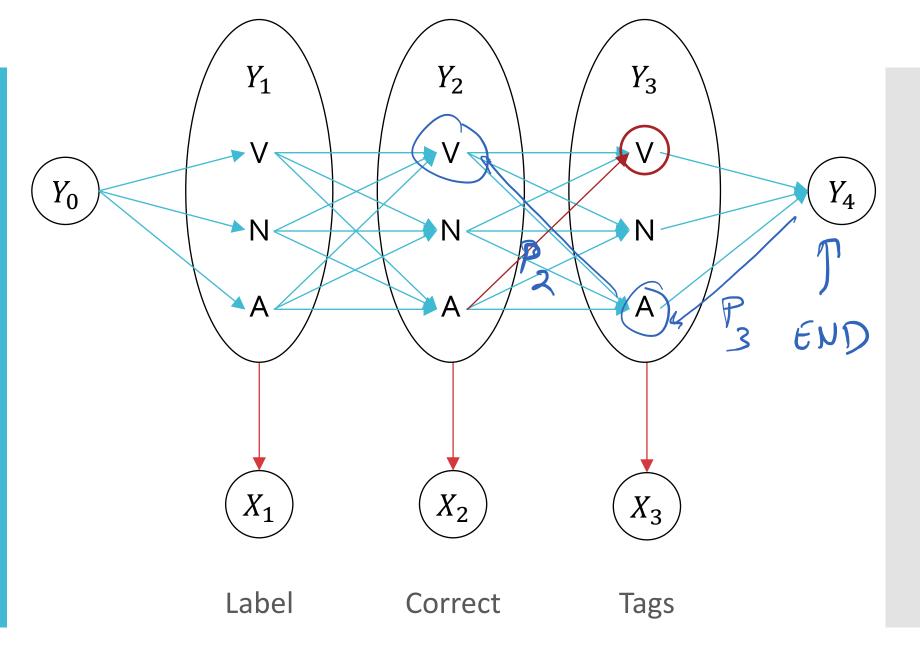












Most Probable State Sequence

Decoding:
$$\hat{Y} = \underset{Y}{\operatorname{argmax}} P(Y|\mathbf{x}^{(n)})$$

$$\omega_{t}(j) \coloneqq \max_{\substack{y \in \{\text{all possible sequences of } t-1 \text{ states}\}}} P\left(y, Y_{t} = s_{j}, \boldsymbol{x}_{1}^{(n)}, \dots, \boldsymbol{x}_{t}^{(n)}\right)$$

$$= \text{the probability of the most probable sequence of } t \text{ states that}$$

the probability of the most probable sequence of t states that ends in s_j , conditioned on the first t observations

$$= \max_{m \in \{1,...,M\}} \omega_{t-1}(m) P(Y_t = s_j | Y_{t-1} = s_m) P(x_t^{(n)} | Y_t = s_j)$$

The Viterbi Algorithm

- Inputs: observations $x^{(n)}$, emission matrix A, transition matrix B
- Initialize $\omega_0(\text{START}) = 1$
- For $\tau = 1, ..., T + 1$
 - For m = 1, ..., M

$$\Rightarrow \omega_{\tau}(m) = \max_{k \in \{1, ..., M\}} P\left(\mathbf{x}_{\tau}^{(n)} | Y_{\tau} = s_{m}\right) P(Y_{\tau} = s_{m} | Y_{\tau-1} = s_{k}) \omega_{\tau-1}(k)$$

$$\rho_{\tau}(m) = \underset{k \in \{1, \dots, M\}}{\operatorname{argmax}} P\left(\mathbf{x}_{\tau}^{(n)} | Y_{\tau} = s_{m}\right) P(Y_{\tau} = s_{m} | Y_{\tau-1} = s_{k}) \omega_{\tau-1}(k)$$

- Return the most probable assignment given $x^{(n)}$:
 - $\hat{Y}_T = \rho_{T+1}(END)$
 - For $\tau = T 1, ..., 1$

$$\cdot \hat{Y}_{\tau} = \rho_{\tau+1} (\hat{Y}_{\tau+1})$$

3 4 Inference Questions for HMMs

1. Marginal Computation: $P(Y_t = s_j | \mathbf{x}^{(n)})$ (or $P(Y | \mathbf{x}^{(n)})$)

$$P(Y|\mathbf{x}^{(n)}) = \frac{P(\mathbf{x}^{(n)}|Y)P(Y)}{P(\mathbf{x}^{(n)})} = \frac{\prod_{t=1}^{T} P(\mathbf{x}_{t}^{(n)}|Y_{t})P(Y_{t}|Y_{t-1})}{P(\mathbf{x}^{(n)})}$$

- 2. <u>Viterbi</u> Decoding: $\hat{Y} = \underset{Y}{\operatorname{argmax}} P(Y|x^{(n)})$
- 3. Evaluation: $P(x^{(n)})$

$$P(\mathbf{x}^{(n)}) = \sum_{\mathbf{y} \in \{\text{all possible sequences}\}} P(\mathbf{x}^{(n)}|\mathbf{y})P(\mathbf{y})$$

4. Minimum Bayes Risk (MBR) Decoding:

$$\widehat{Y} = \underset{Y}{\operatorname{argmin}} \ \mathbb{E}_{Y' \sim P_{A,B}(\cdot \mid \boldsymbol{x}^{(n)})} [\ell(Y, Y')]$$

Minimum Bayes Risk Decoding

- The learned parameters A and B induce a probability distribution or belief over sequences of states $P_{A,B}(Y|x^{(n)})$
- Given a loss function, $\ell(Y, Y')$, find the sequence of states that minimizes our expected loss under our current belief

$$\widehat{Y} = \underset{Y}{\operatorname{argmin}} \mathbb{E}_{Y' \sim P_{A,B}(\cdot | \boldsymbol{x}^{(n)})} [\ell(Y, Y')]$$

$$= \underset{Y}{\operatorname{argmin}} \sum_{Y'} P_{A,B}(Y'|\mathbf{x}^{(n)}) \ell(Y,Y')$$

Minimum Bayes Risk Decoding: Example

• If $\ell(Y, Y')$ is the 0-1 loss $\ell(Y, Y') = 1 - \mathbb{1}(Y = Y')$ $\widehat{Y} = \underset{Y}{\operatorname{argmin}} \sum_{Y} P_{A,B} (Y' | \boldsymbol{x}^{(n)}) (1 - \mathbb{1}(Y = Y'))$ $= \underset{Y}{\operatorname{argmin}} - \sum_{Y'} P_{A,B}(Y'|\boldsymbol{x}^{(n)}) \mathbb{1}(Y = Y')$ = argmax $P_{A,B}(Y|\mathbf{x}^{(n)})$

Minimum Bayes Risk Decoding: Example

• If $\ell(Y, Y')$ is the Hamming loss

$$\ell(Y,Y') = \sum_{t=1}^{T} 1 - \mathbb{1}(Y_t = Y_t')$$

$$\widehat{Y}_t = \underset{Y_t}{\operatorname{argmax}} P_{A,B}(Y_t | \boldsymbol{x}^{(n)})$$

 Computes the most likely state at each time step using the marginals from the forward-backward algorithm

Key Takeaways

- Because of their well-behaved graphical structure,
 inference in HMMs is tractable via dynamic programming
 - Forward-backward algorithm for computing marginal distributions
 - Viterbi algorithm for computing most probable sequence of states